appendix 4.3.1 sewerage infrastructure - ipart · pdf fileunit waste sludge tank activated...

23
Appendix 4.3.1 Sewerage Infrastructure A Overall PFD B Wastewater Stage 1 PFD C Description of Proposed Sewerage Infrastructure

Upload: vonhan

Post on 01-Mar-2018

213 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

 

 

Appendix 4.3.1 Sewerage Infrastructure

A Overall PFD B Wastewater Stage 1 PFD

C Description of Proposed Sewerage Infrastructure

   

Page 2: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

CATHERINE HILL BAY WATER UTILITY PTY LTD

PRIVATE WATER UTILITY:PROJECT:

CATHERINE HILL BAY RESIDENTIAL SUBDIVISIONMONTEFIORE STREET, CATHERINE HILL BAY

DRAWING TITLE:

PROCESS FLOW DIAGRAMOVERALL

IPART REFERENCE:

APPENDIX 4.1.1

CLIENT:

ROSE PROPERTY GROUP PTY LTD

PHASE:

IPART LICENSE APPLICATION

CONTROL ROOM

1.2 ML POTABLE WATER + FIRE STORAGE(0.5ML DEDICATED

FIRE STORAGE)

0.85 ML RECYCLED

WATER STORAGE

WYONG COUNCIL

KANANGRA DRIVE

RESERVOIR

CHEM

ICAL

S

10 ML WET WEATHER

STORAGEPUMP ROOM

AIR GAP

SOLO WATER

WYONG COUNCIL

POTABLE WATER

CLASS A+ RECYCLED WATER

MBR + UV PERMEATE

REVERSE OSMOSIS REJECT

PRESSURE SEWER

UF RETENATE

POTABLE WATER PRESSURE BOOSTER PUMP SET WITH VARIABLE SPEED DRIVE

NON-POTABLE WATER PRESSURE BOOSTER PUMP SET WITH VARIABLE SPEED DRIVE

PRESSURE SEWER NETWORK

CATHERINE HILL BAY DEVELOPMENT LOTS

470 ET

IRRIGATION OF OPEN SPACE AREAS

IRRIGATION AREA: 4.9 ha

UF RETENATE

RO REJECT

BULK POTABLE WATER TRANSFER SYSTEMTRANSFER PIPELINE

TOTAL PIPELINE 6.3 km x DN 200 mm HDPE4.2 km EXISTING HDPE MAIN IN NPWS/RFS CLASS 1 FIRE TRAIL1.5 km OF NEW HDPE MAIN TO CONNECT KANANGRA DR RESERVOIR TO THE EXISTING MAIN0.6 km OF NEW HDPE MAIN TO CONNECT THE EXISTING MAIN TO ONSITE POTABLE WATER STORAGE TANK (REFER TO BULK WATER MAIN LAYOUT PLAN IN APPENDIX 4.1.3)

NEW TRANSFER PUMP STATION LOCATED AT THE EXISTING WYONG COUNCIL KANANGRA DR RESERVOIR SITEVARIABLE SPEED DRIVE BOOSTER PUMP SET WITH BUILT IN STANDBY CAPACITYPEAK DESIGN FLOW 23.3 L/s

197.4 kL/day

15.8 kL/day

209.2 kL/d

MBR WASTE SLUDGE

MBR WASTE SLUDGE

4 kL/day

185.

7 kL

/d

7.7 kL/day4700 mg/L TDS

ADD: 151.3 kL/day

ADD: 118.4 kL/day

197.4 kL/day

213.2 kL/day

OFFSITE DISPOSAL TO APPROVED FACILITY USING

LICENSED WASTE TRANSPORT CONTRACTOR

AWTP(WWTP Stage 2)

RECYCLED WATERCLASS A+

PRODUCTION: 185.7 kL/d

MBR(WWTP Stage 1)

PEAK CAPACITY 300 kL/day)

209.

2 kL

/d

2000 m2

RO REJECTEVAPORATION

POND No. 1

2000 m2

RO REJECTEVAPORATION

POND No. 2

MISTING SPRAYERS MISTING SPRAYERS

6.2 kL/day5600 mg/L TDS

OFFSITE DISPOSAL OF SALT RESIDUE/SURPLUS BRINE TO APPROVED FACILITY USING

LICENSED WASTE CONTRACTOR

TOTAL WATER DEMAND: ADD: 337.1 kL/dPDD: 987.8 kL/dPDD FLOW: 12.5 L/s in 22 hoursFIRE FLOW: 10.0 L/sTOTAL PEAK FLOW 22.5 L/s

PDD: 179.0 kL/day

PDD: 472.4 kL/day

500 m2 RO REJECT EVAPO-TRANSPIRATION WETLAND.

SALT TOLERANT VETIVER GRASS

LEGEND

AIR GAP

DRAWING NUMBER:

H10052_P01C

POTABLEADD: 151.3 kL/dPDD: 179.0 kL/d2.3 L/s IN 22 hrs

FIRE:10 L/s

NON-POTABLEADD: 185.7 kL/dPDD: 808.8 kL/d

10.2 L/s IN 22 hrs

EMERGENCY BACKUP

RECYCLED WATER RETICULATION NETWORK

EMERGENCY STANDBY DEISEL PUMP WITH AUTOMATIC CHANGEOVER

EMERGENCY STANDBY DEISEL PUMP WITH AUTOMATIC CHANGEOVER

POTABLE WATER RETICULATION NETWORK

DATE:05/07/2013

PROCESS FLOW DIAGRAM OVERALL

IRRIGATION OF LANDSCAPED ROAD

BUFFERSIRRIGATION AREA: 3.5 ha

AVG: 39.2 kL/dayPEAK: 196.2 kL/day

AVG: 28.1 kL/dayPEAK: 140.2 kL/day

STAGE 1 TEMPORARY

IRRIGATION AREA(up to 240 lots or 100 kL/day)

IRRIGATION AREA: 10.8 ha

ADD: 185.7 kL/dayPDD: 808.8 kL/day

HIGH & LOW DEMAND

STAGE 1 TEMPORARY IRRIGATION

Page 3: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

LS PSR LS PSR

EVAPORATIVE COOLER

LS DO SSpH

INLET BALANCE

TANKANAEROBIC

TANKANOXIC

TANKAERATION

TANKSUBMERGED MEMBRANE

TANKUV

INLETSCREEN

AUTO BAGGING

UNIT

WASTE SLUDGE

TANK

ACTIVATED CARBON FILTER

PASSIVE TANK VENTILATION

MEMBRANE PERMEATE

PUMP

CIP WAST

E

OFFSITE TO DISPOSAL TO

APPROVED LANDFILL FACILITY

OFFSITE DISPOSAL TO APPROVED FACILITY USING

LICENSED WASTE TRANSPORT CONTRACTOR

10 MLWET WEATHER

STORAGE

LOW PRESSURE SEWERAGE NETWORK – WELDED HDPE

MBR CIP WASTE TANK

AIR BLOWER

pH

MIXED LIQUOR SUSPENDED SOLIDS

DISSOLVED OXYGEN

WATER LEVEL

FLOW

TRANSMEMBRANE PRESSURE

TURBIDITY

UV INTENSITY

MBR PERMEATE

TANK

WAS

TE

SLU

DGE

MIXER

PRESSURE

FREE CHLORINE RESIDUAL

BUNDED CHEMICAL CONTAINERS AND DOSING PUMPS

SOLO WATER

SOLO WATER

HOME OWNER/BUILDER

GRAVITY COLLECTION SYSTEMS

PRIVATE WASTEWATER DRAINAGE SYSTEMS TO AS3500 BY LICENSED DOMESTIC PLUMBER

HOME OWNER/BUILDER

ELECTRICAL CONDUCTIVITY

CHEMICAL DELIVERY LINES

AACID

CCAUSTIC

ClCHLORINE

SMSODIUM METABI-SULPHITE

AlALUM

CBCARBON

CIP PREP TANK

Cl, C

, AC, A

, CB

C, A

, Al,

CB

SM, C

, A

C, A

, Cl

C, A

, Cl

PROCESS FLOW DIAGRAM STAGE 1 WASTEWATER TREATMENT PLANT

SUPE

RNAT

ENT

NU

ETRA

LISE

D

RETURN TO INLET BALANCE TANK

TO ADVANCED WATER TREATMENT PLANT IN STAGE 2 AFTER 240 LOTS DEVELOPED. REFER TO NON-POTABLE WATER PFD APPENDIX 4.2.1.

SOIL MOISTURE PROBE

LOW PRESSURE SEWERAGE SYSTEM

- WASTEWATER WILL DRAIN THROUGH A GRAVITY SEWERAGE COLLECTION SYSTEMS TO A NUMBER OF DUPLEX LOW PRESSURE SEWAGE PUMP STATIONS THAT SERVICE 1 TO 4 LOTS EACH.- WASTEWATER IS PUMPED IN A CONTROLLED MANNER THROUGH THE LOW PRESSURE SEWERAGE NETWORK TO THE INLET BALANCE TANK AT THE WWTP. OPERATION OF THE PRESSURE SEWER NETWORK PUMPS IS CONTROLLED BY THE DIRECT DIGITAL CONTROL SYSTEM AT THE WWTP TO CONTROL PEAK INFLOWS TO THE MBR.- LOW PRESSURE SEWER NETWORK TO BE CONSTRUCTED WITH BROWN-STRIPED PN 16 HDPE PIPE WITH WELDED PIPE JOINTS AND FITTINGS.- EACH LOW PRESSURE SEWERAGE PUMP STATION WILL INCLUDE:

- PUMP HEAD AND FLOW CAPACITY TO SERVICE BETWEEN 1 AND 4 LOTS.- DUTY AND STANDBY PUMPS WITH ONLINE FAULT DETECTION AND ALARMS.- 24 HOURS EMERGENCY STORAGE CAPACITY IN THE WET WELL.- HARD WIRED COMMUNICATION CABLING BACK TO THE DIRECT DIGITAL CONTROL SYSTEM AT THE WWTP. - CONTINUOUS ONLINE WET WELL WATER LEVEL AND FLOW MONITORING WITH ALARMS.- AUTOMATED SYSTEM START-UP AND RECOVERY FOLLOWING POWER OUTAGE VIA THE DIRECT DIGITAL

CONTROL SYSTEM.- ABILITY TO INSTALL ADDITIONAL ONLINE WATER QUALITY MONITORING PROBES, E.G. PH, TDS, TOC, FOR

DETECTION OF INAPPROPRIATE CHEMICAL DISPOSAL OR TRADE WASTE PRACTICES, IF REQUIRED DURING OPERATION.

FOR FURTHER INFORMATION ON THE LOW PRESSURE SEWER NETWORK REFER TO PRESSURE SEWERAGE SOLUTIONS PTY LTD.

STAGE 1 WASTEWATER TREATMENT PLANT – MEMBRANE BIOREACTOR

- ALL WASTEWATER TREATED IN THE MEMBRANE BIOREACTOR TO PRODUCE “CLASS A” RECYCLED WATER SUITABLE FOR CONTROLLED IRRIGATION OF TEMPORARY IRRIGATION AREAS. MBR TARGET EFFLUENT QUALITY:

- BIOCHEMICAL OXYGEN DEMAND < 10 mg/L- SUSPENDED SOLIDS < 10 mg/L- TOTAL NITROGEN < 10 mg/L- TOTAL PHOSPHOROUS < 0.3 mg/L- pH 6.5 TO 8.5- FAECAL COLIFORMS < 10 cfu/100 mL- TURBIDITY < 2 NTU

- PEAK DESIGN CAPACITY OF MBR PROCESS TRAIN OF 300 kL/DAY WILL CATER FOR ULTIMATE DEVELOPMENT OF 470 LOTS WITH RESERVE CAPACITY. - THE ADVANCED WATER TREATMENT PLANT TO PRODUCE “CLASS A+ RECYCLED WATER” WILL BE OPERATIONAL ONCE 240 LOTS ARE CONNECTED TO THE SYSTEM, OR WHEN FLOWS REACH 100 kL/day.- OPERATION OF THE WWTP IS FULLY AUTOMATED AND INTEGRATED WITH OPERATION OF THE PRESSURE SEWER NETWORK TO CONTROL PEAK FLOWS INTO THE MBR USING THE DIRECT DIGITAL CONTROL SYSTEM.- ENERGY CONSUMPTION IN THE PROCESS IS MINIMISED THROUGH THE USE OF VARIABLE SPEED DRIVE CONTROLLERS ON ALL PROCESS PUMPS AND AIR BLOWERS.- ALL ONLINE MONITORING, CONTROL AND ALARM SYSTEM CAN BE REMOTELY ACCESSED THROUGH THE INTERNET. ALL DATA IS LOGGED FOR LATER REVIEW AND TROUBLE SHOOTING.- THE MBR IS LOCATED INSIDE THE WWTP SHED TO MINIMISE NOISE AND ODOUR IMPACTS. ALL TANKS ARE ENCLOSED WITH PASSIVE VENTILATION THROUGH ACTIVATED CARBON FILTERS. AMBIENT AIR QUALITY INSIDE THE WWTP BUILDING IS CONTINUOUSLY MONITORED WITH ALARMS FOR ELEVATED HYDROGEN SULPHIDE, METHANE & OXYGEN CONCENTRATIONS. AIR CONDITIONING UNITS AND DEODORISING SPRAYS OPERATE AUTOMATICALLY TO MAINTAIN INDOOR AIR QUALITY WITHIN APPROPRIATE LIMITS.

STAGE 1 TEMPORARY EFFLUENT MANAGEMENT SYSTEM

- THE STAGE 1 EFFLUENT MANAGEMENT SYSTEM WILL SERVICE UP TO 240 LOTS, OR UP TO APPROX 100 kL/day.- ALL MBR TREATED EFFLUENT IS STORED IN A HDPE LINED 10 ML WET WEATHER STORAGE DAM, WHICH PROVIDES APPROXIMATELY 100 DAYS STORAGE AT AVERAGE IRRIGATION FLOWS.- EFFLUENT MANAGEMENT IS VIA CONTROLLED, RESTRICTED ACCESS, NIGHT TIME IRRIGATION OF TEMPORARY IRRIGATION AREAS USING MBR EFFLUENT.-APPROXIMATELY 10.8 ha OF TEMPORARY, RESTRICTED ACCESS IRRIGATION AREAS WILL BE PROVIDED DURING STAGE 1 TO SERVICE UP TO 240 LOTS. AVERAGE IRRIGATION RATES DURING STAGE 1 ARE UP TO 1 mm/day.- ALL TEMPORARY IRRIGATION AREAS, LANDSCAPING AND IRRIGATION INFRASTRUCTURE WILL BE PROVIDED BY THE DEVELOPER DURING CONSTRUCTION OF EACH DEVELOPMENT STAGE.- DECOMMISSIONING OF THE TEMPORARY STAGE 1 IRRIGATION AREA WILL COMMENCE AFTER 240 LOTS ARE CONNECTED.- AN IRRIGATION MANAGEMENT PLAN WILL BE DEVELOPED FOR THE TEMPORARY SCHEME THAT WILL OUTLINE SITE SPECIFIC IRRIGATION, ENVIRONMENTAL AND PUBLIC HEALTH CONTROL MEASURES FOR EACH IRRIGATION AREA. TYPICAL IRRIGATION CONTROLS WILL INCLUDE:

- IRRIGATION SCHEDULING CONTROLS TO CONTROL THE TIME, FREQUENCY AND DURATION OF IRRIGATION EVENTS.

- SOIL MOISTURE PROBES AND WEATHER STATION OVERRIDE ON IRRIGATION CONTROLLERS TO PREVENT IRRIGATION DURING RAINFALL, HIGH WIND OR ELEVATED SOIL MOISTURE.

- SECURE, RESTRICTIVE ACCESS AREAS INCLUDING APPROPRIATE WARNING SIGNS, IDENTIFICATION AND LABELLING.

- SITE BASED STORM WATER, RUN OFF AND ENVIRONMENTAL CONTROLS.- SURFACE SPRINKLERS WITH SPRAY DRIFT CONTROL INCLUDING SPRINKLER NOZZLES THAT OPERATE UNDER LOW

PRESSURE WITH A LARGE DROPLET SIZE AND LOW THROW HEIGHT.

PUMP STARTS AND RUN HOURS

LEGENDPROCESS MONITORING

METHANE GAS

HYDROGEN SULPHIDE GAS

OXYGEN GAS

INLET SCREEN

SUBMERSIBLE PUMP

DRY-MOUNTED PUMP

MIXING PUMP

MOTORISED VALVE

HOUSEHOLD SEWERAGE CONNECTION POINT

EVAPORATIVE AIR CONDITIONING UNIT

CATHERINE HILL BAY WATER UTILITY PTY LTD

PRIVATE WATER UTILITY:PROJECT:

CATHERINE HILL BAY RESIDENTIAL SUBDIVISIONMONTEFIORE STREET, CATHERINE HILL BAY

DRAWING TITLE:

PROCESS FLOW DIAGRAMWASTEWATER TREATMENT

IPART REFERENCE:

APPENDIX 4.3.1

CLIENT:

ROSE PROPERTY GROUP PTY LTD

PHASE:

IPART LICENSE APPLICATION

CB ACETIC ACID (CARBON) DOSING AS SUPPLEMENTARY FOOD SOURCE

SM SODIUM METABISULPHIDE DOSING FOR DECHLORINATION

Al POLYALUMINIUM CHLORIDE DOSING FOR PHOSPHORUS REMOVALCl SODIUM HYPOCHLORITE FOR CHLORINATION

BUNDED CHEMICAL STORAGE AREA

C SODIUM HYDROXIDE (CAUSTIC) FOR pH CORRECTION AND MEMBRANE CLEANINGA HYDROCHLORIC ACID FOR pH CORRECTION AND MEMBRANE CLEANING

WWTP BUILDING

WWTP BUILDING

MEMBRANE BIOREACTOR PROCESS TANKS

PROCESS EQUIPMENT PROCESS CHEMICALS

NOTES1. PRELIMINARY PROCESS FLOW DIAGRAM FOR IPART APPLICATION ONLY. NOT FOR CONSTRUCTION2. NOT TO SCALE. FOR WWTP SITE LAYOUT PLANS REFER TO APPENDIX 4.3.2.3. SUBJECT TO MINOR CHANGES DURING DETAILED DESIGN

INLET PUMP

ANOXIC FEED

AERATION FEED

MEMBRANE FEEED

ACTIVATED CARBON FILTER

SAFETY SHOWER

DEODOURISING SPRAY SM STAGE 1 (0-240 Lots)

TEMPORARY OPEN SPACE IRRIGATION AREAS

Stage 1 effluent irrigation area: 10.8 haAverage flow: 100 kL/day

Average irrigation rate: 1 mm/day

IRRIGATION CONTROL PANELS

LS

NTU

UV INT

pH

P TMP

Cl

EC

FM

PSR

DO

SS CH

H2S

02

LS

LSLS LS LS LS

LS

LS

FM FM

FM

FM FM FM

FMFM

FM FM

FM

FM FM

P

P

H2S CH02

DO TMP

NTU UV INT

RS

ClpH

EC

ClpH

PP

DRAWING NUMBER:

H10052_P04CDATE:

05/07/2013

Membrane Bioreactor Peak Design Capacity 300 kL/day for 470 Lots.

Temporary Effluent Management System Design Capacity 100 kL/day for 240 Lots.

SM

SM

WS

WEATHER STATIONWS

Page 4: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

   IPART License Application ‐ Network Operator and Retail Supplier Solo Water Catherine Hill Bay Water Utility 

  APPENDIX 4.3.1    P a g e  | 1 

Descriptionofproposedsewerageinfrastructure

Sewerage Infrastructure  Description 

Wastewater minimisation 

Water demand management strategy involving mandatory water efficient fixtures, smart metering, customer awareness and education. Residential customer supply agreement and trade waste agreement will be entered with each customer to outline responsibilities for appropriate waste disposal practices to minimise disposal of inappropriate substances to the sewer. Water tight sewerage system to minimise infiltration of stormwater and groundwater to the sewerage system. 

Low pressure sewerage network – Constructed in line with development build out 

Low pressure sewerage network constructed using PN 16 HDPE pipe with welded joints and fittings to minimise infiltration. Low pressure duplex pump stations service up to 4 lots with duty/standby pumps and 24 hours storage capacity in each pump well (refer to Appendix 4.3.3). Automated operation of the low pressure sewerage network is integrated with operation of the wastewater treatment plant through the direct digital control system to minimise peak inflow rates. Peak diurnal flows into the wastewater treatment plant are controlled using buffer storage provided in each pump well and at the inlet balance tank and the direct digital control system. For a more detailed overview of the Pressure Sewer System refer to page 3. 

Membrane bioreactor (MBR) + Ultraviolet disinfection (UV) –  Constructed during Stage 1 

All wastewater produced under the scheme is treated in a Membrane Bio‐Reactor with UV disinfection (MBR+UV) to produce “Class A” recycled water suitable for controlled irrigation of the stage 1 temporary irrigation areas.  The full capacity of the MBR will be constructed upfront during stage 1 with the following target effluent quality: 

Biochemical Oxygen Demand (BOD) < 10 mg/L  Suspended Solids (SS) < 10 mg/L  Total Nitrogen (TN) < 10 mg/L  Total Phosphorous (TP) < 0.3 mg/L  pH 6.5 to 8.5  Faecal Coliforms < 10 cfu/100 mL  Turbidity < 2 NTU 

No pathogen log reduction credits are being claimed for the MBR. The MBR will be validated based on effluent quality. The peak design capacity of the MBR process train will be 300 kL/day and is sized to provide treatment of average wastewater flows of 197.4 kL/day with spare capacity. The MBR will be located inside the WWTP shed to minimise noise and odour impacts.  All tanks are enclosed with passive ventilation through activated carbon filters.  Ambient air quality inside the WWTP building is continuously monitored with alarms for elevated hydrogen sulphide, methane & oxygen concentrations.  Air conditioning units and deodorising sprays operate automatically to maintain indoor air quality within appropriate limits. 

Page 5: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

   IPART License Application ‐ Network Operator and Retail Supplier Solo Water Catherine Hill Bay Water Utility 

  APPENDIX 4.3.1    P a g e  | 2 

Sewerage Infrastructure  Description 

10 ML Wet weather storage dam 

A 10 ML HDPE lined wet weather storage dam will be constructed to receive “Class A” MBR+UV treated effluent.  During stage 1 the MBR+UV effluent will be irrigated in temporary irrigation areas via a separate independent irrigation supply network.  The wet weather storage dam will provide approximately 100 days storage at average irrigation flows. During stage 2, the MBR+UV treated effluent will be the source water to the AWTP and the wet weather storage will provide a buffer for non‐potable water demand providing additional source water to the AWTP during periods of high demand.  Water sourced from the wet weather storage will be pre‐filtered to remove algae and suspended solids prior to undergoing treatment in the AWTP. 

Stage 1 Temporary Effluent Irrigation Areas 

Wastewater from the MBR+UV treatment process produced during stage 1 will be managed via controlled, restricted access, night time irrigation of approximately 10.8 ha of temporary irrigation areas.  Stage 1 will service up to 240 Lots or flows up to 100 kL/day.  Average irrigation rates during stage 1 will be up to 1 mm/day. All temporary irrigation areas, landscaping and irrigation infrastructure will be provided by the developer during construction of each development stage. An Irrigation Management Plan will be developed for the temporary scheme that will outline site specific irrigation measures to manage environmental and public health risks which will include: 

Irrigation of high quality MBR+UV effluent with <10 faecal coliforms and <2 NTU.  Approximately 100 days storage at average irrigation flows is provided by the 10 ML wet 

weather storage dam.  Irrigation scheduling controls to control the time, frequency and duration of irrigation 

events with irrigation occurring at night time only.  Soil moisture probes and weather station override on irrigation controllers to prevent 

irrigation during rainfall, high wind or elevated soil moisture.   Secure, restrictive access areas including appropriate warning signs, identification and 

labelling.   Site based storm water runoff and environmental controls.   Surface sprinklers with spray drift control including sprinkler nozzles that operate under 

low pressure with a large droplet size and low throw height.  A minimum 30 m buffer distance between the edge of the temporary irrigation areas 

and the closest dwelling.  Non‐irrigated, vegetated buffer strips down gradient of the temporary irrigation areas.  Monitoring to detect any potential impacts. 

Decommissioning of the temporary stage 1 irrigation area will commence after 240 lots are connected or flows reach approximately 100 kL/day. 

Stage 2 (Ultimate) Open Space Irrigation 

Once the Advanced Water Treatment Plant (AWTP) is constructed in stage 2, 100% of MBR+UV effluent will be treated in the AWTP to “Class A+” and used in the non‐potable supply network including irrigation of open space areas.  A description is included in Appendix 4.2.1. 

Integrated online monitoring, control and alarm system 

Continuous online monitoring, control and alarms for the sewerage infrastructure is centrally managed using the direct digital control system. The control system allows the infrastructure to operate unattended and automatically reports issues requiring operator attention. Online monitoring probes are manually calibrated and checked by operations staff on a routine basis to ensure all probes are recording accurate readings.  All critical alarm system have a battery backup to ensure faults are reported during power failure. The control system is designed to automatically recover following power outage. 

 

Page 6: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

   IPART License Application ‐ Network Operator and Retail Supplier Solo Water Catherine Hill Bay Water Utility 

  APPENDIX 4.3.1    P a g e  | 3 

OverviewofPressureSewerSystems

Pressure sewerage systems consist of a network of pressure pipes and grinder pumps, which integrate to form a collection system. 

A pressure sewerage system comprises a two pump (duplex) Pressure Sewer Unit (PSU) installed to service up to four properties, depending upon the lot layout on occasions a single pump unit is installed at each property  in the catchment. The pressure sewer unit will discharging to a common collection system.   

The pump units macerate the sewerage into fine watery slurry for discharge through a small diameter pipeline.  Being a pressure system, the network is not constrained by maintaining constant falls in most installation areas.  Utilising shallower trenching and adopting trenchless technology where advantageous, the quantity of excavation and disruption to existing vegetation and ground surfaces is greatly reduced, providing environmental and social advantages to the community.  

Energy savings are achieved when benchmarked against traditional gravity sewers installed in areas with topography requiring sewage pumping stations.  The pressure sewer units selected by Solo Water are an EOne positive displacement type. The EOne units offer greater efficiency than traditional centrifugal type sewage pumping stations, and comparatively, the total nett energy used in a pressure sewerage system is less than a combined gravity / sewage pumping station solution. 

An additional benefit of pressure sewerage systems when compared to traditional gravity systems is the reduction or elimination of wet weather flows.  Wet weather flows significantly affect the performance of receiving Waste Water Treatment Plants, and can overload transfer pumping stations.  Minimising wet weather flows has benefits in reduction of pumping energy, minimising environmental risk of overflow within the network and at receiving works, and removing the need for large wet weather storage structures normally associated with gravity collection systems. 

Eliminating wet weather flows is achieved through a combination of quality control during design and installation of the property gravity collection systems and the ongoing monitoring and maintenance of the system to detect illegal connections to the sewer system.  

Polyethylene pipe is proposed to be used for the pipe network, which is fully sealed by electrofusion welded joints.  Depending on the topography, size of the system and planned rate of connection, other appurtenances will include isolation valves, flushing points, air release valves at significant high points, check and stop valves at the junction of each property connection with the pressure sewerage main. 

 

 

Page 7: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

 

 

Appendix 4.3.3 Location of Sewerage infrastructure

A – WWTP Site Layout P10C B – Example MBR AWTP Building Plan F0101A

C – Draft Open Space Irrigation P09.1C D – Stage 2 Irrigation Areas P09.2C

E – Pressure Sewer Masterplan SK001 F – Duplex Installation Details SK101

G – Property Connection Details SK102 H – Property Connection Details SK103 I – Property Connection Details SK104

   

Page 8: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

arvest~~ -.ha-.c:om.au

c tlt/7/IJ

A IIINII W1P &A'IWI' FOR •MT AI'PUCA110N

I ~~

ISSUE DAlE ISSUE DETAILS water management consu lta nts pty l td AB\t54140!144047

OLO WA lER - CA lHERINE HILL BAY WA lER UlllllY

A lHERINE HILL BAY ESIDENllAL SUBDIVISION OSE GROUP

l..']Solo Water

ON1EF10RE ROAD A lHERINE HILL BAY sw c

Page 9: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

EXAMPLE W

WTP LA

YOUT WITH

2-TRAIN

MBR (6

60 kL

/d) &

AW

TP

LEGEND

A

B

c

D

E

2 3

l.OML POTA8LE WATER

STORAGE

4

F A PRELIMINARY

Rev No Revision no te

This drawing, or any part thereof, remains the property of Solo Water and is confidential. It is provided in confidence and must not be loaned, copied or reproduced in part or in total for manufacturing or any other purpose without the written permission of Solo Water and is not to be used in any way detrimental to the interests of Solo Water.

2 3

l.OML RECYCLE WATER

STORAGE

5

--(JlJU:O::Itr'MICAlr)r..I.IYr..ltY ARr,A RHt:R{)IlA\I;'tN(irf).l ll!!

0.5 ML RECYCLE WATER

STORAGE

6

STAGE 2 M6R

PlANT

7 8

A

B

c

D

E

Drawn by Approved by - date Date Scale

~TR~~~~-~----~LJ_A_N_2_0L13~---_J~~---LJ=A~N~2=0~13~--~N~.T~.S~.-~ F 1/19 Hill Street Sunshine Beach QLD 4567 P: 07 5447 4403 F: 07 5447 4403 E:

6

SOLO WATER STANDARD WWTP BUILDING

FD-101

7

Sheet 1/1

Page 10: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

water m an age m en t cons u It a n t s p t y It d ABN: 1!41411944047

INE HILL BAY llAL. SUBDIVISION

GROUP

'-'lSolo Water

Page 11: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

Rd Buffer

Buffer

Site

Stage 7

water management consultants pty ltd AB11tli414llB44047

l..'1So lo Water -

Page 12: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

CLARKE ST

R.O.W. 3m WIDE

MONTEFIORE STREET

CLARKE STREET

MONTEFIORE STREET

MONTEFIORE STREET

EXISTING ROAD RESERVE (OLD PACIFIC HIGHWAY)

ROAD 10

ROAD 12

ROAD

28

ROAD 3

1 SEC KD

.P.163

2 SEC I

D.P.163

ROAD 22

SUBJECT TOFUTURE DA

(F)

3

12

4

5

7

6

1

3

12

4

5

7

6

1

HERITAGEPRECINCT

1465.4m²

5038

625.6m²

7007

3672.6m²

1112

991.6m²

1079

747.6m²

1061

851.9m²

5019

650.4m²

6006

186.8m²

10

1632.2m²

6083

1190.7m²

6021

705.9m²

2066730.4

m²1030

647.5m²

3024

653.4m²

2072

552.2m²

3009

709.8m²

5046

685.6m²

5024

980.2m²

2026

958.6m²

4045

685.7m²

2114

725.9m²

2102

763.9m²

7019

1043.5m²

3036

5436.4m²Pt 3041

3063.3m²

3040

11322.6m

²101

962.4m²

3004

18198.4m

²Pt 3041

1202.4m²

3031

877.6m²

1109

909.6m²

1088

465.5m²

1006

1219.9m²

5036

603.8m²

2052

560.8m²

2060

753.3m²

2065

574.1m²

2082

620.9m²

2085

629.5m²

2084

638.0m²

2083

841.8m²

2080

702.0m²

3032

580.0m²

2008

1084.7m²

2015

3310.6m²

3001

1198.1m²

30061008

.8m²3005

1908.0m²

3002

700.8m²

3033

755.0m²

1087

598.7m²

3026

656.9m²

3025

652.7m²

3021

639.3m²

3023

702.2m²

3016

554.5m²

3017

563.2m²

3018

666.7m²

3019

651.7m²

3020

670.8m²

3022

621.8m²

3012

550.0m²

3014

580.2m²

3011

590.5m²

3010

567.9m²

3008

550.4m²

3013

581.0m²

3015

582.2m²

3007

656.8m²

3028

700.0m²

3027

791.6m²

3034

746.8m²

1096

607.8m²

4063

664.2m²

1052

806.8m²

2040

832.1m²

2035

640.1m²

4071

684.9m²

4082

1055.0m²

1104

834.1m²

1103

976.1m²

1106

3210.5m²

1113

908.0m²

1110

938.4m²

1111

748.8m²

2119

698.1m²

2096

730.1m²

2118

722.3m²

2097

720.4m²

1072

632.7m²

1071

716.3m²

2117

740.8m²

2098

700.8m²

2116

736.2m²

2099

801.9m²

2108

781.0m²

2107

712.4m²

2109

725.5m²

2106

701.7m²

2111

725.7m²

2104

707.0m²

2110

725.6m²

2105

736.0m²

2100

696.4m²

2112

706.5m²

2115

726.0m²

2101

691.0m²

2113

725.8m²

2103

872.1m²

2032

811.5m²

2033

816.8m²

2034

885.2m²

2037 846.2m²

2036

935.1m²

2039 911.9m²

2038

798.4m²

2022

658.6m²

2092 705.2m²

2093725.9

m²2094

872.8m²

2095

567.7m²

2091

622.0m²

1054

652.2m²

1053

806.6m²

1050

752.9m²

1051

699.8m²

1023542.8

m²1022

496.7m²

1015

511.5m²

1021

477.3m²

1016621.5

m²1018

500.8m²

1014

572.9m²

1046

710.9m²

4081

717.5m²

4080

720.1m²

4079

671.8m²

4078

581.0m²

4076

633.8m²

4077

574.5m²

4074

545.2m²

4075

607.3m²

4073

662.8m²

4072

924.4m²

4070

820.3m²

4069

643.7m²

4032 670.2m²

4068

642.9m²

4067

645.3m²

4066608.6m²

4065

586.6m²

4064

804.1m²

4055

709.2m²

4062

584.2m²

4061

554.0m²

4060

471.8m²

4059

538.6m²

4058

592.1m²

4057

645.7m²

4056

615.8m²

4053

688.9m²

4051

620.7m²

4054

631.0m²

4052

611.9m²

6013

589.8m²

6015600.8

m²6014

623.0m²

6012627.5

m²6011

578.9m²

6016

562.8m²

6017

587.9m²

6018

668.4m²

6001

625.7m²

6002

648.5m²

6008646.8

m²6004

650.6m²

6005 638.3m²

6003

640.0m²

6010647.6

m²6009 649.5

m²6007

1139.7m²

6020602.7

m²6019

721.6m²

7005

729.2m²

7004

702.4m²

7003

630.0m²

6076

630.0m²

6075

630.0m²

6074

675.2m²

7001

649.1m²

6079 630.0m²

6078629.9

m²6077

745.3m²

7008

635.4m²

7006

662.8m²

7002

684.8m²

6058

620.5m²

6057

629.6m²

6059

624.9m²

6060

602.0m²

6055661.2

m²6053

600.0m²

6054

630.6m²

6056

601.7m²

6052

747.6m²

6024

658.7m²

7046

633.5m²

7045

673.9m²

7042558.0

m²7040

587.8m²

7041

651.0m²

7043

654.1m²

7044

799.5m²

7037

1352.2m²

7032

1128.8m²

7031

1031.5m²

7034

1122.8m²

7033

776.8m²

7026

739.0m²

7022670.0m²

7023660.0m²

7024717.1

m²7025

859.9m²

7028

778.6m²

7027

873.5m²

7030

855.8m²

7035893.7

m²7036

744.0m²

7038

634.6m²

7039

791.0m²

7029

559.0m²

6072

708.0m²

7017760.7

m²7018

763.9m²

7021

763.9m²

7020

650.9m²

7016

641.7m²

7015

632.4m²

7014

623.1m²

7013

613.8m²

7012

604.4m²

7011

591.8m²

7010

572.5m²

7009

581.6m²

6063

555.8m²

6073

1389.6m²

6080

578.1m²

6068

478.4m²

6070502.5

m²6069

482.3m²

6071 874.2m²

6067

545.0m²

6066

1149.3m²

6061

589.6m²

6062

526.7m²

6065

553.5m²

6064

850.1m²

6041

756.5m²

6043

599.9m²

6039

599.9m²

6044

599.9m²

6038

599.9m²

6045

599.9m²

6037

599.9m²

6046

6413.0m²

6081

599.9m²

6036

721.5m²

6042

760.8m²

6040

685.7m²

6047

688.1m²

6034

688.4m²

6048

600.1m²

6050

600.0m²

6032

600.1m²

6049

610.9m²

6033

600.0m²

6031

1020.0m²

6030

1032.2m²

6051

893.6m²

6023

7342.9m²

6082

600.0m²

6027

707.3m²

6028600.0m²

6026

599.9m²

6025

705.6m²

6029

1303.6m²

6022

592.5m²

5033

647.9m²

5029

659.6m²

5031587.5

m²5030

706.4m²

5032

645.6m²

5034

858.2m²

5013

758.1m²

5010

700.2m²

5009719.3

m²5011

559.1m²

5012

711.1m²

5008

846.7m²

5014

761.3m²

5007

662.0m²

5005683.6

m²4010852.8

m²5006

581.8m²

4005

647.9m²

5028

657.3m²

5025

648.1m²

5026

647.9m²

5027

541.3m²

5015610.5

m²5016

726.7m²

5017 810.8m²

5018

634.2m²

5021

683.9m²

4008

645.4m²

4009

873.0m²

5020

652.5m²

4007

676.2m²

5023 621.2m²

5022622.2

m²4006

571.7m²

4003

584.5m²

4004 573.0m²

4002577.8

m²4001

758.1m²

50351600.0m²

5037

1318.3m²

5039

1531.7m²

5040

844.3m²

5041

820.2m²

5042

859.1m²

5043

711.9m²

5044

706.1m²

5045

862.8m²

5049

713.6m²

5047

837.7m²

5048

1796.2m²

5052848.3m²

5050

752.7m²

5051

672.4m²

4029

593.7m²

4030

593.6m²

4031

624.2m²

4033

649.6m²

4035

641.3m²

4034

636.8m²

4037

654.9m²

4038

624.1m²

4039

666.3m²

4036

676.2m²

4040

704.6m²

4041

697.6m²

4043

748.7m²

4044

693.1m²

4042

827.5m²

4050

720.8m²

4048

814.3m²

4047

904.3m²

4046

720.8m²

4049

802.8m²

2016

790.7m²

2017

662.0m²

2019

745.4m²

2021

821.6m²

2024

1001.6m²

2025

848.3m²

2030

729.3m²

2027 728.9m²

2028 726.6m²

2029

847.2m²

2023

506.4m²

2081

691.4m²

2018

642.1m²

2020

663.1m²

2013

693.3m²

2014

661.4m²

1001

554.7m²

2001

591.0m²

2002

559.2m²

2003

586.5m²

2004

586.5m²

2005

593.7m²

2006

580.5m²

2007

588.1m²

2012 533.1m²

2011 554.4m²

2010 569.0m²

2009

1033.5m²

2031

541.0m²

2069

653.9m²

2086

597.7m²

2089

785.8m²

2087

696.2m²

2068

536.6m²

2090

750.9m²

1055

750.9m²

1057

750.9m²

1056

728.0m²

1068 791.3m²

1083

955.4m²

1081

820.2m²

1084

1105.0m²

1078

920.3m²

1080

841.1m²

1082

820.2m²

1085

820.2m²

1086

750.9m²

1077

461.1m²

1017

478.6m²

1020

580.5m²

1019

884.8m²

1107

847.2m²

1108

902.2m²

1105

701.4m²

1102

703.9m²

1101

703.9m²

1100

715.8m²

1099

710.0m²

1098

720.5m²

1097

585.4m²

1092

733.0m²

1095

710.0m²

1094

605.5m²

1093

627.5m²

1089

571.1m²

1090

565.3m²

1091

502.2m²

1010

465.5m²

1009501.3

m²1008

465.5m²

1007

501.3m²

1003465.5

m²1005

465.5m²

1004

636.3m²

1002916.1

m²3003

680.4m²

3038

1149.0m²

3035

846.6m²

3037996.3

m²3039

868.1m²

3030

670.7m²

3029

630.1m²

1040649.2

m²1039

572.9m²

1041

666.4m²

1035

688.6m²

1038

572.9m²

1042

811.0m²

1032

572.9m²

1043

572.9m²

1045

610.8m²

1048

616.3m²

1025

572.9m²

1047

764.1m²

1049

589.2m²

1026

706.6m²

1024

568.7m²

1027

667.6m²

1031

639.0m²

1029

581.1m²

1028

572.9m²

1044

670.6m²

2042

770.0m²

2067

544.9m²

2046

599.7m²

2043

548.9m²

2044

715.4m²

2064

540.7m²

2045

576.3m²

2047

587.8m²

2062

558.2m²

2061

561.7m²

2048

610.7m²

2054 523.1m²

2053

591.2m²

2050

570.0m²

2051

689.4m²

2055 625.6m²

2056 579.5m²

2057 555.9m²

2058 569.7m²

2059

579.5m²

2049

5475.6m²

2137

719.8m²

4027

841.8m²

4012

759.7m²

4020

725.4m²

4026

837.6m²

4013

783.4m²

4021

727.6m²

4025

636.2m²

4014

817.6m²

4022

795.8m²

5004

646.4m²

4015

841.7m²

4023

727.4m²

5003

642.9m²

4016

723.3m²

4024

734.0m²

5002

646.9m²

4017

735.4m²

5001

707.5m²

4018

931.1m²

4028

843.8m²

4011

713.6m²

4019

759.0m²

2133

618.3m²

2125

808.7m²

2132

630.9m²

2124

849.0m²

2131

767.0m²

2123

871.5m²

2130

855.5m²

2122

858.2m²

2129

767.0m²

2121

943.8m²

2136

800.0m²

2128

927.8m²

2120

722.7m²

2135

746.6m²

2127

729.0m²

2134

664.7m²

2126

688.8m²

2079487.2

m²2077 488.3

m²2076 573.6

m²2075

614.0m²

2073

582.9m²

2074

605.8m²

2071

586.5m²

2070

577.4m²

1036

573.7m²

1034

479.3m²

1033

844.0m²

1063

777.1m²

1064

774.3m²

1065

761.8m²

1066

776.8m²

1062

747.2m²

1067

740.8m²

1070

747.6m²

1059

736.8m²

1069

777.7m²

1076

586.5m²

1037

747.6m²

1060

446.4m²

2078

867.2m²

2088

628.3m²

4083

668.4m²

4084

680.5m²

2041

615.4m²

2063

599.9m²

6035

610.8m²

1012

494.4m²

1011

596.5m²

1013

741.4m²

1058

734.6m²

1073720.0

m²1074

720.0m²

1075

7311.7m²

102

5

0

Ø

5

0

Ø

50Ø

5

0

Ø

6

3

Ø

5

0

Ø

6

3

Ø

6

3

Ø

5

0

Ø

5

0

Ø

7

5

Ø

75Ø

5

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

6

3

Ø

5

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

7

5

Ø

75Ø

5

0

Ø

50Ø

90Ø

90Ø

110Ø

1

1

0

Ø

1

1

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

6

3

Ø

6

3

Ø

5

0

Ø

7

5

Ø

9

0

Ø

50Ø

5

0

Ø

9

0

Ø

5

0

Ø

6

3

Ø

1

1

0

Ø

1

4

0

Ø

5

0

Ø

5

0

Ø

1

4

0

Ø

50Ø

50Ø

5

0

Ø

5

0

Ø

6

3

Ø

50Ø

5

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

6

3

Ø

5

0

Ø

6

3

Ø

5

0

Ø

7

5

Ø

50Ø

50Ø

90Ø

1

1

0

Ø

1

8

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

1

8

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

50Ø

5

0

Ø

5

0

Ø

5

0

Ø

50Ø

7

5

Ø

5

0

Ø

5

0

Ø

6

3

Ø

7

5

Ø

1

8

0

Ø

1

8

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

5

0

Ø

1

8

0

Ø

1

8

0

Ø

Saved: 04.04.2013

, B

y: kgao

J:\700-P

rojects\800-P

relim

inary-T

ender\C

atherine H

ill B

ay\D

raw

ings\S

treet M

ains\C

atherine H

ill B

ay_S

K001 P

ressure S

ew

er M

asterplan.dw

g

Date:

Rev:

Drawing No:

Scale:

CATHERINE HILL BAY PRESSURE SEWERAGE SCHEME

MASTER PLAN

04/04/2013

A

SK001

LEGEND:

PRESSURE SEWER MAIN

ZONE / PIPE SIZE CHANGE; FLOW DIRECTION

ZONE NUMBER / PIPE SIZE

AIR VALVE

STAGE BOUNDARY

SEWAGE TREATMENT PLANT

50Ø

STP

STP

Page 13: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

Saved: 16.04.2013

, B

y: kgao

J:\700-P

rojects\800-P

relim

inary-T

ender\C

atherine H

ill B

ay\D

raw

ings\S

treet M

ains\C

atherine H

ill B

ay_S

K101_D

uplex Installation D

etails.dw

g

Date:

Rev:

Drawing No:

Scale:

CATHERINE HILL BAY PRESSURE SEWERAGE SCHEME

DUPLEX INSTALLATION DETAILS

16/04/2013

A

SK101

Page 14: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

PR

ES

SU

RE

S

EW

ER

IS

OL

AT

IO

N V

AL

VE

Saved: 16.04.2013

, B

y: kgao

J:\700-P

rojects\800-P

relim

inary-T

ender\C

atherine H

ill B

ay\D

raw

ings\S

treet M

ains\C

atherine H

ill B

ay_S

K102-S

K104_P

roperty C

onnection D

etails.dw

g

Date:

Rev:

Drawing No:

Scale:

CATHERINE HILL BAY PRESSURE SEWERAGE SCHEME

PROPERTY CONNECTION DETAILS 1

16/04/2013

A

SK102

Page 15: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

PR

ES

SU

RE

S

EW

ER

IS

OL

AT

IO

N V

AL

VE

Saved: 16.04.2013

, B

y: kgao

J:\700-P

rojects\800-P

relim

inary-T

ender\C

atherine H

ill B

ay\D

raw

ings\S

treet M

ains\C

atherine H

ill B

ay_S

K102-S

K104_P

roperty C

onnection D

etails.dw

g

Date:

Rev:

Drawing No:

Scale:

CATHERINE HILL BAY PRESSURE SEWERAGE SCHEME

PROPERTY CONNECTION DETAILS 2

16/04/2013

A

SK103

Page 16: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

PR

ES

SU

RE

S

EW

ER

IS

OL

AT

IO

N V

AL

VE

Saved: 16.04.2013

, B

y: kgao

J:\700-P

rojects\800-P

relim

inary-T

ender\C

atherine H

ill B

ay\D

raw

ings\S

treet M

ains\C

atherine H

ill B

ay_S

K102-S

K104_P

roperty C

onnection D

etails.dw

g

Date:

Rev:

Drawing No:

Scale:

CATHERINE HILL BAY PRESSURE SEWERAGE SCHEME

PROPERTY CONNECTION DETAILS 3

16/04/2013

A

SK104

Page 17: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

 

 

Appendix 4.3.9 Sewerage Preliminary Risk Assessment

   

Page 18: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

Project: Catherine Hill Bay Water UtilityClient: Rose GroupTitle: Sewerage Preliminary Risk Assessment for IPART ApplicationAuthor: BIDate (Revision): 10/07/2013 (Revision B)Risk Criteria: As per Tables 2.5, 2.6 & 2.7: Australian Guidelines for Water Recycling: Managing Health and Environmental Risks‐phase 1 (2006)

Risk RiskTrace contaminants in domestic wastewater

Poor household chemical use and disposal practices resulting in excessive contaminant levels in recycled water

Potential environmental impacts on effluent irrigation areas

C  Possible   2  Minor    Moderate   1. Customer supply contracts and recycled water use agreement will be developed with each customer and will include obligations and education regarding appropriate substances to be disposed of to sewerage and substances that should be avoided.2. Ongoing customer awareness campaigns and information provided with each water bill and through the CHB Water Utility website.

B  Unlikely   2  Minor    Low  

Trace contaminants in commercial wastewater

Poor trade waste management practices resulting in excessive contaminant levels in recycled water

Potential environmental impacts on effluent irrigation areas

D  Likely   2  Minor    Moderate   1. Predominately residential sewerage catchment with non‐residential customers account for less than 1% of all wastewater generated. 2. Trade waste agreement will be developed with each non‐residential customers to ensure wastewater is pretreated to domestic standards before discharge into the sewerage system.3. Each non‐residential customer will have its own low pressure sewage pump station to enable monitoring compliance of trade waste agreements.

B  Unlikely   2  Minor    Low  

Shock load of chemical

Poor chemical or trade waste management practices resulting in shock load of contaminants on MBR

Potential biomass die off and reduction in MBR effluent quality.Chemicals may also be an OHS hazard.

A  Rare   2  Minor    Low   1. Continuous online monitoring of MLSS, DO, pH, EC and other process parameters to detect potential impacts on the treatment process. 2. Investigation will be undertaken into the source of contamination. This may involve review of Pressure Sewer Unit (PSU) operational data, water usage data, trade waste agreement etc.3.  Additional online water quality monitoring probes can be installed into suspect PSUs for tracing persistent sources of contamination if required.4. Road tanker pump out of contaminated water from the inlet balance tank if required.

B  Unlikely   1  Insignificant    Low  

Gross pollutants in raw wastewater

Poor solid waste management practices resulting sewer blockage and overflow.

Potential sewer blockage and overflow

E  Almost certain  

2  Minor    Moderate   1. Low pressure sewerage system with grinder pumps will macerate sewage prior to entering the pipe network.2. Appropriately designed network with self cleansing velocities and high head pumps will minimise the potential for network blockage.3. Sewer/pump blockage Emergency Response Plan will be developed for the scheme and will include step for identification of route cause and preventative actions. Where multiple blockages have occurred on the same pump station, specific customer awareness/education will be implemented or compliance notices issued.4. Flushing and maintenance regime will be developed for the pressure sewer network.

C  Possible   2  Minor    Moderate  

Excessive wastewater generation

Peak tourist population or excessive water usage

Build up of raw wastewater in the inlet balance tank and PSUs. Potential overflow to the environment.

C  Possible   2  Minor    Moderate   1. Water demand management strategy including mandatory best practice water efficient fixtures, smart water metres, customer awareness.2. MBR capacity based on treatment of average daily flows plus 10% contingency at 2.8 EP/ET.3. Flow and level monitoring at each pump unit to detect sources of inflow.4. Road tanker pumpout from individual PSUs if required.

B  Unlikely   1  Insignificant    Low  

Inflow and infiltration to the sewerage network

Inflow and infiltration to the sewerage network

Potential overflow from PSU or inlet balance tank if combined inflows exceed capacity of MBR

D  Likely   2  Minor    Moderate   1. Low pressure sewerage system constructed with PN16 HDPE with welded joints and fittings.2. Contractor induction and education. 3. Inspection and quality assurance during construction. 4. Flow and level monitoring at each pump unit to detect sources of inflow.5. PSU pump operation centrally controlled by the Direct Digital Control System.  PSUs with high water level are given pumping priority.6. Road tanker pumpout from individual pump units if required.

C  Possible   2  Minor    Moderate  

Inflow and infiltration upstream 

of Pressure Sewer Unit (PSU)

Inflow and infiltration upstream of Pressure Sewer Unit (PSU)

Potential overflow from PSU or inlet balance tank if combined inflows exceed capacity of MBR

E  Almost certain  

2  Minor    Moderate   1. Plumbing inspection of all household plumbing installation prior to connection.2. Induction and awareness training for all domestic plumbing contractors working in the scheme.3. Flow and level monitoring at each PSU to identify sources of inflow. Customer education and rectification notices will be provided if required.4. Road tanker pumpout from individual PSUs if required.

C  Possible   2  Minor    Moderate  

High peak diurnal flows

Excessive peak inflows  Potential overflow from PSU or inlet balance tank if combined inflows exceed capacity of MBR

C  Possible   2  Minor    Moderate   1. Inlet balance tank at WWTP provides buffer storage for diurnal flows.2. Storage capacity in each PSU provides buffer storage for diurnal flows.3. PSU pump operation centrally controlled by the Direct Digital Control System.  PSUs with high water level are given pumping priority in the control system.4. Road tanker pumpout from individual pump units if required.

A  Rare   2  Minor    Low  

Pressure main break Pressure main failure or breakage due to unapproved excavation activity

Discharge of raw sewage to the environment

C  Possible   3  Moderate    High   1. All mains constructed with PN16 HDPE pipe with welded joints and fittings.2. All mains are pressure tested and certified during construction. 3. Pressure sewer mains are generally located at the bottom of a common services trench, hence other pipes will be damaged from poor excavation practices before the pressure sewer.4. Signage and identification tape to be installed above all pressure mains.5. All sewer pipe locations registered with dial before you dig service.6. Flow monitoring at the WWTP will identify major variations in daily flow.7. Customer Service Centre and fault reporting with maximum response times for operations staff.8. Sewer spill Emergency Response Plan and cleanup procedures will be developed.9. Pressure and flow monitoring in the pressure sewer network.

B  Unlikely   2  Minor    Low  

Mitigated RiskLikelihood Consequence Likelihood Consequence

Control StrategyUnmitigated Risk

Hazardous Event Impact

Wastewater generation

Scheme Component

Hazard

Low Pressure Sewerage Collection System

APPENDIX 4.3.9 Page | 1

Page 19: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

Project: Catherine Hill Bay Water UtilityClient: Rose GroupTitle: Sewerage Preliminary Risk Assessment for IPART ApplicationAuthor: BIDate (Revision): 10/07/2013 (Revision B)Risk Criteria: As per Tables 2.5, 2.6 & 2.7: Australian Guidelines for Water Recycling: Managing Health and Environmental Risks‐phase 1 (2006)

Risk RiskMitigated Risk

Likelihood Consequence Likelihood ConsequenceControl Strategy

Unmitigated RiskHazardous Event Impact

Scheme Component

Hazard

Leakage from PSU wet well

Failure of PSU wet well resulting in subsurface leakage

Discharge of raw sewage to groundwater

C  Possible   2  Minor    Moderate   1. Clean water static pressure test of each wet well during construction. 2. Wet well designed to include allowances for all structural loads including hydrostatic and soil pressures.3. Timber bollards or fencing around all PSUs to prevent vehicle access.4. Water level and flow monitoring at each PSU.

B  Unlikely   2  Minor    Low  

Pump Failure Pump failure by power surge, blockage, loss of suction etc

Potential discharge of raw 

sewage to the environmentD  Likely   3  Moderate    High   1. Duty and standby pumps in each PSU.

2. Fail safe in electrical system so pump can operate with failed network connections.3. High quality robust pumps with long design life. Likely supplier is E‐One.4. Standard pumps with spare pumps maintained onsite for quick changeover if required.

B  Unlikely   3  Moderate    Moderate  

Power failure Extended power failure across pressure sewer network

Potential discharge of raw 

sewage to the environmentE  Almost 

certain  3  Moderate    High   1. 24 hours emergency storage is provided in all PSUs.

2. Low pressure sewer network start up and recovery process is included in Direct Digital Control System logic to avoid excessive simultaneous pump operation.3. Road tanker pump out from individual PSUs if required.

B  Unlikely   2  Minor    Low  

Structural failures of tanks and pipes

Tank failure Discharge of process water to environment

C  Possible   3  Moderate    High   1. Stainless steel tanks with appropriately designed footings.2. Quality assurance during tank manufacture and installation.

A  Rare   3  Moderate    Low  

Process tank overflows

Blockage or fault causing overflow of process tanks

Discharge of process water to environment

C  Possible   2  Minor    Moderate   1. All process tanks gravity overflow back to inlet balance tank.2. Screening system on inlet to MBR to remove gross solids.

B  Unlikely   2  Minor    Low  

Mechanical/ electrical items

Failure of mechanical electrical items

Non‐compliant recycled water E  Almost certain  

3  Moderate    High   1. Fault detection on all critical mechanical electrical components.2. Continuous online water quality monitoring of critical process parameters, e.g. DO, pH, MLSS, transmembrane pressure, turbidity, UV intensity

C  Possible   2  Minor    Moderate  

Power blackouts Extended power blackout Loss of treatment capacity E  Almost certain  

3  Moderate    High   1. No sewage inflow to MBR during power blackout as pressure sewer system will also be down2. Wastewater will build up in 24 hours emergency storage at each PSU.3. Road tanker pump out from each PSU if required.4. Electrical connection point for mobile power generator to power MBR if required.

C  Possible   2  Minor    Moderate  

Blockage of inlet screening unit

Blockage of screening unit caused by excessive solids in raw wastewater

Carryover of solids to MBR with reduced treatment performance and increased risk of membrane failure

C  Possible   2  Minor    Moderate   1. Only grinder pump macerated sewage will enter the plant.2. Water level monitoring and high level alarm in screening unit.3. If screening blockage occurs undertake investigation into source of gross solids and implement preventative actions.

B  Unlikely   2  Minor    Low  

Hydraulic overload during diurnal peak flows

Excessive sewerage flows Build up of raw wastewater in the inlet balance tank and PSUs. Potential overflow to the environment.

C  Possible   2  Minor    Moderate   1. When peak capacity of the MBR is exceeded the inlet balance tank provides buffer storage for diurnal flows.2. 24 hour storage capacity in each PSU can also provide buffer storage in extreme events.3. PSU pump operation centrally controlled by the Direct Digital Control System.  PSUs with high water level are given pumping priority through the control system logic.4. Road tanker pump out from individual PSUs if required during operation.

B  Unlikely   2  Minor    Low  

Pollutant overload Excessive BOD or ammonia load

Non‐compliant recycled water C  Possible   3  Moderate    High   1. Continuous online monitoring of MBR process DO, MLSS, pH with alarms.2. Variable speed drive aeration system to match air supply with inflow. Reserve capacity is designed into the aeration system.3. If process impacts due to high pollutant loads are observed a source control investigation will be undertaken using raw wastewater and trade waste data.

B  Unlikely   3  Moderate    Moderate  

Membrane CIP waste

Return of chemical laden CIP waste through MBR

Potential upset of treatment process and biomass die off

D  Likely   3  Moderate    High   1. MBR CIP waste is stored and neutralised prior to return to the inlet balance tank.2. If operational problems are experienced MBR CIP waste will be trucked off site to nearest approved facility.

B  Unlikely   3  Moderate    Moderate  

Process chemicals Spillage of process chemicals Potential release of chemicals to the environmentPotential OH&S impacts. 

C  Possible   3  Moderate    High   1. Appropriate bunding and separation of chemicals in chemical storage and delivery area.2. Standard operating procedures for the transport, receipt and use of chemicals.

A  Rare   2  Minor    Low  

Waste activated sludge

Inadequate sludge wastage rates

High MLSS in MBR, decline in effluent quality & increased membrane fouling.

E  Almost certain  

3  Moderate    High   1. Continuous online monitoring of MLSS, DO and TMP with alarms.2. When MLSS reaches maximum set point sludge is pumped from the bottom of the MBR tank to a sludge holding tank before offsite disposal to approved facility.

B  Unlikely   3  Moderate    Moderate  

Membrane failure Membrane failure resulting in carryover of human pathogens

Non‐compliant recycled water D  Likely   4  Major    Very high   1. Continuous online monitoring of membrane permeate turbidity and transmembrane pressure.2. If event occurs, identify and isolate failed membrane module and if required replace failed membrane module.3. Shut off irrigation supply pump and undertake monitoring of pond water quality to ensure compliance.4. Chemical treatment of pond water can be undertaken if necessary.5. An Emergency Response Plan will be developed for MBR membrane failure.

B  Unlikely   4  Major    High  

Low Pressure Sewerage Collection System 

continued..

Wastewater Treatment ‐ Membrane Bioreactor + UV Disinfection

APPENDIX 4.3.9 Page | 2

Page 20: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

Project: Catherine Hill Bay Water UtilityClient: Rose GroupTitle: Sewerage Preliminary Risk Assessment for IPART ApplicationAuthor: BIDate (Revision): 10/07/2013 (Revision B)Risk Criteria: As per Tables 2.5, 2.6 & 2.7: Australian Guidelines for Water Recycling: Managing Health and Environmental Risks‐phase 1 (2006)

Risk RiskMitigated Risk

Likelihood Consequence Likelihood ConsequenceControl Strategy

Unmitigated RiskHazardous Event Impact

Scheme Component

Hazard

UV failure Inadequate UV dose due to lamp failure, reactor fouling, high flow or high turbidity

Non‐compliant recycled water E  Almost certain  

3  Moderate    High   1. Continuous online monitoring UV intensity, flow, upstream permeate turbidity and lamp failure.2. If Low UV dose is recorded investigate and rectify.3. Shut off irrigation supply pump and undertake monitoring of pond water quality to ensure compliance.4. Chemical treatment of pond water can be undertaken if necessary.5. An Emergency Response Plan will be developed for UV lamp failure.

C  Possible   3  Moderate    High  

Sabotage/ vandalism

Sabotage/vandalism Potential loss of treatment function

C  Possible   4  Major    Very high   1. Lockable site with 6‐foot secure fencing.2. Lockable shed for all treatment equipment.3. Remotely accessible CCTV system at WWTP site.4. Community awareness and involvement in the local water scheme.

B  Unlikely   3  Moderate    Moderate  

Noise Excessive noise generation Noise complaints for nearby residents

C  Possible   2  Minor    Moderate   1. All treatment equipment is located inside the WWTP building.2. 100 metre buffer to the nearest residential dwelling.3.  Noisy equipment items will be enclosed in purpose built noise enclosures or insulated plant room. 4. Equipment specification and design will ensure compliance with NSW Industrial Noise Policy of 5 dBA above background noise level at the nearest residential dwelling.5. WWTP building located on Montefiore Road, which is impacted by background traffic noise.6. Noise complaint management system through customer service processes.

A  Rare   2  Minor    Low  

Odour  Excessive odour generation Odour complaints by nearby residents

C  Possible   2  Minor    Moderate   1. All treatment tanks are located inside the WWTP building.2. 100 metre buffer to the nearest residential dwelling.3. All treatment tanks are sealed with passive ventilation through Mcberns activated carbon filters located on the roof of the WWTP building.4. WWTP building includes deodorising sprayers for use if required.5. Odour complaint management system through customer service processes.

A  Rare   2  Minor    Low  

Aesthetics Excessive visual impacts Complaints from nearby residents

C  Possible   2  Minor    Moderate   1. All treatment equipment is located inside the WWTP building.2. 100 metre buffer to the nearest residential dwelling.3.  Vegetation screening around the WWTP site.

A  Rare   2  Minor    Low  

Indoor air quality inside MBR shed

Contamination of indoor air with harmful sewer gases

OH&S impacts B  Unlikely   4  Major    High   1. All treatment tanks are sealed and externally ventilated.2. Continuous online monitoring of indoor air quality for oxygen, hydrogen sulphide and methane gas inside the WWTP building, with automated air conditioner/ventilation system operation and alarm systems.

B  Unlikely   3  Moderate    Moderate  

Vector borne diseases

Vermin/mosquito invasion of wet weather storage

Potential spread of diseases D  Likely   3  Moderate    High   1. Steep batters to minimise potential for mosquito growth.2. Regular inspection for evidence vermin access, e.g. mosquito larvae, bird nests etc.

C  Possible   3  Moderate    High  

Unintended contact with recycled water

Human access into storage Potential spread of disease. Potential drowning.

D  Likely   2  Minor    Moderate   1. Wet weather storage is fenced with appropriate warning signage.2. Remote CCTV system used at WWTP site.3. Safe egress point from storage.

A  Rare   3  Moderate    Low  

Blue green algae  Blue green algae outbreak in storage

Inhalation or contact with blue green algae toxins

D  Likely   3  Moderate    High   1. Low nutrient concentrations in MBR effluent (TP< 0.3 mg/L, TN < 10 mg/L)2. Ongoing monitoring for early detection of algae outbreaks. Algae speciation will be undertaken if outbreak occurs.3. Chemical treatment and/or aeration/mixing of pond will be undertaken if algae outbreak occurs.4. If frequent outbreaks occur a permanent aeration/mixer will be installed into the pond. 

B  Unlikely   2  Minor    Low  

Leakage to groundwater

Leakage to groundwater Contamination of groundwater C  Possible   3  Moderate    High   1. HDPE lined storage.2. Continuous online monitoring of pond water level to detect leaks.3. Groundwater monitoring

B  Unlikely   3  Moderate    Moderate  

Stormwater inputs Stormwater runoff into storage during rain events

Increased potential for overflow

D  Likely   2  Minor    Moderate   1. Turkey nested dam to avoid inputs from stormwater runoff. A  Rare   1  Insignificant    Low  

Uncontrolled overflow

Uncontrolled overflow from 

the wet weather storage during extended wet weather

Stormwater contamination D  Likely   3  Moderate    High   1. MEDLI modelling indicates the 10 ML did not overflow based on 100‐years of historic climate data.2. Continuous online monitoring of storage water level with automatic scheduling of emergency irrigation events to irrigation areas will be undertaken as required to avoid uncontrolled overflow.3. Removal of excess water by road tanker pump out if required.

A  Rare   2  Minor    Low  

Dam wall failure Dam wall failure Surface runoff and flooding C  Possible   4  Major    Very high   1. Design of dam walls with scour protection in the unlikely event of uncontrolled overflow.2. MEDLI modelling predicts the storage will not overflow based on historic rainfall data.3. Continuous online monitoring of storage water level with automatic scheduling of emergency irrigation events as required to avoid uncontrolled overflow.

B  Unlikely   2  Minor    Low  

Wet Weather Storage

Wastewater Treatment ‐ Membrane Bioreactor + UV Disinfection continued…

APPENDIX 4.3.9 Page | 3

Page 21: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

Project: Catherine Hill Bay Water UtilityClient: Rose GroupTitle: Sewerage Preliminary Risk Assessment for IPART ApplicationAuthor: BIDate (Revision): 10/07/2013 (Revision B)Risk Criteria: As per Tables 2.5, 2.6 & 2.7: Australian Guidelines for Water Recycling: Managing Health and Environmental Risks‐phase 1 (2006)

Risk RiskMitigated Risk

Likelihood Consequence Likelihood ConsequenceControl Strategy

Unmitigated RiskHazardous Event Impact

Scheme Component

Hazard

Cross connection with potable or non‐potable water networks

Cross connection between temporary irrigation network and other water networks

Contamination of other water supplies

C  Possible   5  Catastrophic    Very high   Temporary irrigation management plan will be developed for the scheme and will include the following cross connection controls:1. Temporary irrigation system to operate under low pressure.2. Unique pipe materials. Temporary Irrigation Network is to use Lilac  striped HDPE pipe.3. Temporary Irrigation Network pipes to be laid in their own separate trench with identification tape and above ground signage.4. Only approved, trained and supervised plumbing contractors are permitted to work on reticulation systems.

B  Unlikely   3  Moderate    Moderate  

Unintended uses or human contact with recycled water

Unintended uses or human contact with recycled water

Potential health impacts D  Likely   3  Moderate    High   Log reduction targets for the temporary irrigation system will be achieved with the following site based controls:1. Secure, restrictive access temporary irrigation areas including warning signs, identification and labelling.2. Surface sprinklers with spray drift control including sprinkler nozzles that operate under low pressure with a large droplet size and low throw height.3. A minimum 30 m buffer distance between the edge of the temporary irrigation areas and the closest dwelling.4. No above ground taps or fixtures in temporary irrigation areas.5. Lockable irrigation valves pits and controllers etc.6. Soil moisture probes and weather station override on irrigation controllers to prevent irrigation during rainfall, high wind or elevated soil moisture.7. Irrigation at night time only under normal conditions.8. Non‐irrigated, vegetated buffer strips down gradient of the temporary irrigation areas.

A  Rare   3  Moderate    Low  

Spray drift during irrigation

Spray drift onto sensitive receptor

Potential ingestion of recycled water

E  Almost certain  

3  Moderate    High   1. Weather station override on irrigation controllers to prevent irrigation during high wind.2. Surface sprinklers with spray drift control including sprinkler nozzles that operate under low pressure with a large droplet size and low throw height.3. A minimum 30 m buffer distance between the edge of the temporary irrigation areas and the closest dwelling.

A  Rare   2  Minor    Low  

Irrigation during wet weather

Irrigation during wet weather resulting in surface runoff or deep percolation of effluent

Contamination of surface and/or groundwaters

E  Almost certain  

3  Moderate    High   1. 10 ML wet weather storage provides approximately 100 days storage at average irrigation rates.2. Soil moisture probes and weather station override on irrigation controllers to prevent irrigation during rainfall, high wind or elevated soil moisture.3. Non‐irrigated, vegetated buffer strips down gradient of the temporary irrigation areas.

A  Rare   2  Minor    Low  

Irrigation rates and scheduling

Inappropriate irrigation scheduling

Increased risk of surface and ground water contamination

C  Possible   2  Minor    Moderate   1. Irrigation scheduling will use programmable irrigation controllers to control irrigation frequency, time and duration. Irrigation rates will be calibrated to ensure no ponding.2. Irrigation rates will be seasonally adjusted in the irrigation controller to match seasonal irrigation demand.

B  Unlikely   2  Minor    Low  

Recycled water Surface runoff during irrigation Potential contamination of surface water

C  Possible   3  Moderate    High   1. All temporary irrigation areas to use irrigation scheduling controls to control the time, frequency and duration of irrigation events.2. Soil moisture probes and weather station override on irrigation controllers to prevent irrigation during rainfall or elevated soil moisture.3. Site based storm water run off and environmental controls.4. Non‐irrigated, vegetated buffer strips down gradient of the temporary irrigation areas.

B  Unlikely   2  Minor    Low  

Nitrogen Excessive nitrogen load resulting in leaching of nitrate from irrigation areas

Contamination of groundwater C  Possible   3  Moderate    High   1. Irrigation of "Class A" recycled water with total nitrogen concentration of 10 mg/L and low average irrigation rates of around 0.9 mm/day.2. MEDLI modelling indicates all nitrogen applied in irrigation is taken up by vegetation.3. MEDLI modelling indicates negligible nitrate concentration in deep drainage.

B  Unlikely   2  Minor    Low  

Phosphorus Excessive phosphorous load resulting in leaching of phosphate from irrigation area

Contamination of groundwater C  Possible   3  Moderate    High   1. Irrigation of "Class A" recycled water with total phosphorus concentration of 0.3 mg/L and low average irrigation rates of around 0.9 mm/day.2. MEDLI modelling indicates the majority of phosphorus applied in irrigation is taken up by vegetation.3. MEDLI modelling indicates negligible phosphate concentration in deep drainage.4. MEDLI modelling predicted Phosphorus adsorption into soil at a low rate of 0.3 kg/ha/year.5. Critical P‐sorption life of the soil is conservatively estimated to be >166 years based on P‐sorption capacity of holocene sand.

B  Unlikely   2  Minor    Low  

Effluent Salinity Impacts on plant growth due to salinity

Reduction in plant growth and water and nutrient uptake rates

C  Possible   2  Minor    Moderate   1. MEDLI modelling indicated no impacts on plant growth due to salinity based on a conservative effluent TDS of 1500 mg/L.2.  Landscape design processes will ensure appropriate vegetation is selected in temporary irrigation areas that can tolerate the required salt concentrations.3.  The natural sandy top soil profile and relatively high rainfall at the site will assist with flushing of salt through the soil profile to minimise potential salinity impacts on vegetation. 

B  Unlikely   3  Moderate    Moderate  

Stage 1 temporary, restricted access Irrigation System

APPENDIX 4.3.9 Page | 4

Page 22: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

Project: Catherine Hill Bay Water UtilityClient: Rose GroupTitle: Sewerage Preliminary Risk Assessment for IPART ApplicationAuthor: BIDate (Revision): 10/07/2013 (Revision B)Risk Criteria: As per Tables 2.5, 2.6 & 2.7: Australian Guidelines for Water Recycling: Managing Health and Environmental Risks‐phase 1 (2006)

Risk RiskMitigated Risk

Likelihood Consequence Likelihood ConsequenceControl Strategy

Unmitigated RiskHazardous Event Impact

Scheme Component

Hazard

Effluent SAR Long term sodicity impacts on soil

Soil dispersion, reduction in permeability

C  Possible   2  Minor    Moderate   1. Topsoil profile is dominated by sand, hence the likelihood of sodicity impacts is low.2. Detail geotechnical testing to be undertaken for each development stage will avoid areas with high clay content and Exchangeable Sodium Percentage (ESP).3. Ongoing monitoring of soil cations will detect changes in soil ESP over time.4. If required gypsum/lime application to irrigation areas will be undertaken. 5.  If required the irrigation water SAR will be adjusted through addition of calcium/magnesium or reduction in sodium inputs to maintain effluent SAR<5.

B  Unlikely   2  Minor    Low  

Metals and trace contaminants

Trace contaminants in irrigation supply resulting in long term accumulation in irrigation area

Contamination of soil and groundwater

C  Possible   2  Minor    Moderate   1. Source catchment is >99% domestic wastewater hence the likelihood of trace contaminants is low.2. Customer awareness campaigns, supply contracts, trade waste agreements and recycled water use agreements will further reduce the likelihood of events occurring.3. Detailed monitoring of effluent quality for trace contaminant will be undertaken annually using a NATA accredited laboratory.4. Soil monitoring in temporary irrigation area will identify any build up or increase in contaminants. 5. If contaminants are detected then an investigation into the likely source will be undertaken and trade waste/source controls implemented.6. If required additional treatment processes can be installed, e.g. BAC, ion exchange.

B  Unlikely   2  Minor    Low  

Recycled water Pipe breakage Potential contamination of surface or groundwater

C  Possible   2  Minor    Moderate   1. Flow and pressure monitoring in the temporary irrigation supply system.2. Visual inspection to identify boggy areas or erosion etc.

B  Unlikely   2  Minor    Low  

Odour  Odour released during irrigation

Odour impacts on nearby residents

B  Unlikely   2  Minor    Low   1. Irrigation of high quality "Class A" recycled water with low BOD2. Algae control in the wet weather storage3. Irrigation at night time only.4. A minimum 30 m buffer distance between the edge of the temporary irrigation areas and the closest dwelling.

A  Rare   2  Minor    Low  

Stormwater runon Stormwater running onto irrigation areas from 

upgradient

Water logging of irrigation area D  Likely   2  Minor    Moderate   1. Stormwater diversion drains to divert all upgradient stormwater runoff around temporary effluent irrigation areas.2. Appropriate buffers to waterways, ponds, stormwater drains and SEPP14 wetlands

A  Rare   2  Minor    Low  

Percolation to groundwater 

Excessive percolation of effluent to groundwater

Contamination of groundwater C  Possible   3  Moderate    High   1. Low long term average irrigation rate of approximately 0.9 mm/day, hence low risk of groundwater contamination.2. Minimal presence of groundwater within 3 metres of ground surface in geotechnical investigation.3. Irrigation of high quality "Class A" recycled water with low nutrients.4. MEDLI modelling indicates negligible concentrations of nutrients in deep drainage for conservative sandy soil profile.5. A minimum of 600mm sandy loam topsoil cover will be provided on irrigation areas if there is potential for seasonal high water table.

B  Unlikely   2  Minor    Low  

Stage 1 temporary, restricted access Irrigation System 

continued…

APPENDIX 4.3.9 Page | 5

Page 23: Appendix 4.3.1 Sewerage Infrastructure - IPART · PDF fileunit waste sludge tank activated carbon ... stage 1 wastewater treatment plant supernatent nuetralised ... - total nitrogen

Qualitative measures of likelihood

 Level    Descriptor  

A  Rare  

B  Unlikely  

C  Possible  

D  Likely  

E  Almost certain  

Qualitative measures of consequence or impact

 Level    Descriptor  

1  Insignificant  

Qualitative risk analysis matrix: Level of risk

1 2 3 4 5

Insignificant   Minor   Moderate   Major   Catastrophic  

A Rare    Low    Low    Low    High    High  

B Unlikely    Low    Low    Moderate    High    Very high  

C Possible    Low    Moderate    High    Very high    Very high  

D Likely    Low    Moderate    High    Very high    Very high  

E Almost certain    Low    Moderate    High    Very high    Very high  

Health — Major impact for large population  Environment — Potentially lethal to regional ecosystem or threatened species; widespread on‐site and off‐site impacts  

Consequences

 Likelihood  

 Example Description from AGWR May occur only in exceptional circumstances. May occur once in 100 years  

 Could occur within 20 years or in unusual circumstances  

 Might occur or should be expected to occur within a 5‐ to 10‐year period  

From tables 2.5, 2.6 and 2.7 on Page 39 of the Australian Guidelines for Water Recycling Managing Health & Environmental Risks Phase 1  (2006)

QUALITATIVE ENVIRONMENTAL AND PUBLIC HEALTH RISK ASSESSMENT CRITERIA SEWERAGE

5  Catastrophic  

3  Moderate  

4  Major  

Health — Minor impact for large population  Environment — Potentially harmful to regional ecosystem with local impacts primarily contained to on‐site  Health — Major impact for small population  Environment — Potentially lethal to local ecosystem; predominantly local, but potential for off‐site impacts  

2  Minor  

 Is expected to occur with a probability of multiple occurrences within a year  

 Example Description from AGWR

Insignificant impact or not detectable  

Health — Minor impact for small population  Environment — Potentially harmful to local ecosystem with local impacts contained to site  

 Will probably occur within a 1‐to 5‐year period  

APPENDIX 4.3.9 Page | 6