apoios e patrocÍnios / patronage and sponsorship ... · vasco boatto alain carbonneau giovanni...

14
APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP / PATRONAGES, SUPPORTS ET SPONSORS SAPEC AGRO PORTUGAL | CARMO | BAYER CROPSCIENCE | SIPCAM PORTUGAL

Upload: doanminh

Post on 09-Dec-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP / PATRONAGES, SUPPORTS ET SPONSORS

SAPEC AGRO PORTUGAL | CARMO | BAYER CROPSCIENCE | SIPCAM PORTUGAL

Page 2: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

CIÊNCIA E TÉCNICA VITIVINÍCOLA Journal of Viticulture and Enology

(Revista Semestral / Six monthly review)

Director: EIRAS DIAS (J.E.) Comissão de Redacção/Journal Staff: SILVESTRE (J.), Coordenador; CANAS (S.)

Conselho de Leitura / Editorial Review Board

Amâncio (S.), Instituto Superior de Agronomia, Lisboa (Portugal) Baleiras-Couto (M. M.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Barre (P.), Institut des Produits de la Vigne, Montpellier (France)

Barreira (M. A.),Instituto Superior de Agronomia, Lisboa (Portugal)

Barroso (J. M.),Universidade de Évora, Évora (Portugal)

Bayonove (C.), Institut des Produits de la Vigne, Montpellier (France) Belchior (A. P.), Estação Vitivinícola Nacional, Dois Portos (Portugal)

Bertrand (A.), Faculté d'Oenologie, Bordeaux (France)

Brillouet (J. M.), Institut des Produits de la Vigne, Montpellier (France) Brun (S.), Université de Montpellier (France) Bruno de Sousa (R.), Instituto Superior de Agronomia, Lisboa (Portugal) Caldeira (I. J.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Caló (A.), Istituto Sperimentale per la Viticoltura, Conegliano (Italia) Cameira-dos-Santos (P.J.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Canas (S.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Cantagrel (R.), B. N. I. C., Cognac (France) Carbonneau (A.), E. N. S. A. M., Montpellier (France) Carneiro (L. C.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Casal (M.), Departamento de Biologia/UM, Braga (Portugal) Castino (M.), Istituto Sperimentale per l'Enologia, Asti (Italia) Castro (R.), Instituto Superior de Agronomia, Lisboa (Portugal) Catarino (S.), Estação Vitivinícola Nacional, Dois Portos (Porugal) Clímaco (M. C.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Clímaco (P.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Chatonnet (P.), Laboratoire EXCELL, Merignac (France) Cotea (V.), Centrul de Cerceturi pentru Oenologie, Iasi (Roumanie) Cunha (J. M.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Curvelo-Garcia (A. S.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Duarte (F. L.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Duarte (M. F. R.), Instituto Superior de Agronomia, Lisboa (Portugal) Eiras-Dias (J. E.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Faia (A. M.), Universidade de Trás-os-Montes e Alto Douro, Vila Real (Portugal) Ferreira (M. A.), Universidade do Porto (Portugal) Fevereiro (M. P. S.), Instituto de Tecnologia Química e Biológica/UNL, Oeiras (Portugal) Flanzy (C.), Institut des Produits de la Vigne, Montpellier (France) Freitas (V. A. P.), Faculdade de Ciências/UP, Porto (Portugal) Garcia de Lujans (A.), Est. Exp. Rancho de la Merced, Jerez de la Frontera (España) Hogg (T.), ESB, Universidade Católica Portuguesa, Porto (Portugal) Kovac (V.), Faculté de Technologie, Novi Sad (Serbie) Laureano (O.), Instituto Superior de Agronomia, Lisboa (Portugal) Lee (T. H.), E. & J. Gallo Winery, Modesto (USA) Lima (J. C.), Universidade do Porto (Portugal) Lima (M. B.), Estação Agronómica Nacional, Oeiras (Portugal) Loureiro (V.), Instituto Superior de Agronomia, Lisboa (Portugal) Lopes (C. M. A.), Instituto Superior de Agronomia/UTL, Lisboa (Portugal) Magalhães (N.), Universidade de Trás-os-Montes e Alto Douro, Vila Real (Portugal) Martins (A.), Instituto Superior de Agronomia, Lisboa (Portugal) Moutounet (M.), Institut des Produits de la Vigne, Montpellier (France) Puech (J. L.), Institut des Produits de la Vigne, Montpellier (France) Ricardo-da-Silva (J.), Instituto Superior de Agronomia, Lisboa (Portugal) Rohlf (F. J.), State University of New York at Stony Brook (USA) Rolo (J. A. C.), Instituto Nacional de Investigação Agrária, Lisboa (Portugal) San Romão (M. V.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Santos-Buelga (C.), Faculdad de Farmacia/Universidade de Salamanca, Salamanca (Espanha) Sequeira (O.), Estação Agronómica Nacional, Oeiras (Portugal)

Silvestre (J. M.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Spranger (M. I.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Sun (B. S.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Snakkers (G.), Bureau National Interprofessionnel du Cognac, Station Viticole (França) Vilas Boas (L.), Instituto Superior Técnico, Lisboa (Portugal) Wittkowski (R.), BGVV, Berlin (Germany) Zanol (G.), Estação Vitivinícola Nacional, Dois Portos (Portugal)

Page 3: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

18th

International Symposium

of the

Group of International Experts of

vitivinicultural Systems for CoOperation

(GiESCO 2013)

Porto, Portugal

7th

– 11th

July 2013

PROCEEDINGS / COMPTES RENDUS

TOME II

Ciência e Técnica Vitivinícola - ISSN 0254-0223

Modifications in the layout of papers received from Authors have been made to fit the

publication format of Ciência e Técnica Vitivinícola.

All texts have been reviewed and corrected by the Editorial Review Board, members of the

Scientific Committee of GiESCO 2013 and Editors.

We apologize for errors that could have arisen during the editing process despite our careful

vigilance.

Page 4: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

II

GiESCO 2013 Scientific Committee: GiESCO 2013 Organizing Committee: Rogério de CASTRO

Isabel ANDRADE

Borbala BALO

Mota BARROSO

Vasco BOATTO

Alain CARBONNEAU

Giovanni CARGNELLO

Pedro CLÍMACO

Peter CLINGELEFFER

Eduardo EIRAS-DIAS

Rosario DI LORENZO

Nick DOKOOZLIAN

Milka FERRER

Kobus HUNTER

Cesare INTRIERI

Gregory JONES

Markus KELLER

Stefanos KOUNDOURAS

Carlos LOPES

Nuno MAGALHÃES

Fernando MARTINEZ de TODA

António MEXIA

Teresa MOTA

Montserrat NADAL

Vittorino NOVELLO

Hernan OJEDA

Laura de PALMA

Jocelyne PÉRARD

Giuliano PEREIRA

Đordano PERŠURIĆ

Enrico PETERLUNGER

Eugenio POMARICI

Jorge PRIETO

Stefano PONI

Filippo PSCZOLKOWSKI

Jorge QUEIROZ

Andrew REYNOLDS

Jorge RICARDO-DA-SILVA

Jean-Philippe ROBY

Raúl RODRIGUES

Hans SCHULTZ

José SILVESTRE

Vicente SOTES

Bruno TISSEYRE

Jorge TONIETTO

Laurent TORREGROSA

Kees VAN LEEUWEN

Jesus YUSTE

Vivian ZUFFEREY

President:

Jorge QUEIROZ

Members:

Teresa MOTA

Barros CARDOSO

Pedro CLÍMACO

Amândio CRUZ

Ana FARIA

Raúl JORGE

Raúl RODRIGUES

GiESCO BOARD:

President:

Alain CARBONNEAU

Vice Presidents:

Giovanni CARGNELLO

Hans SCHULTZ

Hernan OJEDA

Scientific Secretariat Anabela CARNEIRO

Rua Campo Alegre 687

4169 - 007 Porto - Portugal

E-mail: [email protected]

Secretariat Skyros-Congressos

Av. Antunes Guimarães, 554 | 4100-074 - Porto

Phone. +351 226 165 450 | Fax. +351 226 189

539

E-mail: [email protected]

Page 5: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

III

PREFÁCIO

18º Simpósio Internacional GiESCO 2013, Porto, Portugal

PORTUGAL – Diversidade, Património, Inovação

O 18º Simpósio Internacional GiESCO 2013 (Grupo internacional de Especialistas em Sistemas

vitivinícolas para a CoOperação) decorre entre 7 e 11 de Julho, na Faculdade de Ciências da

Universidade do Porto – Portugal, sob o Alto Patrocínio de Sua Excelência O Presidente da

República. A este evento associam-se o OIV (Organização Internacional da Vinha e do Vinho),

a Reitoria da Universidade do Porto, o Instituto Superior de Agronomia – Universidade Técnica

de Lisboa, o Instituto Nacional de Investigação Agrária e Veterinária, I.P., a Fundação para a

Ciência e Tecnologia, o Instituto da Vinha e do Vinho, I.P., a Comissão de Viticultura da

Região dos Vinhos Verdes, o Instituto dos Vinhos do Douro e do Porto, I.P., a Casa do Douro, a

ViniPortugal e a “Chaire UNESCO Culture et Traditions du Vin”.

A grande adesão da comunidade científica traduz-se na apresentação de mais de 220 trabalhos

científicos (comunicações orais e posters), de cerca de 250 investigadores e cientistas,

provenientes de 23 países. Ao longo de quatro dias e nove sessões, serão abordados os temas:

Metodologia e ecofisiologia; Relações hídricas; Viticultura de Montanha e de Regiões quentes;

Meio Ambiente: clima e solo, Gestão da vinha, rendimento, qualidade; Sistemas de condução;

Novos conceitos e Tecnologias avançadas em Viticultura; Viticultura Geral; Gestão do

Território. Viticultura Sustentável; Academia da Vinha e do Vinho.

Este encontro será também uma boa ocasião para que os congressistas se possam inteirar dos

mais recentes avanços tecnológicos da vitivinicultura portuguesa e da sua diversidade, através

de visitas técnicas à REGIÃO DOS VINHOS VERDES e ao ALTO DOURO VINHATEIRO,

classificado como Património da Humanidade pela UNESCO em 2001.

Nesta edição do Simpósio, pretende-se ainda homenagear o Prof. Rogério de Castro pelo seu

contributo para a docência, a Viticultura e a sua colaboração com o GiESCO, e por esse motivo

o seu dia será aberto à comunidade científica e técnica.

Aproveitando para desejar as boas vindas a todos os participantes, agradecemos a todos as

pessoas envolvidas na organização deste evento, especialmente à Doutora Teresa Mota, à Engª

Anabela Carneiro, à Engª. Susete Melo e Eng.º António Fonseca, aos membros da Comissão de

Organização, do Comité Científico pela revisão dos artigos, assim como a todas as instituições e

empresas que de uma ou outra forma apoiaram a organização deste simpósio.

Por último agradeço à minha família pelo apoio de sempre.

Jorge B. Lacerda de Queiroz

Presidente da Comissão de Organização

Faculdade de Ciências da Universidade do Porto

Título: 18th

International Symposium GiESCO – Proceedings.

Editores: Jorge QUEIROZ, Anabela CARNEIRO

Publicação: Ciência e Técnica Vitivinícola - ISSN 0254-0223

Citação: Ciência e Técnica Vitivinícola – Volume 28, Proceedings 18th

International Symposium

GiESCO, Porto, 7-11 July 2013, (pg)-(pg)

Page 6: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

IV

FOREWORD 18th International Symposium GiESCO 2013, Porto, Portugal

PORTUGAL – Diversity, Heritage, Innovation

The 18th International Symposium GiESCO 2013 (Group of International Experts of

vitivinicultural Systems for CoOperation) takes place from 7th to 11

th July, at the Faculty of

Sciences of University of Porto - Portugal, under the High Patronage of His Excellency The

President of the Republic of Portugal. In this has the patronage of the OIV (International

Organisation of Vine and Wine), the Dean of the University of Porto, the Institute of Agronomy

- Technical University of Lisbon, the National Institute of Agricultural Research and Veterinary

IP, the Foundation for Science and Technology, the Institute of Vine and Wine, IP, the

Viticulture Commission of the Vinhos Verde Region, the Institute of Douro wines and Port, IP,

the ViniPortugal, the “Casa do Douro” and the "Chaire UNESCO Culture et Traditions du Vin".

The great adherence of the scientific community to GiESCO 2013 is reflected in the more than

220 scientific papers (oral and posters) submitted by about 250 researchers and scientists from

23 countries. Over four days and nine sessions will be presented papers subjected to:

Methodology and ecophysiology, Water relations; Mountain and hot Regions Viticulture;

Environment: climate and soil; Vineyard management, yield, quality; Training systems; New

concepts and Advanced Technologies in Viticulture; Viticulture General; Territory

Management. Sustainable Viticulture; Vine and Wine Academy.

This meeting will also be an opportunity for the participants could to contact with the latest

technological advancements of Portuguese vitivinicultural industry and its diversity, through

technical visits to the VINHOS VERDE REGION and ALTO DOURO WINE REGION,

classified as World Heritage by UNESCO in 2001.

This Symposium is intended to honour Prof. Rogério de Castro for his contribution to teaching,

Viticulture and their collaboration with GiESCO, and that way this day will be open to all the

scientific and technical community.

Taking the opportunity to wish a warm welcome to all participants, we thank everybody

involved in organizing this event, especially to Dra. Teresa Mota, Engª. Anabela Carneiro, à

Engª. Susete Melo and Eng.º António Fonseca, to the members of the Organizing Committee,

the Scientific Committee for reviewing the articles, as well as all institutions and companies in

one way or another supported the organization of this symposium.

Finally I would like to thank my family for their support.

Jorge B. Lacerda de Queiroz

President of the Organization Committee

Faculdade de Ciências da Universidade do Porto

Title: 18th

International Symposium GiESCO – Proceedings.

Editores: Jorge QUEIROZ, Anabela CARNEIRO

Publisher: Ciência e Técnica Vitivinícola - ISSN 0254-0223

Citation: Ciência e Técnica Vitivinícola – Volume 28, Proceedings 18th

International Symposium

GiESCO, Porto, 7-11 July 2013, (pg)-(pg)

Page 7: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

V

PREFACE

18èmes

Journées Internationales GiESCO 2013, Porto, Portugal

PORTUGAL - Diversité, Patrimoine, Innovation

Le 18ème

Symposium International GiESCO 2013 (Groupe international d’Experts en Systèmes

vitivinicoles pour la CoOpération) s'étend entre 7 et 11 Juillet, à la Faculté des Sciences de

l'Université de Porto - Portugal, sous le Haut Patronage de Son Excellence Monsieur le

Président de la République Portugaise. A ce événement sont associés l'OIV (Organisation

Internationale de la Vigne et du Vin), le Rector de l'Université de Porto, l'Institut d'Agronomie -

Université Technique de Lisbonne, l'Institut National de la Recherche Agronomique et

Vétérinaire IP, la Fondation pour Science et Technologie, l'Institut de la Vigne et du Vin, IP, la

Commission de la Viticulture de la Région des Vinhos Verdes, l'Institut des Vins du Douro et de

Porto, IP, le ViniPortugal, la « Casa do Douro » et la "Chaire UNESCO Culture et Traditions du

Vin".

Le grand succès auprès de la communauté scientifique se traduit par la présentation de plus de

220 articles scientifiques (orales et posters) d’environ 250 chercheurs et scientistes de 23 pays.

Pendant quatre jours et neuf séances, seront abordés les sujets: Méthodologie et écophysiologie,

Relations Hydriques; Viticulture de montagne et des régions chaudes; Environnement: climat et

sol ; Système de culture, Rendement, Qualité ; Systèmes de Conduite; Nouveaux concepts et

Technologies avancées en Viticulture, Viticulture Générale; Gestion des territoires. Viticulture

durable; Académie de la Vigne et du Vin.

Cette réunion sera également l'occasion pour que les participants puissent connaitre les

dernières avancées technologiques de l'industrie de la vigne et du vin Portugais et sa diversité, à

travers des visites techniques dans la REGION DES VINHOS VERDES et la région de le

HAUT DOURO VITICOLE, classé Patrimoine Mondial par l'UNESCO en 2001.

Dans ce colloque on désire aussi honorer le Prof. Rogério de Castro pour sa contribution à

l'enseignement, de la Viticulture et de leur collaboration avec GiESCO, raison pour laquelle ce

jour et ouvert à la communauté scientifique et technique.

Saisissant l'occasion pour souhaiter la bienvenue à tous les participants, nous remercions à

toutes les personnes impliquées dans l'organisation de cet événement, en particulier à Dra.

Teresa Mota, Engª. Anabela Carneiro, à Engª. Susete Melo et Eng.º António Fonseca, les

membres du Comité Organisateur et du Comité Scientifique par la révision des articles, ainsi

que toutes les institutions et les entreprise que, d'une manière ou d'une autre, ont contribué à

l'organisation de ce colloque.

Finalement, je remercie ma famille pour leur soutien.

Jorge B. Lacerda de Queiroz

Presidente da Comissão de Organização

Faculdade de Ciências da Universidade do Porto

Titre: 18th

International Symposium GiESCO – Proceedings.

Editeurs: Jorge QUEIROZ, Anabela CARNEIRO

Publication: Ciência e Técnica Vitivinícola - ISSN 0254-0223

Citation: Ciência e Técnica Vitivinícola – Volume 28, Proceedings 18th

International Symposium

GiESCO, Porto, 7-11 July 2013, (pg)-(pg)

Page 8: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

VI

Impressão realizada com o apoio da Fundação Ciência e Tecnologia

Impression held with the support of the Fundação Ciência e Tecnologia

Impression organisé avec le soutien de la Fundação Ciência e Tecnologia

Page 9: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

633

IMPORTANCE OF CANOPY POROSITY INTO VINEYARD AND THE

RELATIONSHIP WITH THE GRAPE MATURITY. DIGITAL ESTIMATION

METHOD

IMPORTANCE DE LA POROSITE DE LE COUVERT VEGETAL DANS LE VIGNOBLE ET LA

RELATION AVEC LA MATURITE DU RAISIN. METHODE D'ESTIMATION

Mario de la Fuente1*, Rubén Linares, Pilar Baeza and José Ramón Lissarrague

1 Departamento de Producción Vegetal: Fitotecnia. Escuela Técnica Superior de Ingenieros Agrónomos. Universidad Politécnica de Madrid.

C/ Senda del Rey s/n, 28040, Madrid, Spain.

*Corresponding author: de la Fuente, M. phone: +34 915491137, Fax: +34 915491137, Email: [email protected]

SUMMARY

In warm and dry climates, the use of porous systems should be required in order to allow a better leaf distribution inside the plant, causing

more space in the clusters area and enhancing determined physiological processes so in the leaf (photosynthesis, ventilation, transpiration) as in berry (growth and maturation). Plant geometry indexes, yield and must composition have been studied in three different systems: sprawl

with 12 shoots/m (S1); sprawl system with 18 shoots/m (S2) and vertical positioned system or VSP with 12 shoots/m (VSP1). Total leaf area

increases as the crop load does, whoever surface area depends on to two factors: crop load and the training system (VSP vs. sprawl), which can provide differences in leaf exposure efficiencies. The main objective of this study was to validate digital photography measurements

used to compare porosity differences among treatments and, as they affect plant microclimate and, therefore, yield and berry quality. Also,

all previous studied indexes (LAI, SA, SFEr) tended to overestimate the relationship between exposed leaf surface and porosity of each treatment, but the use of digital method proved to be an effective tool in order to assess canopy porosity. Results showed that not positioned

and free systems (sprawl) scored between 25-50% more porosity in the clusters area than the fixed vertical system (VSP), which resulted in a

better plant microclimate for test conditions, mainly by improving the exposure of internal clusters and internal canopy ventilation. On the other hand, higher crop load treatment (S2) showed a real increase in yield (16%) without any relevant change into must composition, even

improving total anthocyanin content into berry during ripening.

RÉSUMÉ

Dans les climats chauds et secs, l'utilisation de systèmes poreuses devrait être nécessaire afin de permettre une meilleure distribution de la

feuille à l'intérieur de la vigne, causant plus d'espace dans la zone des grappes et l'amélioration des processus physiologiques déterminés ainsi dans la feuille (photosynthèse, ventilation, transpiration) comme en raisin (croissance et maturation). Index de la géométrie des plantes,

rendement et doit la composition ont été étudiés dans les trois systèmes différents : système non positionnée avec 12 pampre (S1) ; système

non positionnée avec 18 pampre (S2) et le système de positionnement vertical ou VSP avec 12 pampre (VSP1). La surface foliaire totale augmente avec la charge, la surface foliarire qui repose sur deux facteurs : charge et système de formation (VSP contre système non

positionnée), qui peut fournir des différences dans la feuille d'efficacités de l'exposition. L'objectif principal de cette étude était de valider les

mesures de photographie numérique utilisés pour comparer les différences de porosité entre les traitements et, car ils modifient le microclimat des plantes et, par conséquent, rendement et qualité des baies. Aussi, tous les index étudiés précédentes (LAI, SA, SFEr) avaient

tendance à surestimer la relation entre la surface foliaire exposée et la porosité de chaque traitement, mais l'utilisation de la méthode

numérique s'est avérée pour être un outil efficace pour évaluer la porosité de la couvert végétal. Les résultats ont montré que les systèmes non positionnés et libres (système non positionnée) a marqué entre 25-50 porosité plus dans le domaine des grappes que le système vertical

fixe (VSP), qui a donné lieu à un microclimat de meilleur plante pour les conditions de l'essai, principalement par l'amélioration de

l'exposition des grappes internes et ventilation interne canopée. En revanche, plus charge de traitement (S2) ont montré qu'une réelle augmentation du rendement (16%) sans changement pertinent dans doit composition des moûts, même teneur en anthocyanes total

amélioration en berry au cours du maturite.

Key Words: sprawl, training system, porosity, canopy, grape composition.

Mots –Clés: système non positionnée, systèmes de conduit, couvert végétal, porosité, composition des raisins

.

Page 10: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

634

INTRODUCTION

The plant geometry and training system should be

joined with a proper sunlight and temperature

microclimate in the clusters area and, also in the

rest of the plant (Spayd, et al. 2002). In warm and

dry climates is required the use of porous systems

that allow a better leaf distribution inside the plant,

cause more space in the clusters area and enhance

several physiological processes so in the leaf

(photosynthesis, aeration, transpiration) as in berry

(growth and maturation). Several authors have

showed the relevance of 3D spatial measures to

describe the architecture of leaf plant (Schultz

1995; Mabrouk, et al. 1997; Gladstone and

Dokoozlian, 2003), for adequate canopy

management and also, can estimate degree shading

in clusters area (key factor in the berry ripening

development). Digital image analysis are common

used in vineyards to estimate crop coefficients or

radiative balance models (Pieri, 2010). Porosity

canopy measurement provides information on leaf

surface distribution along the shoot and its spatial

situation into plant air system or canopy volume

(Gladstone and Dokoozlian, 2003).

At harvest, the value of incident photosynthetic

active radiation (PAR) inside the canopy is usually

low (about 10% of total ambient radiation). The

degree of canopy density changes that percentage

and there is a positive correlation among PAR, leaf

area and density into clusters area (Dokoozlian and

Kliewer, 1995). Sunlight, air ventilation within

canopy, temperature cluster and microclime is

affected by exposure and radiation percentage

received during growth and maturation period. If

the lighting inside clusters area decreases during

berry state development, berries will produce less

solutes accumulation and also, polyphenols and

anthocyanins too (Dokoozlian and Kliewer, 1995).

On the other hand, too much cluster lighting can

cause excessive higher temperatures into cluster

areas and produce degradation for these compounds

(Spayd, et al. 2002).

Likewise, there are many factors which having

important effects into plant microclimate and are

related with training system, so that is the reason

for comparing different training systems in this

study. Sprawl is a porous training system with

alternating spur-pruned uniform distribution along

horizontal cordon that caused spacing clusters zone.

VSP on the other hand, is a vertical, rigid

positioning system that shoots and leaf area caused

a linear clusters zone, usually closely spaced.

Results show porosity differences among three

treatments and will be compared and related with

other typical canopies measures, such as leaf area

index (L.A.I.), surface area (S.A.) or point quadrat

method which are more complicated to take than a

picture.

MATERIAL AND METHODS

This field experiment was conduced over two

consecutive seasons (2006 and 2007) into an

experimental trial in Toledo (Spain), under a fine

clay-sandy soil (Palexeralf, Soil Survey Staff, 2003)

with a 50 cm depth clay superficial horizon (50-

55% of clay). The weather conditions were

Mediterranean semiarid (Papadakis, 1966). The

cultivar was Syrah grafted on 110R and spaced 1.2

m inside the NO-SW orientated rows and 2.7 m

between rows. Irrigation system drippers (3·l h-1

)

were spaced 1.2 m along the planting line and the

amount applied was equal for all treatments.

Climatic conditions of 2006 and 2007 were

significantly different being the 2006 a campaign

extremely warm while 2007 did not. Differences

can be observed mainly in growing degree day

accumulated (2000 vs. 2525 GDD), rainfall (168 vs.

246 mm) and in evapotranspiration reference

(1211.1 vs. 1064.6 mm; Eto) index too. Trial was

designed with three treatments placed into four

blocks at random and each experimental plot

consists of 20 control plants separated by rows and

vines edge. Three treatments studied, in order to

assess the impact of training system and crop load,

were: i) VSP1, Espaldera or vertical positioned

system (VSP) with 12 shoots/m crop load, ii) S1,

Sprawl with 12 shoots/m crop load and iii) S2,

Sprawl with 18 shoots/m crop load. (50% crop load

more than VSP1 and S1).Vines were spur pruned

and trained to a bilateral cordon at a height of 1.40

m to the floor. The sprawl system had a single

couple vegetation wires from 0.4 m to the basal

wire and they opened 0.6 m between wires. VSP

system had a couple wires from 0.3 m to the basal

wire and a higher wire at 1.5 m to basal wire.

The measures of the total leaf area index (LAI; m2

leaf·area m-2

soil) were taken in accordance with a

modification of the method described by

Carbonneau (1976) according to Sánchez de Miguel

et al., (2010). Five shoots were measured in two

vines by treatment and block. Surface area (SA; m2

external foliar·m-2

surface soil) was calculated

based on inner geometric parameters of each

system. Five measures were taken at two different

heights, in two vines by treatment and block. In

VSP treatment, the area was likened to a

parallelepiped and measures were taken from

vegetation lateral wall (total vegetation height,

basal vegetation zone and fruiting zone) and the

width of vegetation row. For both sprawl system

treatments were calculated by estimated perimeter

with flexible tape and vectorial graphic design

program (Cad 2008®) to calculate the circular

section of plant wall along the row.

On the other hand, surface exposed real (SFEr) was

calculated such as Carbonneau (1995) described as

Page 11: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

635

Table I - Vegetative development (LAI, m2·m-2), surface area (SA, m2·m-2) and surface real exposed (SFEr) for three treatmets at harvest.

Développement végétatif (LAI, m2·m-2), surface habitable (SA, m2·m-2) et real surface exposée (SFEr) pour trois treatmets à la récolte.

Main Lateral Main Lateral 8 s.t. 12 s.t. 16 s.t. 8 s.t. 12 s.t. 16 s.t.

VSP1 1.16b 0.63 1.28b 1.32 1.06b 1.11b 0.47c 0.31c 0.41b 1.08b 1.03b 1.38

S1 1.34b 0.68 1.40b 1.33 1.15b 1.26ab 0.83b 0.56b 1.12b 1.01b 0.74b 1.59

S2 2.00a 0.73 2.12a 1.24 1.50ª 1.31ª 1.15ª 0.98ª 1.23ª 1.78a 1.62a 1.65

EEM1 (n=8) 0.16 0.104 0.076 0.075 0.06 0.07 0.08 0.08 0.08 0.08 0.08 0.08

Sig2 * ns *** ns ** * *** *** *** *** *** ns

LAI SFEr

2006 2007 2007Treatment

SA

2006 20072006

result of multiply radiation intercepted percentage

by vegetation cover and total leaf area developed

(LAI) by the plant. It took data from radiation

throughout ripening in different day hours (8, 12

and 16 s.t.) for this variable calculated.

Spatial aerial parts distribution of the plant were

measured by Point Quadrat (PQ) method described

by Smart (1985) in the same vines that previous

vegetation measures did. Real porosity percentages

were calculated through processing tool

photography program (Adobe Photoshop CS3®).

Photographs were taken by night and with the only

flash lighting from the digital camera (to well

discriminate gaps from leaves). Pictures from

vegetal wall were taken between two consecutive

vines for each block (the same vines used for the

geometric measures) and with a distance same as

the width of between plant lines (2.7 m).

A reproductive yield study was done during harvest

(30/08/2006 and 05/09/2007) in ten previously

selected plants for each treatment and block.

Cluster number, average cluster weight, average

berry weight, berry number per cluster and yield

(kg m-1

) were calculated individually for each

harvested plant. A digital field scale was used for

experimental data measures. Also, at harvest a 100-

berry sample per single plot was collected to follow

100-berries weight (g), SST (ºBrix), pH and phenol

maturity according to Glories (2001) method, so

final values corresponded to harvest date of each

year.

RESULTS AND DISCUSSION

Canopy measures

In both years (Table I), total leaf area of greater

crop load treatment (S2) was higher than the other

two treatments with lesser load (VSP1 and S1)

between 27-33% over all vegetative cycle, as was

likely, emphasizing differences before stopping

vegetative prior to ripening. There were not

significant differences between treatments in

relation to growth of secondary shoots. These

differences show that total leaf area is directly

related to the level of crop load left in the plant, and

did not cause any increase in secondary leaf area

between low load treatments (VSP1 and S1)

compared to the higher load treatment (S2). Surface

area exposed (Table 1) at maturity showed that

sprawl treatments obtained higher values than VSP

(10-30% compares to S treatments in 2006 and

2007 respectively in 2007) when the crop load

effect made them open up the top vegetation centre.

However, the best indicator of the relationship

between vegetation amount and surface porosity

into the canopy is the ratio called surface real

exposed (SFEr; Carbonneau, 1995). Results

measured at 8, 12 and 16 s.t. reflect (Table 1) a

greater exposure (during all day) of treatment S2 in

relation to the other treatments, reaching much

higher values compared to VSP (increase between

36.4% and 68.4%, P<0.001). S1 obtained

intermediate values, so that it was clear, a combined

effect between crop load and training system

caused an increase of canopy plant volume,

decreasing crowed vegetation cover and increasing

leaf exposure (14-29%) of open systems versus

rigid vertical positioning system. The division of

the canopy in more vegetation planes can increase

yield and crop quality (Bordelon et al. 2008), and

also, the quality of wines.

These differences are very interesting in warm

climates, where one of the main goals is not cause

leaf and clusters overexposure in order to prevent

premature senescence and berry overripening

process respectively (de la Fuente, 2009).

Increasing load and with a not positioned free

exposure, the plant shows a higher overhead

opening and exposed a higher number of leaves to

solar radiation but during less time, because flow

radiation unit per leaf is smaller, so senescence

process is not caused easily. Also, total leaf area is

more efficient because is working with a larger

number of inner leaves than rigid vertical systems,

where the number of leaves layers is usually minor,

increasing the leaf exposure to solar radiation, but

lowering the undesirable effect of premature

senescence in basal leaves due to excessive heat.

Porosity

Page 12: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

636

Table II - Point Quadrat and digital porosity estimation method for three treatmets during maturation period.

Point Quadrat et méthode d'estimation de porosité numérique pour trois treatmets au cours de la période de maturation.

Leaf

layers

Gap

fraction

(%)

Internal

Clusters

(%)

Lateral

Internal

Leaves

(%)

Leaf

layers

Gap

fraction

(%)

Internal

Clusters

(%)

Lateral

Internal

Leaves

(%)

0-40

cm.

40-70

cm.

70-100

cm.

0-40

cm.

40-70

cm.

70-100

cm.

VSP1 2,20 15,00 77,90 2,7b

26,4b 2,20 7,50 65,6

b3,5

b44,5

b7,57

b20,17

b62,00

b5,67

b7,00

b23,75

b

S1 2,60 10,00 82,40 5,0a 58,3ª 2,40 7,50 81,0

a 5,8ª 66,1ª 14,63ª 26,25ª 85,00a

7,00a 14,83ª 66,87ª

S2 2,50 20,00 82,10 5,9ª 60,0a 2,60 5,00 87,3ª 6,5

a 68,1ª 12,33a

16,20b

64,64b

4,87b

17,00a 78,25ª

EEM1 (n=8) 0,23 4,5 0,5 0,41 2,01 0,22 1,8 0,56 0,31 1,53 0,88 1,15 6,73 0,17 1,81 6,3

Sig2 ns ns ns *** *** ns ns ** ** ** *** ** * ** * **

Vegetation Zone

PQ 2006

Cluster Zone

Treatment

Cluster Zone Vegetation Zone

% Porosity

2006 2007

PQ 2006

Table III - Yield partitioning and must composition in 2006 and 2007 growing seasons for three treatments at harvest.

Composantes du rendement et moût en 2006 et 2007 pour les trois traitements à la récolte.

1 EEM: standard average error for n= 40 and 8 samples per yield and must composition respectively.

2 Sig: significant differences; ns, *, ** and *** means to there is no significant differences, P<0,05, P<0,01 and P<0,001 respectively. The

values with the same letter are equal (T. Duncan). P-values were determined by analysis of variance.

TreatmentNº

Clusters·m-1 Yield (Kg·m

-2)

Cluster

average

weight (g)

100 Berries

average

weight (g)

berries·cluster-1

Clusters·m-1 Yield (Kg·m

-2)

Cluster

average

weight (g)

100 Berries

average

weight (g)

berries·cluster-1

VSP1 24.68 b 1.73 b 190.42 a 111.34 a 171.19 a 20.96 b 1.61 b 204.36 a 150.54 b 135.63 a

S1 23.82 b 1.71 b 195.10 a 104.57 b 187.34 a 21.04 b 1.61 b 206.55 a 160.09 a 128.29 a

S2 36.20 a 2.05 a 153.24 b 101.05 c 152.06 b 30.66 a 1.93 a 169.32 b 158.7 a 106.92 b

EEM1 (n=40) 0.604 0.041 6.09 0.081 1.02 0.46 0.10 7.71 1.39 5.05

Sig2 ** ** ** ** ** *** *** ** *** ***

Yield partitioning 2006 Yield partitioning 2007

Treatment ºBrix pH IPT

Antocian

extractables

(mg·L-1

)

Total Antocian

content (mg·L-1

)ºBrix pH IPT

Antocian

extractables

(mg·L-1

)

Total Antocian

content (mg·L-1

)

VSP1 25.1 3.5 46.7 794.33 1470.35 b 25.2 3.06 b 45.8 931.0 1172.5

S1 25.9 3.5 54.7 936.95 1804.34 a 25.4 3.13 a 51.8 976.5 1228.5

S2 25.8 3.5 52.7 983.94 1903.30 a 24.7 3.20 a 47.7 861.0 1197.88

EEM1 (n=8) 0.76 0.02 2.54 76.94 81.28 0.27 0.02 4.1 102.7 57.1

Sig2 ns ns ns ns * ns ** ns ns ns

Must Composition 2006 Must Composition 2007

Aerial parts plant positional study by PQ showed

lower vegetation density (Table II) in S treatments,

with around 2 and 3 extra-layers more than VSP1.

Several authors (Gladstone and Dokoozlian, 2003;

Kliewer et al., 2000 and Vanden Heuvel et al.,

2004) obtained values of the leaf layer number in

previous trials and considered at appropriate values

of LLN in cluster area between 1.5 to 2 for trellis

and 3-4 for other open systems with high density.

Data from trial treatments are within the optimal

definition intervals (2-4 LLN) for each training

systems calculated by previous researchers.

Likewise, while there were a higher number of

clusters in S treatments comparing with VSP

system (differences among 1.0-1.7 and 0.8-1.6 in

2006 and 2007 respectively, P<0.05), there were a

higher percentage of clusters not subjected to direct

radiation (24.9-19.0% more for S2 and S1 in 2007,

P<0.01). Several autors obtained differences in

porosity values between 30-10% compairing

divided and not divided training systems (Kliewer

et al., 2000; Gladstone and Dokoozlian, 2003;

Bordelon et al., 2008).

The results of porosity by digital photography

analysis (Table II) show how VSP treatment

obtained lower values of porosity along all the

vegetation cover. In the first 40 cm (clusters zone),

S1 presented higher porosity thanVSP (48 and 19%

for 2006 and 2007 respectively) with the same crop

load. Also, load increase does not affect to system

porosity, because S2 shows higher values in this

area during 2006 (+38.6%, P<0.001) or similar (in

2007) compared to VSP1 treatment. But, that is a

key question: Is there a reliable and fast method to

calculate the porosity of a system? However, today

it is still difficult to obtain an estimated method to

calculate the real porosity value of a training

system. The PQ method defines the number of

layers of leaves and the percentage of non-contacts

(gaps) so directs porosity measurements, and like

other often used parameters (LAI and SA), are

indirect methods (less precise) and, moreover,

certain measures may be overestimated and some

system discontinuities are not consider.

Therefore, porosity variations are priority to assess

Page 13: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

637

a correct leaf area distribution in the plant. Results

of digital photography shown that open systems get

better porosity into cluster area between 25 and

50%.that improves the exposure of inner clusters

and would enhance thermal effects such as

lowering internal temperature due to increase

ventilation into the canopy. Also, in training

systems studies is not only important how many

leaves layers have the canopy, but also the total

volume occupied by them. With the PQ method is

possible to estimate correctly the LLN, but not the

percentage of gaps into the canopy, so this method

should be only applied to compare values of

porosity with the same training system, while the

use of digital photography allow to study different

training systems or vine areas or volumes and really

estimate the canopy porosity inside the plant.

Yield components, berry sampling and juice

analysis

During 2006 and 2007 reflected a main crop load

effect was showed (Table III), where higher load

treatment (S2) had an increment of 16% in yield

than the others treatments. On the other hand, S2

showed an average bunch weight lower (from 17.0

to 22.5%) and reduced the number of berries (from

12 to 21%) per cluster, but it was equilibrated by a

higher cluster number per vine (from 32 to 35%)

and during 2007 with the same average berry

weight (only in 2006 was lower, between 4.4 to

9.2%), caused by a higher crop load. Therefore,

with an increment of load will get berry size

decrease but berries number increase, which has

direct effect in total yield and as same time, an

increase in skin/flesh ratio during harvest.

Leaves and cluster microclimate are the key factor

(Vanden Heuvel et al. 2004) for determinating the

acidity contents, pH and K must and last, wine

composition. Differences obtained during 2007 for

acidity and pH values are not quantitatively

significant (8-7%) and are probably due to a greater

exposure to radiation clusters, which increases final

pH (Bergqvist et al. 2001 and Spayd et al. 2002).

Data from total and extractable anthocyanin (Table

III) content reflect that there is an effect of

increasing shading clusters area in the final berry

synthesis of anthocyanins, which is very useful in

winemaking process (Haselgrove et al. 2000). It

should also be remembered that cv. Syrah is very

sensitive to changes in thermal effects during total

anthocyanins synthesis (Spayd et al. 2002). This

effect causes differences in berry anthocyanins

content, which are heavier in extremely hot

conditions (2007), getting around 20% in open and

not positioned free systems.

Finally, crop load does not change must

composition seriously, but it increase total plant

yield (Junquera et al., 2009) becouse gives more

clusters but less exposed to sunlight and with the

training system, prevent the degradation of

anthocyanins at the end of ripening. The effect of

the load is less important than using open training

systems, which increase phenolic and anthocyanic

berry content modifying light and thermal

microclimate through spatial distribution of

vegetation and shading effects in the plant.

CONCLUSIONS

Double effect due to not positioned open system

(sprawl) and crop load increment gave to the plant a

higher leaf exposure and a lower vegetation density,

which in hot or arid climates means a great

microclimate of plant improvement. Digital

photography is a simple, fast and effective tool to

evaluate possible differences refers to porosity and

leaf area exposure between training systems. It

appears that porosity increase in sprawl treatments

between 25-50% in cluster area compares to VSP

and caused a better plant microclimate.

Finally, free and non-positioned systems can help to

improve plant microclimate, influence positively on

anthocyanic berry composition but do not change

must composition and then allowing a yield

increase if there is enough water availability in

plant-soil system.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the effort of

Osborne Distribuidora S.A. company for technical

and financial support for the implementation of this

project (MEC, IDI: P030260221). Also, D. Juan

Dominguez Torre (REDISEÑA S.L.) for their

invaluable and uninterested support by assistance in

digital image analysis.

REFERENCES

Bergqvist J., Dokoozlian N., Ebusida N. 2001. Sunlight exposure

temperature effects on berry growth and compositon of

Cabernet-Sauvignon and Grenache in the Central San Joaquin Valley of California. Am.J.Enol. Vitic. 52(1).

Bordelon B. P., Skinkis P. A., Howard P.H. 2008. Impact of

training system on vine perfomance and fruit composition of Traminette. Am. J. enol. vitic 59(1), 39-46.

Carbonneau A. 1995. La surface foliare exposée potentielle. Le

progrès agricole et viticole 112(9), 204-212.

de la Fuente M. 2009. Caracterización geométrica, ecofisiológica

y evaluación agronómica de sistemas continuos de vegetación

libre (SPRAWL) vs. espaldera para atenuar la sobreexposición de hojas de racimos en cv. syrah (Vitis vinifera L.) en viñedos de

zonas cálidas. 301 p. Tesis doctoral. E.T.S.I.A. Producción

Vegetal: Fitotecnia. Madrid. Universidad Politécnica de Madrid.

Dokoozlian N., Kliewer W. M. 1995. The light environment

within grapevine canopies. Am.J.Enol. Vitic. 46(2), 209-226.

Gladstone E. A., Dokoozlian N. 2003. Influence of leaf area density and trellis/training system on the light microclimate

within grapevine canopies. Vitis 42(3), 123-131.

Page 14: APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP ... · Vasco BOATTO Alain CARBONNEAU Giovanni CARGNELLO Teresa MOTA Pedro CLÍMACO Barros CARDOSO Peter CLINGELEFFER Pedro CLÍMACO

638

Glories Y. 2001. Caracterisation du potentiel phènolique :

adaptation de la vinification. Le Progrès Agricole et Viticole.

118 (15 -16) : 347 – 350.

Haselgrove L., Bottinf D., Heeswijck R., Rod P.B., Dry P., Ford C., Illand P.G. 2000. Canopy microclimate and berry

composition: the effect of bunch exposure on the phenolic

composition od Vitis vinifera L. cv Shiraz grape berries. Aus. J. Grape and Wine Research 6: 141-149.

Kliewer W. M., Wolpert J. A., Benz M. 2000. Trellis and vine

spacing effects on growth, canopy microclimate, yield and fruit composition of Cabernet-Sauvignon. V International symposium

on grapevine physiology, Jerusalem - Israel, ISHS.21-31.

Junquera, P., Jiménez L., Sánchez de Miguel P., Lissarrague J.R. 2009. Effect of shoot number on vine balance and berry

composition of Tempranillo grapevines. 16th International

GiESCO Symposium, 2009. University of California, Davis

(CA, USA). 419-424.

Mabrouk H., Sinoquet H., Carbonneau A. 1997. Canopy

structure and radiation regime in grapevine II: Modelling radiation interception and distribution inside the canopy. Vitis

36(3), 125-132.

Pieri P. 2010. Modelling radiative balance in a row-crop canopy:

Cross-row distribution of net radiation at the soil surface and

energy available to clusters in a vineyard. Ecological Modelling,

221, 802–811.

Sánchez de Miguel P., Junquera P., de la Fuente M., Jiménez L.,

Linares R., Baeza P., Lissarrague J.R. 2011. Estimation of

vineyard leaf area by linear regression. Spanish Journal of Agricultural Research 9(1): 202 - 212

Schultz H. R. 1995. Grape canopy structure, light microclimate

and photosynthesis I. A two dimensional model of the spatial distribution of surface area densities and leaf ages in two canopy

systems. Vitis 34(4), 211-215.

Smart, R. E. 1985. Principles of grapevine canopy microclimate manipulation with implications for yield and quality. A review.

Am.J.Enol. Vitic. 36(3), 230-239.

Spayd S., Tarara J., Mee D.L., Fergurson J.C. 2002. Separation

of sunlight and temperature effects on the composition of Vitis

vinifera cv. Merlot berries. American Journal of Enology and

Viticulture 53(3), 171-182.

Vanden Heuvel J. E., Proctor J. T. A., Sullivan J.A., Fisher K.H.

2004. Influence of training/trellising system and rootstock

selection on productivity and fruit composition of Chardonnay and Cabernet franc grapevines in Ontario, Canada. Am. J. Enol.

Vitic 55(3): 253-264.