appendix - springer978-0-306-48624-1/1.pdfappendix heat transfer coefficient 3.6 x 104 4.882 current...

92
Appendix A. UNIVERSAL CONSTANTS Avogadro's constant Faraday's constant Gas constant Gravity acceleration Standard molar volume of ideal gas at 0°C and 760mmHg NA 6.022 x 10 23 moi- 1 F 96,485 C g-eq- 1 26.801 Ahr g-eq- 1 23,060ca1v- 1 g-eq-1 R 8.3145Jmol- 1 K- 1 1.987 cal mol- 1 K- 1 1.987BTU!b-mol- 1 0 R- 1 0.08206m 3 atmkg-mol- 1 K- 1 0.730tt 3 atmlb-mol- 1 0 R-I ge 9.807 m s- 2 1.27 x 10 8 mhr- 2 32.2 ft ,- 2 4.17 x 10 8 ft hr- 2 22.41 m 3 kg-moi- 1 B. CONVERSION FACTORS Length m cm mm in. ft 1 100 1000 39.37 3.281 0.01 10 0.3937 0.03281 0.001 0.1 0.03937 0.003281 0.0254 2.54 25.4 0.08333 0.3048 30.48 304.8 12 1 1 mile= 1.760 yards =5,280ft; 1 f1ID = Io- 4 cm; 1 Angstrom= Io- 8 cm. 1491

Upload: haminh

Post on 18-Apr-2018

221 views

Category:

Documents


2 download

TRANSCRIPT

Appendix

A. UNIVERSAL CONSTANTS

Avogadro's constant

Faraday's constant

Gas constant

Gravity acceleration

Standard molar volume of ideal gas at 0°C and 760mmHg

NA 6.022 x 1023 moi- 1

F 96,485 C g-eq- 1

26.801 Ahr g-eq- 1

23,060ca1v- 1 g-eq-1

R 8.3145Jmol- 1 K- 1

1.987 cal mol- 1 K- 1

1.987BTU!b-mol-1 0 R- 1

0.08206m3 atmkg-mol-1 K- 1

0.730tt3 atmlb-mol-1 0 R-I

ge 9.807 m s-2

1.27 x 108 mhr-2

32.2 ft ,-2

4.17 x 108 ft hr-2

22.41 m3 kg-moi- 1

B. CONVERSION FACTORS

Length

m cm mm in. ft

1 100 1000 39.37 3.281 0.01 10 0.3937 0.03281 0.001 0.1 0.03937 0.003281 0.0254 2.54 25.4 0.08333 0.3048 30.48 304.8 12 1

1 mile= 1.760 yards =5,280ft; 1 f1ID = Io-4 cm; 1 Angstrom= Io-8 cm.

1491

1492

A rea

1 1 x 1o-4

6.452 x 10-4

9.29 x 10_2

4.047 X 103

1 X 104

1 6.452

9.29 X 102

4.047 X 107

1.550 X 103

0.155

1

1.44 X 102

6.273 X 106

1 are = 100 m2, 1 hectare = 100 ares.

Volume

m3 L ft3 US galion

1000 35.31 264.2

0.001 1 0.03531 0.2642

0.028232 28.32 7.481

0.003785 3.785 0.1337

10.76

t.076 x w-3

6.944 x 1o-3

1 4.3560 X 104

1 British galion= 1.201 US gallons, 1 ft3 = 1728in.3; 1 barrel (petroleum) = 42 US gallons.

Weight

kg g lb metric ton

1 X 103 2.205 1 x 10-3

1 x 10_3 1 2.2o5 x 10_3 1 x 10_6

0.4536 4.536 X 102 1 4.536 x w-4

1 X 103 1 X 106 2.205 X 103 1

9.072 X 102 9.072 X 105 2 X 103 0.9072

1.016 X 103 1.016 X 106 2.24 X 103 1.016

1 pound = 16 ounces.

acre

2.471 x 10-4

2.471 x 10-8

t.594 x 10_7

2.296 x w-5

1

US ton

1.102 x 10-3

1.102 x 10-6

5 x w-4

1.102

1

1.12

APPENDIX

UKton

9.824 x w-4

9.842 x w-7

4.464 x 10-4

0.9842

0.8929

APPENDIX 1493

Density

gcm-3 kgm-3 = gL -! Ib n-3 lb/US gal

1000 62.43 8.345 0.001 0.06243 0.008345 0.01602 16.02 0.1337

0.1198 119.8 7.481

Power

kW kgms- 1 lbfts- 1 HP kcalhc 1 BTUhr-1

1 1.02 X 102 7.376 X 102 1.341 8.604 X 102 3.415 X 103

9.807 x 10-3 1 7.233 1.315 x w-2 8.438 33.49 1.356 x 10-3 0.1383 1 1.82 x w-3 1.167 4.63

0.7457 76.04 5.50 X 102 1 6.4]9 X 102 2.547 X J03

1.162 x 10-3 0.1185 0.8569 1.559 x 10-3 1 3.967 2.929 x 10-4 2.989 x w-2 0.216 3.929 x w-4 0.2521

1 kW = I.OOOJ s- 1• HP = horsepower.

Energy

Joule kgr m lbr ft kWhr HPhr Latm kcal BTU

0.102 0.7376 2.778 x w-7 3.725 x w-7 9.869 x w-3 2.390 x w-4 9.486 x w-• 9.807 1 7.233 2.724 x w-6 3.653 x w-6 9.678 x w-' 2.344 x w-3 9.302 x w-' 1.356 0.1383 1 3.766 x w-7 5.051 x w-7 1.338 x w-z 3.241 x w-4 1.286 x w-' 3.6 X 106 3.671 x 105 2.655 X 106 1 1.341 3.553 X 104 8.605 x 102 3.415 X 103

2.685 X 106 2.738 X J05 1.980 X 106 0.7457 1 2.649 X 104 6.417 X 102 2.547 X 103

1.013 X 102 10.33 74.73 2.815 x w-5 3.774 x w-5 1 2.422 x w-2 9.612 x w-2

4.183 X 103 4.266 X J02 3.086 X 103 1.162 x w-3 1.558 x w-3 41.29 1 3.968 1.054 X 103 1.075 X 102 7.775 X 102 2.928 x w- 4 3.927 x w-4 10.4 0.252

1494 APPENDIX

Thermal conductivity

1 2.778 x 10-3 0.672 5.600 x 10-2

360 1 2.419 X 102 20.16 1.488 4.136 x 10-3 1 8.333 x 10-2

17.86 4.960 x 10_2 12 1

Pressure

bar kgf m-2 lbt in.-2 atm 103 mmHg 103 mmHzO kPa

1.02 14.5 0.9869 0.75 10.21 100 0.9807 1 14.22 0.9678 0.7355 10.01 98.07 0.06895 0.07031 0.06804 0.05171 0.7037 6.895 1.013 1.033 14.7 0.76 10.34 101.3 1.333 1.36 19.34 1.316 13.61 133.3 0.03386 0.03453 0.4912 0.00342 0.0254 0.3456 3.386 0.09798 0.09991 1.421 0.0967 0.07349 9.798 0.002489 0.002538 0.0361 0.002456 0.001867 0.0254 0.2489

1 bar= 1 megadynecm-2, 1 megadyne = 106 dyne, 1 mmHg = 1 Torr.

Viscosity

Centipoise kgm- 1 s-1

Poise (mPas)a (Pas) kgm-1 hr-1 lbfc1 s- 1 Ibfc1 hr-1

100 0.1 360 6.720 x 1o-2 2.419 X 102

0.01 1 1 x 10-3 3.6 6.720 x10-4 2.419 10 1 X 103 1 3.600 X 103 6.720 x 10-1 2.419 X 103

2.778 x 10-3 0.2778 2.778 x 10_4 1 1.867 x 10_4 0.672 14.88 1.488 X 103 1.488 5.357 X 103 1 3600 4.134 x 10-3 0.4134 4.134 x 10-4 1.488 2.778 x w-4

Note:

amPa = milli-Pascal.

APPENDIX

Heat transfer coefficient

3.6 X 104

4.882

Current density

mAcm-2

10 100 155

1.076

2.778 x 10-5

1

1.3562 x 10-4

Adm-2 kAm-2

0.1 0.01 1 0.1

10 1 15.5 1.55

0.1076 0.01076

C. DIMENSIONLESS GROUPS

Arrhenius number E RT

Biot number hL T

0.2048

7.374 X 103

1

Ain-2 Aft-2

0.00694 0.9294

0.0645 9.2937 0.645 92.937 1 144.05

6.94 x w-3

Peclet number

Poiseuille number

Condensation group b. ( !2.) 1 /3 . h ( !2.) 1 /3 k a 'k g Prandt1 number

Eu1er number gcp Reyno1ds number pu2

Fanning friction factor gcd!J.P Schmidt number 2pv2L

Fourier number kc Sherwood number pcL2

Froude number u2

Stanton number gL

Gay-Lussac number 1 Stokes number {J!J.T

Grashof number L3p2{Jg!J.T

Thiele number 1-'2

Hatta number ___lli_ a Thring radiation tanh YH number

MacMullin number &=.I. Wagner number Po E

Nusse1t number hd Weber number T

Note:

a .Ji05 JIH=~

1495

vpcL -k-

gcd2(-dpfdL) JLV

CJL T puL _ vL ţt - V

_1!_ pD kcL D _}]__ cvp 1-"

pL2

pv2L

" pcv seT3

kp PoL pv2L

(f

1496 APPENDIX

D. NOMENCLATURE IN APPENDIX C

a Acceleration c Specific heat cp Specific heat at constant temperature D Diffusivity d Diameter E Activation energy e Emissivity

FR Force g Acceleration of gravity gc Newton's law conversion factor h Heat transfer coefficient

k Thermal conductivity kc Mass transfer coefficient (liquid film) kp Slope of potential--current density curve kr Reaction rate constant (first-order) L Specific length p Pressure R Gas constant s Stefan-Boltzmann constant T Temperature

Time u Reaction rate v Linear velocity

{3 Coefficient of bulk expansion ~ Difference E: Porosity f.L Viscosity v Kinematic viscosity p Density Pn Resistivity of electrolytic solution with nonconductive suspensions p0 Resistivity of electrolytic solution free of nonconductive suspensions a Surface tension r Tortuosity of porous medium

E. CORRELATIONS

Sodium chloride

1. Solubility of NaCl in water

Wt% = 26.2516- o.ooi235t + 4.8755 x w-5t 2

where

t=°F

APPENDIX

2. Solubility ofNaCl in NaOH

S = 0.009c2 - 0.895c + 0.0003125t2 + 22.95

where

S = wt% of NaCl t = temperature, 20-60°C c = NaOH concentration from 35% to 50%

3. Vapor pressure lowering

where

y = o/o reduction x = wt% salt (0-27%)

4. Enthalpy

20°C: y = 0.4718x + 0.01714x2

100°C: y = 0.4508x + 0.0196x2

H = 111.3611 + 0.274305c- 0.0076797c2

+ 0.999216t- 0.013J122ct + 1.77404 X 10-4c2 t

where

H = Enthalpy (kcal kg -l) c=wt% NaCl t=°C

5. Density

Specific Gravity = Q + Re+ Sc2

where

Q = 1.0004075-0.71687895 x w-5t- 0.51792075 x w-5t 2

+ 0.1054032 x w-7 t 3

R = o.o074569085 - 0.2960572 x w-4 t + 0.30564225 x w-6t 2

- 0.934493315 x w-9t 3

s = 0.18372605 x w-4 + 0.42360185 x w-6t- 0.51483125 x w-8t 2

+0.1794537 x w- 10 t 3

c=wt% NaCl

t=°C

1497

1498

Potassium chloride

1. Solubility in water

s = 27.8054 + 0.30925t - 0.00211584t2

where

S = solubility (g/100 g·H20) t = temperature (0 C)

2. Vapor pressure lowering

where

y = 0.3723x + 0.0091x2

y =% reduction of vapor pressure (solution in water) x = wt% salt (0-37%)

3. Specific heat of solutions

where

cp = specific heat P =wt% salt

4. Density of so1utions

Cp = 0.974- 0.01P

p = 1.0016- 3.525 x w-4 t - 1.625 x w-6t 2 + 5.833 x w-3 P

+ 3.006 x w-s P 2 + 4.5 x w-7 tp

Sodium hydroxide

Specific Gravity = Q +Re+ Sc2 + Tc3

where

Q = 1.00224925-0.116831975 x w-3t- 0.3210971 x w-5t 2

R=0.01148599-0.319841025 x w-4t+0.21510285 x w-6t 2

S=0.19658565 x w-s +0.761527825 x w-6 t -0.61560685 x w-8t2

APPENDIX

T = -0.334691125 x w-6 - 0.7552771 x w-8t + 0.661632323 x w- 10t 2

c=wt%NaOH t =°C

APPENDIX 1499

Potassium hydroxide

Specific heat at 18°C = 1- 1.648 X w-3c + 5.1574 X w-6c2 - 8.5826 X w-9c3

where

c = g/1 KOH

Chlorine

1. Vapor pressure

log P = 31.9142- 1811.8011/ T - 10.989096log T + 0.00732037T

where

P = atm; T = K

2. Vapor pressure of liquid chlorine (at liquefaction temperatures)

Vapor pressure (kPa) = (100.403898- 0.07629155t- 0.0009227t2)

[ 5 3726.9 175088.4 ] exp 9· 96 - 1.8t + 491.8 - -(1-.8-t_+_4_9_1._8)-2

where

t=°C

3. Density of liquid chlorine

p = 573 + l060.6083Y- 160.418Y2 + 837.08192Y3 - 247.20716Y4

where

p =kgm-3

Y = (1 - Tr)i/3

Tr = reduced temperature

4. Viscosity of liquid chlorine

where

484.686 ln(J"LJ) = -2.64947 + ---­

t + 285.3845

/LI = mPa s ( or centipoises) t =°C

1500

5. Therma1 conductivity of liquid ch1orine

k = 0.2458-3.094 x 10-4T- 4.053 x 10-7T2

where

k = therma1 conductivity W m- 1 K-1

T = temperature (K)

6. Specific heat of gaseous ch1orine

Cp = 0.605770219-4.6076698 x 10-5T- 41.8722507 /T

+ 2408.76803jT2

where

cp = specific heat T = temperature (K)

7. Viscosity of ch1orine gas

where

1117.90 1n(ţ.tg) = -2.40357- -t -+-5--,.65-.-83-3

fLg = Viscosity mPa s ( or centipoises) t=°C

8. Thermal conductivity of gaseous chlorine

1nk = -2.7230- 1004.4/(T + 202.68)

where

k = thermal conductivity W m-1 K- 1

T = temperature (K)

9. Dissociation constant ofhypoch1orous acid

where

HC10 = H+ + 0Cl­

[H]+[OC1r K=---­

HOC1

( -1450.6) K = 3.7508 x w-6 exp T

T = temperature (K)

APPENDIX

APPENDIX

10. Hydrolysis constant of chlorine

Cl2(aq) + H20 = HOCl + HCl

K = _[H_O_C_l]_[H_C_l] [Ch(aq)]

where

( -3085.44) K = 11.625 exp T

T = temperature (K)

11. Equilibrium constant of trichloride ion

where

Ch(aq) + Cl- = Cl_3

K = __ [_Cl..::.._3_] _ [Ch (aq) ][Cl-]

( 1030.87) K = 6.4498 X w-3 exp T

T = temperature (K)

NaOH + NaCl solutions

1. Density

where

p = 1.00686 + 0.01147527CNaOH- 0.1722033 X 10-4 C~aOH

-0.3585138 x w-3t- 0.2143812 x w-5t 2

+ 0.007550802CNaCI

p = Density, g ml- 1

CNaOH =wt% NaOH (0-65wt%) CNaCI = wt% NaCl (0--28 wt%)

t = oc (0--130)

1501

1502 APPENDIX

F. SODIUM CHLORIDE

TABLE Fl. Specific Gravity ofNaCl Solutions

Be Specific NaCl Solution NaCl H20 (WC) gravity wt% gl-1 gl-1 gl-1

2.0 1.01405 1.938 1013.167 19.635 993.532 3.0 1.02123 2.929 1020.333 29.886 990.447

4.0 1.02850 3.932 1027.600 40.405 987.198 5.0 1.03589 4.951 1034.981 51.242 983.739 6.0 1.04338 5.962 1042.464 62.152 980.312 7.0 1.05098 6.987 1050.062 73.368 976.694 8.0 1.05869 8.024 1057.760 84.875 972.885

8.5 1.06259 8.549 1061.653 90.761 970.892 9.0 1.06651 9.078 1065.574 96.773 968.841

9.5 1.07046 9.611 1069.525 102.792 966.733 10.0 1.07446 10.145 1073.518 108.908 964.610 10.5 1.07847 10.672 1077.527 114.994 962.533 11.0 1.08251 11.202 1081.563 121.157 960.406 11.5 1.08659 11.738 1085.644 127.433 958.211 12.0 1.09069 12.275 1089.738 133.765 955.973 12.5 1.09483 12.818 1093.876 140.213 953.663 13.0 1.09900 13.365 1098.043 146.753 951.290

13.5 1.10320 13.916 1102.238 153.387 948.851

14.0 1.10743 14.471 1106.463 160.116 946.347

14.5 1.11170 15.030 1110.730 166.943 943.787

15.0 1.11600 15.573 1115.026 173.643 941.383 15.5 1.12033 16.120 1119.351 180.439 938.912 16.0 1.12470 16.672 1123.720 187.347 936.373 16.5 1.12910 17.227 1128.118 194.341 933.777

17.0 1.13353 17.786 1132.544 201.434 931.110 17.5 1.13801 18.351 1137.013 208.653 928.360 18.0 1.14251 18.919 1141.511 215.962 925.549 18.5 1.14706 19.493 1146.053 223.400 922.653 19.0 1.15163 20.068 1150.623 230.907 919.716 19.5 1.15625 20.628 1155.237 238.302 916.935 20.0 1.16089 21.192 1159.879 245.802 914.077 20.5 1.16558 21.761 1164.565 253.421 911.144 21.0 1.17032 22.335 1169.294 261.162 908.132 21.5 1.17508 22.912 1174.052 268.999 905.053 22.0 1.17988 23.496 1178.852 276.983 901.869 22.5 1.18472 24.082 1183.682 285.054 898.628 23.0 1.18961 24.676 1188.570 293.292 895.278

23.5 1.19453 25.259 1193.486 301.463 892.023 24.0 1.19949 25.829 1198.445 309.546 888.899 24.5 1.20450 26.415 1203.448 317.891 885.557

(With permission from Japan Soda lndustry Association)

APPENDIX 1503

TABLEF2. Specific Heat of NaCI Solutions

% -10°C 0°C 10°C 20°C 30°C

o 1.0082 1.0058 0.9996 0.9991

5 0.9343 0.9367 0.9391 0.9413 10 0.8813 0.8858 0.8894 0.8921 15 0.8340 0.8400 0.8448 0.8483 0.8507 16 0.8273 0.8330 0.8376 0.8409 0.8433 17 0.8206 0.8261 0.8307 0.8340 0.8362 18 0.8144 0.8199 0.8242 0.8273 0.8292

19 0.8084 0.8137 0.8178 0.8206 0.8225 20 0.8029 0.8080 0.8118 0.8144 0.8158 21 0.7974 0.8022 0.8060 0.8084 0.8096 22 0.7927 0.7972 0.8006 0.8025 0.8034

23 0.7879 0.7920 0.7951 0.7970 0.7979 24 0.7834 0.7872 0.7898 0.7915 0.7922

25 0.7791 0.7826 0.7850 0.7865 0.7867

(With pennission from Japan Soda Industry Association)

TABLE F3. Surface Tension ofNaCI Solutions in dynecm- 1

% 0°C 10°C 20°C 30°C

o 75.64 ± 0.1 74.22 ± 0.05 72.75 ± 0.05 71.18 ± 0.05 2.84 76.46 ± 0.3 75.04 ± 0.15 73.57 ± 0.1 72.00 ± 0.15 5.52 77.28 ±.0.3 75.86 ± 0.15 74.39 ± 0.1 72.82 ± 0.15

10.47 78.92 ± 0.3 77.50 ± 0.2 76.03 ± 0.15 74.46 ± 0.2 14.92 80.54 ± 0.3 78.12 ± 0.25 77.65 ± 0.15 76.08 ± 0.25 18.95 80.76 ± 0.25 79.29 ± 0.2 77.72 ± 0.25 22.62 82.39 ± 0.25 80.92 ± 0.25 79.35 ± 0.25 25.97 84.02 ± 0.25 82.55 ± 0.25 80.98 ± 0.25

(With permission from Japan Soda Industry Association)

1504 APPENDIX

TABLE F4. Activity (a), Coefficient of Osmotic Pressure ( <1> ), and Mean Activity

Coefficient (y±) of NaCl Solutions

m a ct> log Y±

0.1 0.99665 0.9324 -0.1088 0.2 0.99336 0.9245 -0.1339 0.3 0.99009 0.9215 -0.1489 0.4 0.98682 0.9203 -0.1594 0.5 0.98355 0.9209 -0.1668 0.6 0.98025 0.9230 -0.1722 0.7 0.97692 0.9257 -0.1760 0.8 0.97359 0.9288 -0.1789 0.9 0.97023 0.9320 -0.1810 1.0 0.96686 0.9355 -0.1825 1.2 0.96010 0.9428 -0.1842 1.4 0.95320 0.9513 -0.1841 1.6 0.94610 0.9616 -0.1822 1.8 0.93890 0.9723 -0.1792 2.0 0.93160 0.9833 -0.1755 2.2 0.92420 0.9948 -0.1709 2.4 0.91660 1.0068 -0.1656 2.6 0.90890 1.0192 -0.1598 2.8 0.90110 1.0321 -0.1534 3.0 0.89320 1.0453 -0.1465 3.2 0.88510 1.0587 -0.1302 3.4 0.87690 1.0725 -0.1316 3.6 0.86860 1.0867 -0.1234 3.8 0.86060 1.1013 -0.1148 4.0 0.85150 1.1158 -0.1061 4.2 0.84280 1.1306 -0.0971 4.4 0.83390 1.1456 -0.0878 4.6 0.82500 1.1608 -0.0782 4.8 0.81600 1.1761 -0.0685 5.0 0.80680 1.1916 -0.0585 5.2 0.79760 1.2072 -0.0483 5.4 0.78830 1.2229 -0.0380 5.6 0.77880 1.2389 -0.0274 5.8 0.76930 1.2548 -0.0167 6.0 0.75980 1.2706 -0.0060

Note: In a= -(v m W/1000)<1> where v = stoichiometric number of ions generated from one moleofelectrolyte, W =mass ofwaterin g mol- 1, and m = concentration in molality (moi kg- 1 water). (Based on the vaporpressure of23.753 mm Hgofpure water at 25°C.) (With permission from Japan Soda lndustry Association)

APPENDIX 1505

1.20

1.15 26

24

~ 22 ·:;:

1.10 20 ro L..

(9 u 16

<;::: ·c::;

1.05 Q) 12 0.. (/)

8

1.00 4

0.95

o 20 40 60 80 100

Temperature (0 C}

FIGURE FI. Specific gravity of NaCJ solutions. (Data from International Critica] Tables, Voi. 3, p. 79, McGraw-Hill, Book Co., New York (1928).)

10.0

10°C

~ -5°C

o/"" v ........... /,........ O"e

-;::::. V ,.,

.....-o-- -1o•e~~~

o- f-- 15°C---- ~-' ~~ - 1-----:::: ţ::: ~2s•e~ -::: 1 ~~ 1-f.-.-- -·re~ - ere.:_ - -r- - aooc ~~ -- -----

,Jo·e.::.:_: _:- --- ----f-- -----,_

o 4 8 12 16 20 24

NaCI Concentration (wt%)

FIGURE F2. Viscosity of NaCJ solutions. (Data from Mellor's "Comprehensive Treatise of Inorganic and Theoretieal Chemistry," Voi. II, supplement II, p. 845, Longman (1961 ); open circles from Kaufmann's "Sodium Chloride," p. 622, Reinhold Publishing Corp., New York (1960).)

1506 APPENDIX

1.02

1.00 --u 0.98 1

o -- 0.96 Ol 3 -

.::t:. 0.94 -- ·ii

ro (.) 0.92

.::t:. - 0.90 >. - 0.88 '(3 ro 0.86 a. ro 0.84 u - 0.82 ro Q) 0.80 I

0.78

7 ---9-

i--11- Weight% NaCI in Solution --:::--:

;-- f-13- ----~-- -::::::-----=::;;;; - ~~-----==-~ ~ f- 19 :;:-:::::::. =--::::::::--~ - f...---325 ::----~ 0.76 -1 1 1 1 1 1 1

o 20 40 60 80 100 120

Temperature (0 C)

FIGURE F3. Heat capacity ofNaCI solutions. (Data from International Critica! Tables, Voi. II, p. 328 (1927), Voi. V, p. 115 (1929), McGraw-Hill Book Co., New York and M. Randall and F.D. Rossini, J. Amer. Chem. Soc. 51, 323 (1929).)

o -30

-25

5 -20

---15 Ol I -- E u

~ 10 E -Q) Q) .... ::J -10

.... .....

0 KCI ::J ro -------- IJ) ....

~---- -9 IJ) Q)

------- NaCI Q)

E" 15 ------ -8 .... ---- a.. ~

Saturated Solution -7 .... o a.

-6 ~ 20 -5

-4

25 -3

FIGURE F4. Vapor pressure of NaCI and KCI solutions. (Courtesy of Japan Soda Industry Association.)

APPENDIX

u 11 o r----r---....,------.----.-~Jf77:77771 2....-c o '5 100 l---t---+-__.j'-c:-c---J7S'%W..--I o (/)

u 90 1----t-----t----1-H:i;>'M~-----' ro z

60 70 80 90 100 11 o Boiling Temperature of Pure Water (0 C)

FIGURE FS. Diihring diagram of NaCI solutions. (Courtesy of Japan Soda Industry Association.)

10

u 9

2....- 8 c o 7 :.::; ro > 6 Q)

w 5 -c 4 '6

Il.. O> 3 c '6 2 ca

/ /V

./ V

/~ _/

//

V r v 2 4 6 8 1 o 12 14 16 18 20 22 24 26 28

NaCI Concentration (wt%)

1507

FIGURE F6. Boiling point elevation of NaCI solutions at atmospheric pressure. (Data from International Critica! Tables, Voi. III, p. 326, McGraw-Hill Book Co., New York (1928).)

1508 APPENDIX

19

18

17

1 1

16

15 j

f 14

......... 13 () 0 12 Cl c

11 ·;:: Q)

~ 10 _J - 9 c "o

1 1

1 lf

1 1

a.. 8 Cl c 7 .N

1 ţJ

Q) 6 Q) ....

LL 5

4

V 1

3 rj

/ 2

V o / o 2 4 6 8 10 12 14 16 18 20 22 24

NaCI Concentration (wt%)

FIGURE F7. Freezing point lowering of NaCI solutions. (Data from International Critica! Tables, Voi. IV, p. 258, McGraw-Hill Book Co., New York (1929).)

180~--~--~----~---r--~~--~--~~

160~--~---+----+----+--~~--~~~~1

Ci 140 s 120~---4----~----+-----~---+--~~~~~~ ro ~ 100~---r--~~---r----r-~

~ 80~--~---+----+-~

~ 60 ~--+--+------: c w 40~---+--.~~~--4--~---~----+--1 20~-~~~~--r--~-~--~-~-1

o~~~~~~~~~~~~~~~~~

o ~ ~ ~ 00 100 1~ 1~

Temperature (0 C)

FIGURE F8. Enthalpy of NaCI solutions. (Data from G. Fabry, Acta Tech. Acad. Sci. Hung. 14, 313 (1956).)

APPENDIX

0.50

~ --~

/

v-----~

'E 0.40

u .._ ~ >- / -·::;

:;::; u 0.30 ::::l

30' f...-- f--··· ~

"O c: o ()

18' - f---r-······

~ --/

0.20

3 4 5 NaCI Concentration (N)

FIGURE F9. Conductivity of NaCI solutions. (Courtesy of Japan Soda Industry Association.)

~ 130

c: ;9 u-

125

-5 g 120 c: . oQ> ~ 'E 115 c: u ~(/)110 ro-

.:::: ::::l O"

UJ

105

100

\

\

o

"'-... 1'---..

.............. 1------ -- r---

0.04 0.08 0.12 0.16 0.20

Concentration (mol/1)

1509

FIGURE FlO. Equivalent conductance of NaCI solutions at 25°C. Shedlovsky's equation (Jc + a JC)/ (1 - e.,jC) = Jc0 + B1 c + B2c2 (Jc 0 = 126.29; B1 = 95.7478; B2 = -65.6364; a = 59.78; e = 0.2273). (F. Hine, Electrode Processes and Electrochemical Engineering, pp. 81-82, Plenum Press, New York (1985).)

1-- r-1-r- ~o,J-r--r- r-~-~ 1--r- r-1-r- 10

t- -1-1--r- o -r-r- -r-1- r-1-~

--- r-r-r-1-1-- ~o

o 100 200 NaCI Concentration (g/kg of Solution)

FIGURE F11. Thermal conductivity of NaCI solutions. (Courtesy of Japan Soda Industry Association.)

1510

G. POTASSIUM CHLORIDE

% KCI o

2 1.01335 4 1.02690 6 1.04055 8 1.05431

10 1.06820 12 1.08222 14 1.09638 16 1.11068 18 1.12513 20 1.13973 22 1.15449 24 26 28

180

160

140

120

o 100

2....-~ 80 .3 ~ Q) a.

60 E ~

40

20

o

-20

TABLE G 1. Density of Solutions of KCI

Temperature, °C

20 25 40 60 80 100

1.01103 1.00997 1.00471 0.9956 0.9842 0.9708 1.02391 1.02255 1.01727 1.0080 0.9966 0.9834 1.03690 1.03544 1.02995 1.0206 1.0092 0.9960 1.05003 1.04847 1.04278 1.0333 1.0219 1.0088 1.06332 1.06167 1.05578 1.0461 1.0347 1.0218 1.07679 1.07506 1.06897 1.0592 1.0478 1.0350 1.09046 1.08865 1.08237 1.0725 1.0611 1.0483 1.10434 1.10245 1.09600 1.0861 1.0746 1.0619 1.11845 1.11647 1.10987 1.0998 1.0884 1.0757 1.13280 1.13072 1.12399 1.1138 1.1024 1.0897 1.14740 1.14521 1.13836 1.1281 1.1166 1.1040 1.16226 1.15995 1.15299 1.1425 1.1311 1.1185

1.17495 1.16788 1.1573 1.1458 1.1333 1.18304 1.1723 1.1609 1.1483

1 V

1

1 V

1 1

1 V

1 1

J

1 200 300 400 500 600 700 800

KCI Concentration (g/1 000 g H20)

APPENDIX

FIGURE G 1. So1ubility ofKCI in water. (Data from International Critica! Tab1es, Voi. IV, p. 239, McGraw-Hill Book Co., New York (1929))

APPENDIX 1511

1.80

1.75

1.70

~

""' ..........

1.65

1.60

~ r- ooc ~r--r--

1.55 1-

1.50

1.45 1-

1.40

1.35 ;-

........ 1.30 o. ~ 1.25 ,_ >. - 1.20 ·u; o (.) 1.15 C/)

> 1.10

1.05

fS-1--- 15°C - f-- ...8

~ 1

~ .....8

18°C --1.00

.95

.90

- ..1<)

25°C -V

.85 ,....

.80

.75 -f-- .-\:.}

~ 35°C ~ - f..--

.70

.65

""

1 -~ ...8

- 45°C ~ - f..--

"""'" ~ .60 o 2 4 6 8 1 o 12 14 16 18 20 22 24 26

KCI Concentration (wt%)

FIGURE G2. Viscosity of KCI solutions. (Data from International Critica! Tab les, Voi. V, p. 17, McGraw-Hill Book Co., New York (1929).)

1512

36

34

32

-30 u o 28 o E 26 --ro ~ 24 >--"(3 22 ce Q. ce 20 u - 18 ce Q)

I 16 ro o 14 ~

ro t

12 ce 10 a.. Q) > 8

:;J ce (ii 6 a::

4 t 2

1

40°C /

~ 30°-

h 20° 10°

~ ~ ~ ooc-

ld ~ V

~ ~ j w

A ~

1 ~· ,

~r , 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8

KCI Concentration (molality)

APPENDIX

FIGURE G3. Relative partial molal heat capacity of solute in KCl solutions. (Data from R. Parsons, Handbook ofElectrochemical Constants, Academic Press Inc., New York (1959), p. 43.)

APPENDIX 1513

-C> :::I: E E 300 -~ ~ !/) !/)

~ 0.. .... o a. m >

200

50 60 70 80 90

Temperatura (0 C)

FIGURE G4. Vapor pressure of KCI solutions.

1514 APPENDIX

26

24 ' 1/ 22

20 1 1/

18

o 16 ~ c:

1 V

o 14 ~ > Q)

12 jjJ 1

c "Ci 10 a.. O> :§ 8 ·o co

6

1 V

1 V

4

2

1 cf

V 5 10 15 20 25 30 35 40

KCI Concentration (wt%)

FIGURE GS. Boiling point elevation of KCI solutions. (Data from International Critica! Tables. Voi. III. p. 326, McGraw-Hill Book Co., New York (1928).)

14

13

12

~ 11

1/ J

() ~ 10 O>

_/

-/ c: 9 -~

~ 8 o _J

c 7 ·o

6 a.. Ol c 5 "j;j Q)

4 ~ LL

3

/

/ /'

/ /

Il

2 / /'

V o o 2 4 6 8 10 12 14 16 18 20 22 24 26

KCI Concentration (wt%)

FIGURE G6. Freezing point lowering of KCI solutions. (Data from International Critica! Tables, Voi. IV, p. 259, McGraw-Hill Book Co., New York (1929).)

APPENDIX

~ ..;-c Q)

"(3

tE Q) o u >--·;:;:

:+::: (.) <(

0.5

0.4

0.3

0.2

50 60 70 80

Temperature (0 C}

90

FIGURE G7. Mean activity coefficient of KCI in solution.

0.8

0.7

0.6

E 0.5 (.) ....... ~ ~ 0.4 ·:;: u ::J -o 0.3 c o ()

0.2

0.1

o

Temp (°C)

~--~----~---b---1--~~95 90

80

70

60

50

o 1 2 3 4 5 6

KCI Concentration (mol/1)

1515

FIGURE 08. Conductivity of KCI solutions. (F. Hine, Electrode Processes and Electrochemical Engineering, p. 79, Plenum Press, New York (1985).)

1516

H. SODIUM HYDROXIDE

Physical Properties of Sodium Hydroxide

Property

CAS registry number Molecular weight Specific gravity at 20°C Melting point,°C Boiling point,°C at 101.3 kPa Specific heat, J g-1 oe-I at 20°C

Refractive indexat 589.4 nm 320°C 420°C

Latent heat of fusion, J g-1

Lattice energy, kJ mol- 1

Entropy,Jmol-1 K-1 at25°Cand 101.3kPa Heat of formation, kJ mol-1

a form f3 form

Heat of transition from a form to f3 form, J g-1

Transition temperature, °C Free energy of formation, kJ mol-1 at 25°C and 101.3 kPa

Value

[1310-73-2]

39.998 2.130

318 1388

1.48

1.433 1.421

167.4 737.2

64.45

422.46 426.60 103.3 299.6

-379.5

TABLE Hl. Specific Gravity of NaOH Solutions

NaOH NaOH NaOH NaOH dl5j4 Be o/o gJ-1 diS/4 Be o/o gl-1

1.007 0.59 6.0 1.220 26 19.65 239.7 1.014 2 1.20 12.0 1.231 27 20.60 253.6 1.022 3 1.85 18.9 1.241 28 21.55 267.4 1.029 4 2.50 25.7 1.252 29 22.50 281.7 1.036 5 3.15 32.6 1.263 30 23.50 296.8 1.045 6 3.79 39.9 1.274 31 24.48 311.9 1.052 7 4.56 47.3 1.285 32 25.50 327.7 1.060 8 5.20 55.0 1.297 33 26.58 344.7 1.067 9 5.86 62.5 1.308 34 27.65 361.7 1.075 10 6.58 70.7 1.320 35 28.83 380.4 1.083 Il 7.30 79.1 1.332 36 30.00 399.6 1.091 12 8.07 88.0 1.345 37 31.20 419.6 1.100 13 8.78 96.6 1.357 38 32.50 441.0 1.108 14 9.50 105.3 1.370 39 33.73 462.1 1.116 15 10.30 114.9 1.383 40 35.00 484.1 1.125 16 11.06 124.4 1.397 41 36.36 507.9 1.134 17 11.90 134.9 1.410 42 37.65 530.9 1.142 18 12.69 145.0 1.424 43 39.06 556.2 1.152 19 13.50 155.5 1.438 44 40.47 582.0 1.162 20 14.35 166.7 1.453 45 42.02 610.6 1.171 21 15.15 177.4 1.468 46 43.58 639.8 1.180 22 16.00 188.8 1.483 47 45.16 669.7 1.190 23 16.91 201.2 1.498 48 46.73 700.0 1.200 24 17.81 213.7 1.514 49 48.41 732.9 1.210 25 18.71 226.4 1.530 50 50.10 766.5

(With pennission frorn Japan Soda Industry Association)

APPENDIX

APPENDIX 1517

TABLE H2. Heat of Solution of Caustic Soda

%NaOH Water/mole NaOH Calg-1 NaOH

0.44 500 253.3 0.55 400 253.4 1.10 200 253.7 2.17 100 254.7 4.25 50 256.7 8.16 25 257.1

14.13 13.5 261.2 19.79 9 256.8 24.08 7 254.4 30.75 5 232.9 42.53 3 179.8

TABLE H3. Heat of Dilution of NaOH Solutions

wt%NaOH kca1kg- 1 NaOH kcal kg - 1 of so1ution

o o o 2 0.649 0.0129 4 -1.122 -0.0455 6 -2.629 -0.1578 8 -3.932 -0.3146

10 -4.730 -0.4730 12 -5.021 -0.5995 14 -4.757 -0.6655 16 -4.037 -0.6435 18 -2.744 -0.4935 20 -0.825 -0.1655 22 1.804 0.3965 24 5.208 1.248 26 9.427 2.453 28 14.536 4.070 30 20.537 6.160 32 27.483 8.790 34 35.227 11.968 36 43.796 15.763 38 53.075 20.168 40 62.810 25.129 42 72.985 30.679 44 83.435 36.718 46 93.885 43.186 48 104.335 50.072

1518

Î o ro

20

:; 30 l:c--lf--++-+-P""-</:,I---I+----Ii~ o o o T"" --0 40~~~~~~-h~' ro z ~

~ 501---~~~~dT-4 z o ~ ~ 60~~-1--+-~~-+r-~~ :::l o (/)

60 58 56 54 52 50 48 46 44 42 40 NaOH Concentration (wt%)

APPENDIX

FIGURE Hl. Solubility of NaCI in NaOH solutions. (Courtesy of Japan Soda lndustry Association.)

100.0

50.0

30.0 20.0

10.0

c: ~ 5.0 ~

3.0 'Cii o

2.0 o (/)

> 1.0

0.5

0.3

0.2

0.1 o 10 20 30 40 50 60

NaOH Concentration (wt%)

FIGURE H2. Viscosity of NaOH solutions. (Courtesy of Japan Soda lndustry Association.)

APPENDIX

.80

-~ .76 O) ~ ..._ ro ~ .72 -_. ro Q)

I .68 () \;: ·c:; Q)

c% .64

.60

-() o O) ~ ..._ ro () ~ -_. ro Q)

I () \;: ·c:; Q) c.

(/)

1519

1.04 1

1.00 r-- -- 0%

- 2%

.96

.92

.88

.84

.80

---- -1-- ------ ~ - 10% _,...-- --- 1-----

~ --~ --!----- 1

~ ~ !--- 20%

~ :...---: !---L 1

~ ~ ~ ~ 30%

~ ~ ~ ;:::::::::: 1

~ ~ ~ ~ ~ 40% ::::::::::::::: !==---

~ ~ :::::::: :...---~ :..---::::--::: -50%

.76 o 1 o 20 30 40 50 60 70 80 90 1 00

Temperature (0 C)

1

50%

60%

70%

30 40 50 60 70 80 90 1 00 11 o 120 130 140 150

Temperature (0 C)

FIGURE H3. Specific heat of NaOH solutions. (Courtesy of Japan Soda Industry Association.)

1520

L..

o a. ~

APPENDIX

10

NaOH Concentration (wt%)

FIGURE H4. Vapor pressure of NaOH solutions. (Data from International Critica! Tab les, Voi. II, p. 370, McGraw-Hill Book Co., New York (1927).)

APPENDIX

4 "' E 3 ~

2 Cl 6 ~ ~ 1/) 1/)

~ 0.. o Q) 10 Cl ~ 20 (Il 30

(.9 40

50

c; 60 I 65 E ~ 70 E ~ ~ (J (Il

> 75

76

/ ~

~ ~ /

~ ~ / / ~ /

r-- -o% /. / /

" '/ / / r-- -10%-~ Y// / / / r-- 20% ~ ~/ / / /

~ ~ /3~~ / / / 40%

~~ /1/ / L /

1~ ~ / /se" / / / ţr / /

/ /60%

~ / / 1_/ ~'v / / /7v // / .,75%

"'V ""'-'( / /

~ ~ M ro 00 001001W1~1~1~1~

Temperature (0 C}

FIGURE HS. Boiling point of NaOH solutions. (Courtesy of Japan Soda lndustry Association.)

300

280

260

240

220

200

180

u 160

~ 140 ~ .a 120 ~ ~ 100

E 80 ~

60

40

20

o -20

-40

r-- 1 1 1 1 1 1 1 1 lce + solution 1/ r--- 2 lce + NaOH·7H20 3 Na0H·7H20 + solution

r--- 4 NaOH·SH20 + solution 5 NaOH·7H20 + NaOH·SH20 1 r-- 6 NaOH -4 H20 + solution 7 NaOH·SH20 + NaOH·4H20 1 r-- 8 Na0H·3.5H20 + solution

1 9 NaOH·4H20 + Na0H·3.5H20 r-- 10 NaOH·3.5H20 + NaOH·2H20

1 11 NaOH·2H20 + solution r--- 12 NaOH·H20 + solution

r-- 13 Na0H·2H20 + NaOH·H20 14 NaOH + solution 15 Na0H·H20 + NaOH 14

1

/" J 1 '

111/ 12 '

~ y 1 ---:1 15

~"' 3 J, '' ' '' 10 ' 13 _Jg• ' ' ---- ·.r-- 17: : ' ' 2 :5 ' '' '

o 10 20 30 40 50 60 70 80 90 100 NaOH Concentration (wt%)

FIGURE H6. Phase diagram of caustic soda. (Courtesy of Japan Soda Industry Association.)

1521

1522 APPENDIX

()110r-~r-~--_,~~r--r~-r~,

~

40 50 60 70 80 90 100 Boiling Temperature of Pure Water (0 C)

FIGURE H7. Diihring diagram ofNaOH solutions. (Courtesy of Japan Soda Industry Association.)

- 300 c o 260 5 o CI) 220

o Ol 180 --~ 160 >-0. 120

Cii ..c c 80 w Q) 40 > :;:::; ctl

Ci) 0:::

o

./ ~ / ~ ~ v~

........... ....._ --f:::: v / / ~ ~ ........ ....._ -210'C- -........ V / ~ '? ......... - -185'C-- / V - --160'C- -/

~ V ~ -- 135'C--~ / --1--- -110'C-f- / V v - ---/ 85°C - V -~--- 60°C-~ -/

35'C-

V /

10°C-- 1-- ooc 1

o 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

NaOH Concentration (wt%)

FIGURE H8. Enthalpy ofNaOH solutions.

APPENDIX 1523

100

V /

/ 95

/ V

/

E' u 90 Cii Ql c >-2-c 85 o

'Cii c ~

/

~ V

/'

Ql 80 u

~ ::J (f)

75

8 16 24 32 40 48

NaOH Concentration (wt%)

FIGURE H9. Surface tension of NaOH solutions. (Data from International Critica! Tab les, Voi. IV, p. 465, McGraw-Hill Book Co., New York (1929); surface tension of water at l8°C = 72.58 dynes cm- 1.)

1.6

1.4

1.2 100'C

- 90'C E 1.0 u --~ BO'C ~ 0.8 ·::;; t5 70'C ::J 0.6 'O c o 60°C u 0.4

50'C

0.2

60

NaOH Concentration (wt%)

FIGURE HIO. Conductivity of NaOH solutions. (F. Hine, Electrode Processes and Electrochemical Engineering, p. 75, Plenum Press, New York (1985).)

1524

0.620

0.605

0.590

~ .c 0.575 .§ ~ ~ 0.560 .?;-·:;:

i3 0.545 ::J

"' c o ~ 0.530

E Q)

~ 0.515

0.500

0.485

APPENDIX

81.77°C

V - ?~.66JC / -f-

54.14°( V / -

V V -r-37Jrc / V

0 V V v -~ 32.tC / V

1 V V v -21.JC ·; 1/ /

V

1 V v -V /

/ 1o.ooc

1 V V -V V

V V 1.11 oc

V / V

1 V 1

1 o 5 1 o 15 20 25 30 35 40 45 50 55 60 65

NaOH Concentration (wt%)

FIGURE Hll. Thermal conductivity of NaOH solutions. (From Hooker Chemical Corporation's Technical Bulletin "Caustic Soda," p. 40 (1954).)

1 1 1 1 1 soocf 1/ J 1/sooc

li 11 ,'l/ V

50°C ~ 1/ 70°C ~ 80°C 11

~ ~ jlljj

//; V ~ ~

~ ifl

8 6

I 4 o ro z

2 ..... o -c Q) '(3 10 tE 8 Q) o 6 ()

>- 4 -·::; :0:0 (.) <(

2

10

I o ro z ..... o c Q)

1.0 '(3

tE Q) o ()

c ·::; u <(

0.01 1 o 20 30 40 50 60 70 NaOH Concentration (wt%)

FIGURE Hl2. Activity coefficient of NaOH in solution. (From G. Akerlof and G. Kegeles, J. Amer. Chem. Soc. 62,620 (1940).)

APPENDIX

1. POTASSIUM HYDROXIDE

TABLE Il. Thermal Conductivity of Potassium Hydroxide Solutions

Wt%KOH o

o 0.486 10 0.490 20 0.486 30 0.473 40 0.456 50 0.432

.&!' ·:;: ~

(!) ()

It= '(3 Q) o. cn

Heatconductivity att°C (kcalm-1 hr- 1 oe-I)

10 20 30 40

0.501 0.515 0.528 0.540 0.505 0.519 0.532 0.544 0.501 0.515 0.528 0.540 0.488 0.502 0.515 0.527 0.471 0.485 0.498 0.510 0.447 0.461 0.474 0.486

1.52 1.50 1.48 1.46 1.44 1.42 1.40 1.38 1.36 1.34 1.32 1.30 1.28 1.26 1.24 1.22 1.20 1.18 1.16 1.14 1.12 1.10 1.08 1.06 1.04 1.02 1.00 0.98

11! f(j!J

1!'11 VII!

JV/1 llijV

;VII j!JV

ll/1 11/1

ll/1 i//;V

1Vfl liP

1'11 ~

~VI W; 'i"

0.96

50

0.551 0.555 0.551 0.538 0.521 0.497

60

0.561 0.565 0.561 0.548 0.531 0.507

/h 1/J.

ooc Ww

30° rJ soo

70°

c c c c

!/(// ll/1 Wl

IJII r/1! VI

0·94o 4 81216202428323640444852

KOH Concentration (wt%)

70

0.570 0.574 0.570 0.557 0.540 0.516

1525

80

0.578 0.582 0.578 0.565 0.548 0.524

FIGURE Il. Specific gravity of KOH solutions. (G. Akerlof and P. Bender, J. Amer. Chem. Soc. 63, 1088 (1941).)

1526

S2' o _§ Cii ~ ~ ·o ro 0.. ro u ro Q)

I Cii o ::!: Cii t ro a. Q) > ~ Q) 0:::

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

•o·0;o· 'i20' v0~;~·

~ 0 /.~ ~ V

A w 1j

/J/ ~ w ~

A o/ III

Alfl 11 f

~ , 4

2 o .4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4

Concentration of KOH (Molality)

APPENDIX

FIGURE 12. Relative partial molal heat capacity of solute in KOH solutions. (Data from R. Parsons, Handbook of Electrochemical Constants, Academic Press Inc., New York (1959), p. 43.)

4.0 ,-------,---.,.-----,----,---,----.,...,

50 45 40

30

20

10

%KOH

0·22L0---J30--....140--5-'-0--6'-0-----l.70 __ .J...J

Temperature (0 C)

FIGURE !3. Viscosity of KOH solutions. (Data from International Critica! Tab les, Voi. V, p. 17, McGraw-Hill Book Co., New York (1929).)

APPENDIX 1527

10,000 7,000

,-.., 4,000 Ol I

E 2,000

E 1,000 -- 760 Q) ..... 400 :::J C/) C/) 200 Q) ..... a.. 100 ..... 70 o c.. 40 ~

20

1 1 1 ~o±j ~o 30 45 / / / 40 50

A ~~/ /~ ~ ~ V:;/ V 65

/ / <?'// // / g; V/: 'i / ~/oKOH

- ~ ~ 'l / V//

A ~ V/ / // 1 $/ // 1/

~ ~/ V/ / 1/ b V~ V /j

~ ~(; V~ ;: V 10

o 10 20 30 40 50 60 70 80 90100 120 140 160 180 220

Temperature (0 C}

FIGURE 14. Vapor pressure of KOH solutions. (From International Criticat Tables of Numerica! Data: Physics, Chemistry and Technology, McGraw-Hill Book Co. (1923-1933).)

240

200

o 0 c 160 o

:;::::; ro > Q)

w 120 -c ·a c... O> 80 c ·a co

40

o

IYJ

1 1

1 V V

n/

1~ / 7

10 20 30 40 50 60 70 80 90 100

KOH Concentration (wt%)

FIGURE IS. Boiling point elevation of KOH solutions. (Data from International Critica! Tables, Voi. III, p. 326, McGraw-Hill Book Co., New York (1928).)

1528

350

300

250

200

o 150 o -~ ::s -~ 100 a. E ~

50

o

-50

-100 o

1/

1 Boii ing Point

1 V

/ /

V ;~-"' Point -- 1/ IV

1 KOH·H20

/ ~ lj"' KOH·2H20

H20 1(ic~ /

VII KOHAH20

1

20 40 60 80 100

KOH Concentration (wt%)

FIGURE 16. Plot of boiling and freezing points of KOH-water system.

APPENDIX

APPENDIX

o ~ Cl c::

·;:: Q)

~ ...J -c::

& Cl c:: .N Q) Q) ....

LL

80 76 72 1/ 68 64 60 56 52

' 1/ 1

V 48 44

lj

40 36 32

1 1

1

28 24 20 16

V /

V ,0

12 8 4

/ V

...-~

o o 4 8 12 16 20 24 28 32

KOH Concentration (wt%)

1529

FIGURE I7. Freezing point lowering of KOH solutions. (Data from International Critica! Tab les, Voi. IV,

p. 259, McGraw-Hill Book Co., New York (1929).)

240 -Cl ~ --ro (..)

c I 220 ~ :2 o cn -o

'-------... r---..._

~ \

\ c:: 200 o ;; ::J o cn -o -m

\ \

Q) 180 I \

o 10 20 30 40 50 60

KOH Concentration (wt%)

FIGURE I8. Heat of solution of KOH. (F.D. Rossini et al., Selected Values of Chemical Thermodynamic

Properties, p. 93, U.S. Government Printing Office, Washington, DC (1952).)

1530

1.6

1.4

1.2

"E 1.o

~ ~ 0.8 ·s: ti -6 0.6 c: o (.) 0.4

0.2

o o

APPENDIX

v-~ 1 "\

80°C

1 / f--"-~

/;V 60°C

V/ 0 h V ~ lj 18°C

10 20 30 40 50 60 KOH Concentration (wt%)

FIGURE I9. Conductivity of KOH solutions. (F. Hine, Electrode Processes and Electrochemical Engineering, p. 76, Plenum Press, New York (1985).)

"E t)

Cii CI) c: >-

:8.-c: o

"iii c: ~ CI) t)

.jg ::::1

cn

80.5

80.0

1 1

79.5

79.0 1 78.5 1

1 78.0

77.5 1 77.0

76.5

76.0

V 1

75.5 J /

75.0

74.5 1 74.0 1

j"

73.5

73.0 1

72.5

72.0 o 2 4 6 8 10 12 14 16 18 20 22 24

KOH Concentration (wt%)

FIGURE IlO. Surface tension of KOH solutions at l8°C. (Data from International Critica! Tables, Voi. IV, p. 466, McGraw-Hill Book Co., New York (1929).)

APPENDIX

c Q)

·u ti= Q) o u ~ ·;:; :g <(

25

24

23

22

21

1

f 20

19

18

17

i i 1

- f- -· 1 1

16

15

14

1 / ' 1

1 13 r--

12

11

1 1

10

9 1 1

8

7

6

5

r-· j -1-

i j

/ 4 1 /

3

2

1----- ··-r----r /

/ y v

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

KOH Concentration (molality)

1531

FIGURE 111. Stoichiometric mean molal activity coefficient ofKOH solutions at 25°C. (Data from R. Parsons, Handbook of Electrochemical Constants, Academic Press Inc., New York (1959), pp. 22, 28.)

1532

J. CHLORINE

Property

CAS Registry number

Atomic number Atomic weigbt

Physical Properties of Chlorine

Stable isotope abundance, atom% 35ci 37ci

Electronic configuration in ground state Melting point, °C Boiling point at 101.3 kPa (0 C) Gas density relative to air

Critica! density, kg m-3

Critica! pressure, kPa

Critica! volume, m3 kg-1

Critica! temperature, °C

Critica! compressibility

Gasdensity,kgm-3 at°Cand 101.3kPa

Gas viscosity, mPa s at 20°C Liquid viscosity, mPa s at 20°C

Gas tbermal conductivity at 20°C, W m- 1 K- 1

Liquid tbermal conductivity at 20°C, W m- 1 K- 1

Latent beat of vaporization, kJ kg -l

Latent beat of fu sion, kJ kg -l

Heat of dissociation, kJ mol- 1

Heat of bydration of CI-, kJ mol- 1

Standard electrode potential, V

Electron affinity, e V Ionization energies, e V

Specific beat at constant pressure Specific beat at constant volume

Specific magnetic susceptibility at 20°C, m3 kg- 1

Electrica! conductivity of liquid at -70°C (obm-1cm-1) Dielectric constant at °C (wavelengtbs > 10 m)

Value

[7782-50-5]

17 35.453

75.53

24.47

[Ne]3s23p5

-100.98 -33.97

2.48

573 7977

0.001745

143.75 0.284777

3.213 0.0134 0.346

0.00866

0.120

287.75

90.33

2.3944

405.7 1.359 3.77

13.01, 23.80, 39.90, 53.30, 67.80, 96.60,

114.20 0.481 0.357

-7.4 x w-9

10-16

1.97

APPENDIX

APPENDIX 1533

TABLE J 1. Thermodynamic Properties of Saturated Chlorine

Temp. eq

Absolute pressure

(kPa)

-90 3.5785 -85 5.3042 -80 7.6791 -75 10.879 -70 15.111

-65 20.610 -60 27.642 -55 36.502 -50 47.517 -45 61.041

-40 77.456 -35 97.171 -34.05 101.32 -30 120.61 -25 148.25

-20 180.54 -15 218.00 -10 261.13 -5 310.45 o 366.53

5 429.90 10 501.14 15 580.83 20 669.55 25 767.92

30 876.53 35 996.02 40 1127.0 45 1270.1 50 1426.0

55 1595.5 60 1779.0 65 1977.4 70 2191.4 75 2421.6

80 2668.9 85 2934.0 90 95

100

105 110 115 120 125

130 135 140 144

3217.7 3520.8 3844.2

4188.8 4555.3 4944.9 5358.4 5796.9

6261.4 6753.1 7273.1 7710.9

Enthalpy (kJkg-1)

Entropy (kJkg-1 K-1)

Liquid Vapor Liquid Vaporization Vapor Liquid Vaporization Vapor

0.00058670 5.9925 0.00059088 4.1511 0.00059517 2. 9417 0.00059955 2.1283 0.00060403 1.5694

0.00060863 1.1775 0.00061334 0.89779 0.00061816 0.69460 0.00062311 0.54470 0.00062820 0.43249

0.00063341 0.34736 0.00063877 0.28194 0.00063981 0.27129 0.00064429 0.23109 0.00064996 0.19113

0.00065580 0.15940 0.00066182 0.13396 0.00066802 0.11339 0.00067442 0.096617 0.00068104 0.082826

0.00068788 0.071406 0.00069496 0.061882 0.00070229 0.053888 0.00070990 0.047136 0.00071781 0.041400

0.00072603 0.036499 0.00073460 0.032290 0.00074354 0.028657 0.00075288 0.025506 0.00076267 0.022760

0.00077294 0.020358 0.00078376 0.018246 0.00079517 0.016383 0.00080725 0.014732 0.00082008 0.013263

0.00083376 0.011952 0.00084842 0.010777

182.46 187.58 192.64 197.66 202.64

207.58 212.49 217.38 222.25 227.10

231.94 236.78 237.69 241.61 246.44

251.28 256.12 260.97 265.83 270.71

275.60 280.51 285.44 290.39 295.38

300.39 305.45 310.54 315.68 320.88

326.14 331.47 336.88 342.39 348.01

353.75 359.64

0.00086421 0.0097201 365.70 0.00088134 0.0087645 371.96 0.00090006 0.0078972 378.45

0.00092071 0.0071062 385.21 0.00094378 0.0063808 392.30 0.00086995 0.0057111 399.80 0.0010003 0.0050871 407.81 0.0010365 0.0044986 416.48

0.0010820 0.0039324 426.08 0.0011440 0.0033671 437.13 0.0012467 0.0027471 451.19 0.0017455 0.0017455 483.27

318.96 316.02 313.13 310.29 307.48

304.70 301.95 299.20 296.46 293.71

290.95 288.17 287.64 285.37 282.53

279.65 276.72 273.74 270.70 267.60

264.42 261.16 257.81 254.37 250.82

247.16 243.37 239.44 235.37 231.13

226.71 222.09 217.24 212.15 206.78

201.10 195.07

501.43 1.5688 503.60 1.5963 505.78 1.6229 507.95 1.6485 510.12 1.6733

512.29 1.6973 514.44 1.7206 516.58 1.7432 518.71 1.7652 520.81 1.7867

522.89 1.8077 524.95 1.8281 525.34 1.8320 526.98 1.8481 528.97 1.8677

530.93 1.8869 532.85 1.9058 534.72 1.9243 536.54 1.9424 538.31 1.9603

540.02 1.9779 541.67 1.9952 543.26 2.0123 544.77 2.0291 546.20 2.0457

54 7.56 2.0621 548.82 2.0784 549.99 2.0945 551.06 2.1104 552.01 2.1262

552.85 2.1420 553.56 2.1577 554.13 2.1733 554.55 2.1890 554.80 2.2047

554.86 2.2205 554.72 2.2364

1.7414 1.6795 1.6211 1.5658 1.5135

1.4638 1.4165 1.3714 1.3284 1.2873

1.2478 1.2100 1.2079 1.1735 1.1385

1.1046 1.0719 1.0402 1.0095 0.97965

0.95061 0.92231 0.89469 0.86769 0.84123

0.81528 0.78976 0.76461 0.73979 0.71522

0.69085 0.66661 0.64243 0.61823 0.59394

0.56944 0.54465

3.3102 3.2759 3.2440 3.2144 3.1868

3.1611 3.1371 3.1147 3.0937 3.0740

3.0555 3.0381 3.0349 3.0217 3.0062

2.9916 2.9777 2.9645 2.9519 2.9400

2.9285 2.9175 2.9070 2.8968 2.8870

2.8774 2.8681 2.8591 2.8502 2.8415

2.8329 2.8243 2.8158 2.8072 2.7987

2.7900 2.7811

188.64 554.35 2.2526 0.51944 2.7720 181.74 553.71 2.2689 0.49366 2.7626 174.32 552.77 2.2857 0.46714 2.7528

166.26 551.48 2.3028 0.43967 2.7425 157.46 549.76 2.3206 0.41095 2.7315 147.73 547.54 2.3390 0.38060 2.7196 136.84 544.66 2.3585 0.34807 2.7066 124.43 540.91 2.3793 0.31251 2.6918

109.84 535.92 2.4020 0.27244 2.6744 91.755 528.89 2.4279 0.22480 2.6527 66.265 517.45 2.4606 0.16038 2.6210 00.000 483.27 2.5364 0.00000 2.5364

1534

TABLE J2. Equilibrium Constant K for the Reaction Cl2(g) = Cl2(aq)

Temperature (0 C) K from ref. [1] K from ref. [2]

10 15 20 25 40 60 80

0.116 0.0935 0.0775 0.0623 0.0553

0.0356 0.0229 0.0171

[!] R.P. Whitney and J.E. Vivian,/nd. Eng. Chem. 33,741 (1941). [2] A. Cerquetti et al., 1. Electroanal. Chem. 20,411 (1969).

o 20 Partial Pressure (kPa) 40 60 80 100 120

100 200 300 400 500 600 700

Partial Pressure (kPa)

APPENDIX

FIGURE Jl. So1ubi1ity of ch1orine in water. (F.W. Adams and R.G. Edmonds, Ind. Eng. Chem. 29, 447 (1937).)

APPENDIX

-:::::: N

(3

E 9 >-:::: :0 :J o (/)

8 \

7

6

5

4

3

2

\ ~ ~ ~ ~o(' ~ I 0

~ ~ "'-._

~ ~ /; ---....___

~ ~ ~ ~ ! ---....___ ~

-------~ ţ=: ?/ 1----

1 o 1 o 20 30 40 50 60 70 80 90 100

H2S04 Concentration (wt%)

1535

FIGURE J2. Solubility of chlorine in aqueous H2S04 at 1 atm. (Data from International Critica! Tables, Voi. III, p. 256, McGraw-Hill Book Co., New York (1928).)

14.0

13.0

12.0

11.0

;) 10.0 E -- 9.0 Ol ~ ->-- 8.0 "Cii c Q)

7.0 o

6.0

5.0

4.0

3.0

1 .......... J 1

-............ 1--1 r-. 3.40

1 ----It..____

1 .......... :--......

1

----1 1--- 2.72 1 i

----...

---- - -· 1 --:--...... 1 ----1 ----,...__ 2.04

1 ----1

_:__ 1

1 ------+--1 -- 1.36

1

1 T 1

~=t= 1

1

-~---- 0.68 -i 1

1 .

tt= Gauge Pressure (atm)-~ 1 1

1 1 1 o

-

-15-10 -5 o 5 10 15 20 25 30 35

Temperature (0 C}

FIGURE J3. Density of chlorine gas. (Data from A.S. Ross and O. Maas, Can. J. Res. 18, section B, 55 (1940).)

1536

1600

1500

1400

'[ 1300

~ 1200

~ 1100 CIJ

~ 1000 Cl

900

800

700

APPENDIX

wc 10-

30

50

70_

\=::: - 90

110-

'ţ: :::=-::: ~ ::::.:-::::: 130

"i -::---:: ~ :::::::----Y/ V

\(

1000 5000 10000 15000 20000 Pressure (kPa)

FIGURE J4. Density of liquid chlorine. (H. Wagenbreth, PTB-Mitteilungen, 78(2), 91 (1968).)

1---1800

....... 1600 "' ..§ 1400 ----t-. Cl

~ 1200 z­'iii 1000 c: c3 800

600 -100 -50

--.. r---.....

o 50 Temperatura (0 C)

............ ........

""" \ 100 150

FIGURE JS. Density of saturated liquid chlorine. (R.M. Kapoor and J.J. Martin, Thermodynamic Properties ofChlorine, Engineering Research Institute, University of Michigan, Ann Arbor, MI (1957).)

c: .8-Q) c: ·c

0.6

~ 0.5 (.)

"C ·:; C'

::::i o 0.4 ~

'§ Ul

5 0.3

1\ 1\

\ Liquid

1\ ~ .X -

/

V /

""- ...........

c: 0.020 .8-

Ul ro (9 Q) c: ·g

0.015 ::E (.)

o ~ 'iii 8

0.010 5

-40 -20 o 20 40 60 80 100 Temperatura (0 C)

FIGURE J6. Viscosity of liquid chlorine and chlorine gas. (Courtesy of Japan Soda lndustry Association.)

APPENDIX

-N

E (,) -Cl

.:.t. -~ ::J CI) CI) Q) .... 0.. .... o a. ~

25

1 1 20

1 ~ 1

15

........... ~cific Gravity 1 .......... 1

........... 1 10

/' "' Absolute_ -y ""'

Pressure

V 5

/ V

..---"' -80 -60 -40 -20 o 20 40 60 80

Temperatura (0 C}

1537

1.7

1.6

>-1.5 -·:;:

ro 1.4

.... (!) (,)

1.3 1;::::: "(3 Q)

1.2 a. CI)

1.1

1.0

FIGURE J7. Vapor pressure and specific gravity of liquid chlorine. (Courtesy of Japan Soda lndustry

Association.)

....... C> --ro ~ c o

:;:::; ~ o c.. ro >

UJ ..... o -ro Q)

I

100

80

60

40

20

o -100

--r---- t-.. ...............

~

~ \

-50 o 50 100 150 Temperature (0 C}

FIGURE J8. Heat of evaporation of liquid chlorine. (Courtesy of Japan Soda Industry Association.)

1538

-ro Q)

:c .g 150 1------+-----J~ "(3 Q) a.

CI)

100~-------+--------~-------+~

-100 o 100 200 Temperature (0 C)

APPENDIX

FIGURE J9. Specific heat capacity of chlorine gas at constant pressure. (R.M. Kapoor and J.J. Martin,

Thermodynamic Properties of Chlorine, Engineering Research Institute, University of Michigan, Ann Arbor, MI (1957).)

Z' "(3

95 ro a.

90 ro_ {.)~ _.-roe> 85 Q)~ :Cea u-3.

80 ;:;:::: "(3 Q) a.

75 CI)

,....------/ ~

/

v /

/ /

-120 -80 -40 o 40 80 120 160 200 240

Temperature (0 C}

FIGURE JIO. Specific heat capacity of chlorine gas at constant volume (ideal gas state). (R.M. Kapoor and J.J. Martin, Thermodynamic Properties ofChlorine, Engineering Research Institute, University of Michigan,

Ann Arbor, MI (1957).)

APPENDIX 1539

0.3

0.2 o o ..... ..c E 0.1

--ro 0.07 (.)

.X: 0.05 ->. .......

·::; :;:::; 0.03 (.) :::::1

"C 0.02 c o o

-----------------·-------

~' -'

--~-

~ -

Liquid \

1 Vapor

1

/ ro 0.01 E ..... Q) 0.007 ..c 1-

0.005

/ -

/ V

-

- L_ i / - 1

0.003 i -150 -100 -50 o 50 100 150

Temperature (0 C}

FIGURE 111. Thermal conductivity of chlorine gas and liquid. (C.Y. Ho, R.W. Powell, and P.E. Liley, J. Phys. Chem. Ref Data 3 (Suppl. 1), 226 (1974).)

K. HYDROGEN

TABLE Kl. Physical Properties of Gaseous Hydrogen at 101.3 kPa

Property

Density at 0°C, (moi cm-3) x 103

Compressibility factor at 0°C Adiabatic compressibility at 300 K, MPa -l Coefficient of volume expansion at 300 K, K- 1

Cp at 0°C, J mol-K- 1

Cy at 0°C, J mol-K- 1

Enthalpy at 0°C, J moi- 1

Interna! energy at 0° C, J moi- 1

Entropy at 0°C

Velocity of sound at 0°C, m s- 1

Viscosity at 0°C, cp

Thermal conductivity at 0°C, m W cm -l K- 1

Oi electric constant at 0°C Isothermal compressibility at 300 K, MPa -l

Self-diffusion coefficient at 0°C, cm2 s- 1

Gas diffusivity in water at 25°C, cm2 s- 1

Heat of dissociation at 25°C, kJ moi- 1

Value

0.04460 1.00042

7.03 0.00333

28.59 20.30

7749.2

5477.1 139.59

1246 0.00834

1.740 1.000271

-9.86

1.285 4.8 X JO-S

435.881

1540 APPENDIX

1.8 \

1.6

1.4

1\ 1"'

""' ""' 1.2 ""'--("t)

1.0 E ...... O> ._ >-:!:

0.8 :0 :::J o

CI)

0.6

1\ \ ~ \

0.4

0.2

\

\ \

o o 1 o 20 30 40 50 60 70 80 90 1 00

Temperature (0 C}

FIGURE Kl. Solubility ofhydrogen in water at 1 atm.

APPENDIX

.:Z:."' o\o

1

100 o 20

H2-Cb-02

H2-CI2-N2

H2-CI2-Air

1

1

1

o o o ~

~ 1 g.,

Explosive 40 %

1 Region 1 H2 >- 0 2 ,N2 or Air

Cl2

40 60 80 108

% Cl2

FIGURE K2. Explosive limits for H2-Cl2-oi1J, H2-Cl2-Ni1J, and H2-Cl2-air<2J mixtures.

1541

Notes: ( 1) R.B. MacMullin, Electrolysis of Brines in Mercury Cells. In J. Sconce (ed.), Chlorine, ACS monograph 154, Reinhold Publishing Co., New York (1962), p. 127. (2) Soda Handbook, p. 723, Japan Sada lndustry Association, Tokyo ( 1998).

4.----,----,----,----,----,----,---~

-~--~--~~Î~--+--~~t--~--t~~-j

0.1L----L--~----J---~----L----L--~ -200 o 200 400 600 800 1 000 1200

Temperature (0 C}

FIGURE K3. Vapor heat capacity of hydrogen, nitrogen, and oxygen. (From C.L. Yaws, Physical Properties,

A Guide to the Physical, Thermodynamic and Transport Data of Industrially Important Chemical Compounds, McGraw~Hill Pub1ishing Co., New York (1977).)

1542

-Q) rn ·o a. o .... u .E ->-+"

"Ci) o u rn 5 .... o a. ~

500

400

300

200

100

o -200 o 200 400 600 800

Temperatura (°C)

APPENDIX

1000 1200

FIGURE K4. Vapor viscosity of hydrogen, nitrogen, and oxygen. (From C.L. Yaws, Physical Properties, A Guide to the Physical, Thermodynamic and Transport Data of Industrially Important Chemical Compounds, McGraw-Hill Publishing Co., New York (1977).)

~ 0.4 > 0.3 t5 0.2 ::J "O~ 0.1 cU o o u.E

--1-" - H2 ~ -

ro E: 0.075 E::::.

0.060 .... t1l Q) o .s:::~

0.045 ~--~ .... o 0.030 c. ~ 0.015

L---02 --: :...-~

....::::::: ~ N2

----o ~ -200 o 200 400 600 800 1000 1200

Temperatura (0 C)

FIGURE K5. Vapor thermal conductivity of hydrogen, nitrogen, and oxygen. (From C.L. Yaws, Physical Properties, A Guide to the Physical, Thermodynamic and Transport Data of Industrially Important Chemical Compounds, McGraw-Hill Publishing Co., New York (1977).)

APPENDIX

L. SULFURIC ACID

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 96 97 98 99

100

100

90

80

70

~ 60

~ 50 8 :5 40

30

20

10

TABLE LI. Density of Solutions of H2S04

Temperature, °C

o 20 25 40 60 80 100

1.0364 1.0317 1.0300 1.0240 1.0140 1.0022 0.9888 1.0735 1.0661 1.0640 1.0570 1.0460 1.0338 1.0204 1.1116 1.1020 1.0994 1.0914 1.0798 1.0671 1.0537 1.1510 1.1394 1.1365 1.1275 1.1153 1.1021 1.0855 1.1914 1.1783 1.1750 1.1653 1.1523 1.1388 1.1250 1.2326 1.2185 1.2150 1.2046 1.1909 1.1771 1.1630 1.2746 1.2599 1.2563 1.2454 1.2311 1.2169 1.2027 1.3179 1.3028 1.2991 1.2880 1.2732 1.2589 1.2446 1.3630 1.3476 1.3437 1.3325 1.3177 1.3029 1.2886 1.4110 1.3951 1.3911 1.3795 1.3644 1.3494 1.3348 1.4619 1.4453 1.4412 1.4293 1.4137 1.3984 1.3834 1.5154 1.4983 1.4940 1.4816 1.4656 1.4497 1.4344 1.5714 1.5533 1.5490 1.5361 1.5195 1.5031 1.4873 1.6293 1.6105 1.6059 1.5925 1.5753 1.5582 1.5417 1.6888 1.6692 1.6644 1.6503 1.6322 1.6142 1.5966 1.7482 1.7272 1.7221 1.7069 1.6873 1.6680 1.6493 1.8009 1.7786 1.7732 1.7571 1.7364 1.7161 1.6966 1.8361 1.8144 1.8091 1.7933 1.7729 1.7525 1.7331 1.8544 1.8337 1.8286 1.8137 1.7944 1.8560 1.8355 1.8305 1.8157 1.7965 1.8569 1.8364 1.8314 1.8166 1.7977 1.8567 1.8361 1.8310 1.8163 1.7976 1.8551 1.8342 1.8292 1.8145 1.7958 1.8517 1.8305 1.8255 1.8107 1.7922

~ p,

'<\0

r 01>r ~\0

1 A ~

~Jjjll V ~·~ /.slJr--J

0~2:t~ / / :::.-t 43.3'C

~ ~ 54.4"~

--:: ~~s.s·c·-=--98.8'C-

0o 10 20 30 40 50 60 70 80 90 100

Concentration of H2S04 (wt%)

1543

FIGURE LI. Viscosity of sulfuric acid solutions. (Data from Bright et al., J. Soc. Chem. Ind., 65, 385 (1946);

International Critica[ Tables, Voi. 5, pp. 11-13, McGraw-Hill Book Co., New York (1929); Z. Physik. Chem.

Neue Folge, 3, 52 (1955).)

1544 APPENDIX

1.00

0.95 1\ \

0.90

0.85 \ 0.80 \

\ 0.75

Cii Q) 0.70 I

1\

\ \

u t;::: 0.65 "(3 Q)

~ 0.60

0.55

0.50

0.45

0.40

0.35

\

\ ~ ~ ~ 93.3"C ----, ~ ~ ;S:? 1

" 'i 37.7"C - ~ 20oc ____/ .......:

0·30 o 10 20 30 40 50 60 70 80 90 100

Concentration of H2S04 (wt%)

FIGURE L2. Specific heat of sulfuric acid solutions. (Socilik, Z. Physik. Chem. Neue Folge, 158A, 305 (1932); Perry, Chemical Engineers' Handbook, 3rd ed., p. 234, McGraw-Hill, New York (1950).)

95% H2S04

1

0.001 L.J...__...L...____:,_I'-------L---...!..._--""~___. 50 40 30 20 10 o

Temperature (0 C)

FIGURE L3. Vapor pressure of sulfuric acid solutions.

APPENDIX 1545

280 1!! "'

240

200

160

-~ 120 --ro () ~ .._..

>- 80 a. ro .L:. - 40 c: llJ

o

-40

-80

o 10 20 30 40 50 60 70 80 90 100 40 80 o

Percent Sulfuric Acid 1 % Free 1 Sulfur

Trioxide

FIGURE L4. Enthalpy of sulfuric acid solutions. (Data from Broughton, Chem. Metall., 52(4), 123 (1945); Miles et al., Trans. Faraday. Soc., 40, 281 (1944); Morgen, Ind. Eng. Chem, 34, 571 (1942); Ross, Ind. Eng.

Prag., 48,314 (1952).)

20

o

~-20 ::J

~ Q) 0.-40 E ~

-60

1\ ..........

!'.... Liquid 1 "\. 1 \ 1 \ ..- J 1/

/ \..__ 1 ' Solid 1\ 1

\ / Solid ~

1 y

o 1 o 20 30 40 50 60 70 80 90 1 00 SulfuricAcid (wt%)

FIGURE L5. Freezing point of sulfuric acid solutions. (From C. Gable, H.F. Betz, and S.H. Morgan, J. Amer. Chem. Soc., 72, 1445 (1950).)

1546

~ 210 o ~ 180 I

~ 150 -i 120

§ 90 :;::::l

~ Q) 60 c

~ 30 -

\...

ro Q)

I o o

--r-.... ..........

20 40

""' r-... '" " 1\ \

60 80 100 Product Acid Concentration (wt%) at 25°C

FIGURE L6. Heat generation when water is added to sulfuric acid solutions.

M. HYDROCHLORIC ACID

54

48

6 42

~ o 36 E -.. ~ ........ ~ 30 T5 ctl a. 8 24 -ctl Q)

:::c 18

12

6

r-r-

r-r-

r-r-

r-r-

r-r-

r-r-

r-

r-

r-r-r- ,,'

-80

1

1 1 1

1 1 1 1 1

1 1

1~ 1

,' \ \~ \ 1

1

~~:~ 1

~~ "' _§, ~ 1

~~< of·,, _\:\ , ;:,

/\~ ~~ q0;. '- ~

---~ ~ ~ , rn. ,,' '', 1 Atmfsphere

-60 -30 o 30 60 80 Temperature (0 C}

FIGURE M 1. Heat capacity of anhydrous hydrogen chloride gas.

APPENDIX

APPENDIX

48 r-r-

42 1----

u 36 1---

o --Q)

o 30 E --ro .s. ~ 24

i l 1 j

"(3 Cll a. Cll 18 o ro

-

/ - --ţ_..---

Q)

I 12 r-·

1 -

4

1 1 1 1 1 1 1 1 o -120 -90 -60 -30 o 30 60

Temperature (0 C}

FIGURE M2. Heat capacity of anhydrous liquid hydrogen chloride.

4800

Ci) 3200 o E

:::::,

---

Cll ?~~---;: 2400 1---++-_---:---'--t-----+-,-:-,...-"----ff------l

..Q- -Cll ..c "E ~\o.;.; UJ 1600 1--++-----c}~-'-+--

-40 o Temperature (0 C}

1 1

40

FIGURE M3. Enthalpy of anhydrous hydrogen chloride.

80

1547

1548 APPENDIX

110

100 \

-o N

I 90 C> o

[\

\

"" o ..--- 80 u I

" '\r\. C> - '\

~ 70 :0

::::1 o cn 60

' '\ ~ ",

"' --...... 50 -20 o 20 40 60

Temperature (0 C)

FIGURE M4. Solubility ofHCI in water. (Data quoted from Seidell's Solubilities, Voi. 1, 4th ed., W.F. Linke (ed.), p. 1108, Amer. Chem. Soc., Washington, DC (1958).)

HCI Concentration (wt.%)

FIGURE MS. Viscosity of hydrochloric acid solutions. (Courtesy of Japan Soda lndustry Association.)

APPENDIX 1549

800

700

600 Ol I E 500 .s Q) .... :l (J) 400 (J) Q) .... a.. .... 300 o 0..

~ 200

100

o 5 10 15 20 25 30 35 40

HCI Concentration (wt.%)

FIGURE M6. Partial pressure of HCI and water over HCI solutions. (Courtesy of Japan Soda Industry Association.)

0.8

o o Ol ~ --Cii {)

~ 1iî 0.7 Q)

I {)

<.:: "(3 Q) 0..

(/)

0.6

0.5 '------'-----'----'----'----'----' o 10 20 30

HCI Concentration (moi%)

FIGURE M7. Specific heat of hydrochloric acid. (Courtesy of Japan Soda Industry Association.)

1550

20

o o o ::::--20 c ·o a.. -40 Cl c

";:::j CI) -60 ~

LL -80

-100 o

74

72

"E u -(/) CI) c 70 >. ~ c o

"Cii c ~ 68 CI) u ~ ::::J cn

66

~ r'\. -r--

\ / --./

....._,..

\ V \ 1

\1 y

10 20 30 40 50 60

HCI Concentration (wt%)

FIGURE M8. Freezing point of HCI solutions.

r--1--.........

~r-..

" "' \ 1\

\ 1\ \

64 o 5 1 o 15 20 25 30 35 40 HCI Concentration (wt%)

APPENDIX

FIGURE M9. Surface tension of HCI solutions at 20°C. (From N.A. Lange, Handbook of Chemistry, 9th ed., p. 1652.)

APPENDIX

1.4

1.2

"E 1.o ~ ~ .:::- 0.8 ·:;: :g -5 0.6 c o ()

0.4

0.2

o

1551

--/ ~'--.. BO'C

1/ -- ......_

" 1 V ~oc

1 V """ IIL LV --r----. r-._ 40°C

III V "' 1 1 / ............ 25°C r-... 111 1 r--. 11/Y ~/ '/

IJ , 1

o 2 3 4 5 6 7 8 9 10 11 Concentration (N)

FIGURE MlO. Conductivity of HCI solutions. (F. Hine, Electrode Processes and Electrochemical Engineer­ing, p. 74, Plenum Press, New York (1985).).

130

24 V Azeotropic

V /V

Temperatura

\ //1 t--o

120

11 o

100 ~ 23

\ /

\ V

K ·····~

1 1 1\

\.

/1 1

.'\ 1

HCI Concentration

1 ~ in Azeotropic - r--- ""- Mixture

1

"' 1

1

"' 1

['., 1

90 u !2.--~

80 .a ~ a.l

70 c.. E ~

60

50

40

30

~ c o ~ 22 ..... c a.l (.) c o ()

o 21 I

20

o 500 1000 1300 Pressure (mm Hg)

FIGURE M Il. HCI concentration and tempera ture of azeotropic mixture of HCI and H2 O. (Courtesy of Japan Soda lndustry Association.)

1552

N. NaOH + NaCl MIXTURES

1.54

o 1.50

~ 1.46

~ 1.42 -:;: ~ 1.38

CJ (.) 1.34

t;:: ·u 1.30 (])

c% 1.26

1.22

300

\ li' \ /

Specific / Gravity

1\ --7

250

/ \ /

200

\ /

/)(' // \

150

/ \ ~Sol,biiOy

of NaCI .....

"' '-..... -

100

50

o o 100 200 300 400 500 600 700 800

NaOH Concentration (g/1)

APPENDIX

9 c o "" ~ "E (]) (.) c o ()

o ro z

FIGURE NI. Specific gravity of saturated NaOH-NaCI solutions. (Courtesy of Japan Soda Industry Association.)

O. BLEACH

1.150

~ 1.100

~ ·;;: ~

CJ (.)

t;:: ·u (])

c% 1.050

!J fi 1.000 o

[.@ 1//

fiu w~-

~ P\u_r--~

J. cţ>

~ A

~.w $

1~ ~~

w 1~ ~

20 40 60 80 100 Active Chlorine (g/1)

FIGURE OI. Specific gravity ofbleach solutions. (Courtesy of Japan Soda Industry Association.)

APPENDIX 1553

P. SODIUM CARBONATE

TABLE Pl. Specific Gravity of Sodium Carbonate Solutions

Na2C03 Na2C03 ·IOH20 Na2C03 Na2C03

% % d20j4 d25j4 g 1-1 (200C) % d30j4

2.7 1.0086 1.0073 10.09 14 1.1417 2 5.4 1.0190 1.0176 20.39 15 1.1520 3 8.1 1.0294 1.0278 30.88 16 1.1636 4 10.8 1.0398 1.0381 41.59 17 1.1747 5 13.5 1.0502 1.0484 52.51 18 1.1859 6 16.2 1.0606 1.0588 63.64 19 1.1972 7 18.9 1.0711 1.0692 74.98 20 1.2086 8 21.6 1.0816 1.0797 86.53 21 1.2201 9 23.3 1.0922 1.0902 98.20 22 1.2317

10 27.0 1.1029 1.1008 110.30 23 1.2434 Il 29.7 1.1136 1.1115 122.50 24 1.2552 12 32.4 1.1244 1.1223 137.90 25 1.2671 13 35.1 1.1354 1.1332 147.60 26 1.2790 14 37.8 1.1463 1.1442 160.50 27 1.2910

28 1.3031 29 1.3152

30 1.3274

(with pennission from Japan Sada Industry Association)

7.0

6.0

5.0

â: -S 4.0 >--'Cii o 3.0 (.) rn >

2.0

1.0

o o 5 10 15 20 25 30

Na2C03 Concentration (%)

FIGURE Pl. Viscosity of sodium carbonate solutions. (Courtesy of Japan Soda Industry Association.)

1554 APPENDIX

Q. WATER

TABLE Q 1. pH of Pure Water at Various Temperatures

Temperature, °C pH Temperature, °C pH Temperature, °C pH

o 7.44 120 5.91 240 5.71 20 7.04 140 5.80 260 5.72 40 6.63 160 5.76 280 5.80 60 6.40 180 5.72 300 5.82 80 6.20 200 5.70

100 6.02 220 5.70

(With permission from Japan Soda Industry Association)

TABLE Q2. Water Vapor Pressure in mm Hg

Temperature (0 C)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

o 4.579 4.613 4.647 4.681 4.715 4.750 4.785 4.820 4.855 4.890 1 4.926 4.962 4.998 5.034 5.070 5.107 5.144 5.181 5.219 5.256 2 5.294 5.332 5.370 5.408 5.447 5.486 5.525 5.565 5.605 5.645 3 5.685 5.725 5.766 5.807 5.848 5.889 5.931 5.973 6.015 6.058 4 6.101 6.144 6.187 6.230 6.274 6.318 6.363 6.048 6.453 6.498 5 6.543 6.589 6.635 6.681 6.728 6.775 6.822 6.869 6.917 6.965 6 7.013 7.062 7.111 7.160 7.209 7.259 7.309 7.360 7.411 7.462 7 7.513 7.565 7.617 7.669 7.722 7.775 7.828 7.882 7.936 7.990 8 8.045 8.100 8.155 8.211 8.267 8.323 8.380 8.437 8.494 8.551 9 8.609 8.668 8.727 8.786 8.845 8.905 8.965 9.025 9.086 9.147

10 9.209 9.271 9.333 9.395 9.458 9.521 9.585 9.649 9.714 9.779 Il 9.844 9.910 9.976 10.042 10.109 10.176 10.244 12.312 10.380 10.449 12 10.518 10.588 10.658 10.728 10.799 10.870 10.941 11.013 11.085 11.158 13 11.231 11.305 11.379 11.453 11.528 11.604 11.680 11.756 11.833 11.910 14 11.987 12.065 12.144 12.223 12.302 12.382 12.462 12.543 12.624 12.706 15 12.788 12.870 12.953 13.037 13.121 13.205 13.290 13.375 13.461 13.547 16 13.634 13.721 13.809 13.898 13.987 14.076 14.166 14.256 14.347 14.438 17 14.530 14.622 14.715 14.809 14.903 14.997 15.092 15.188 15.284 15.380 18 15.477 15.575 15.673 15.772 15.871 15.971 16.071 16.171 16.272 16.374 19 16.477 16.581 16.685 16.789 16.894 16.999 17.105 17.212 17.319 17.427 20 17.535 17.644 17.753 17.863 17.974 18.085 18.197 18.309 18.422 18.536 21 18.650 18.765 18.880 18.996 19.113 19.231 19.349 19.468 19.587 19.707 22 19.827 19.948 20.070 20.193 20.316 20.440 20.565 20.690 20.815 20.941 23 21.068 21.196 21.324 21.453 21.583 21.714 21.845 21.977 22.110 22.243 24 22.377 22.512 22.648 22.785 22.922 23.060 23.198 23.337 23.476 23.616 25 23.756 23.897 24.039 24.182 24.326 24.471 24.617 24.764 24.912 25.060 26 25.209 25.359 25.509 25.660 25.812 25.964 26.117 26.271 26.426 26.582 27 26.739 26.897 27.055 27.214 27.374 27.535 27.696 27.858 28.021 28.185 28 28.349 28.514 28.680 28.847 29.015 29.184 29.354 29.525 29.697 29.870 29 30.043 30.217 30.392 30.568 30.745 30.923 31.102 31.281 31.461 31.642 30 31.824 32.007 32.191 32.376 32.561 32.747 32.934 33.122 33.312 33.503

( continued)

APPENDIX

0.0 0.1 0.2

31 33.695 33.888 34.082 32 35.663 35.865 36.068 33 37.729 37.942 38.155 34 39.898 40.121 40.344 35 42.175 42.409 42.644 36 44.563 44.808 45.054 37 47.067 47.324 47.582 38 49.692 49.961 50.231 39 54.442 52.725 53.009 40 55.324 55.61 55.91 41 58.34 58.65 58.96 42 61.50 61.82 62.14 43 64.80 65.14 65.48 44 68.26 68.61 68.97 45 71.88 72.25 72.62 46 75.65 76.04 47 79.60 80.00 48 83.71 84.13 49 88.02 88.46 50 92.51 92.97 51 97.20 97.68 52 102.09 102.59 53 107.20 107.72 54 112.51 113.05 55 118.04 118.60 56 123.80 124.40 57 129.82 130.44 58 136.08 136.72 59 142.60 143.27 60 149.38 150.07 61 156.43 157.15 62 163.77 164.52 63 171.38 172.16 64 179.31 180.11 65 187.54 188.38 66 196.09 196.96 67 204.96 205.87 68 214.17 215.11 69 223.73 224.71 70 233.7 234.7 71 243.9 245.0 72 254.6 255.7 73 265.7 266.8 74 277.2 278.4 75 289.1 290.3 76 301.4 302.7 77 314.1 315.4

76.43 80.41 84.56 88.90 93.43 98.16

103.10 108.24 113.59 119.16 124.99 131.06 137.36 143.94 150.77 157.87 165.27 172.94 180.92 189.22 197.84 206.78 216.06 225.69 235.7 246.0 256.8 268.0 279.5 291.5 303.9 316.7

TABLE Q2. continued

Temperature (° C)

0.3 0.4 0.5

34.276 34.471 34.667 36.272 36.477 36.683 38.369 38.584 38.801 40.569 40.796 41.023 42.880 43.117 43.355 45.301 45.549 45.799 47.841 48.102 48.364 50.202 50.774 51.048 53.294 53.580 53.867 56.21 56.51 56.81 59.27 59.58 59.90 62.47 62.80 63.13 65.82 66.16 66.51 69.33 69.69 70.05 72.99 73.36 73.74 76.82 77.21 77.60 80.82 81.23 81.64 84.99 85.42 85.85 89.34 89.79 90.24 93.89 94.36 94.82 98.64 99.13 99.62

103.60 104.11 104.62 108.76 109.29 109.82 114.14 114.69 115.24 119.73 120.31 120.89 125.58 126.18 126.78 131.68 132.30 132.92 138.01 138.66 139.31 144.61 145.28 145.96 151.47 152.17 152.87 158.59 159.32 160.06 166.02 166.78 167.54 173.73 174.52 175.31 181.74 182.56 183.38 190.06 190.91 191.77 198.72 199.60 200.48 207.69 208.61 209.53 217.01 217.96 218.91 226.67 227.66 228.65 236.7 237.8 238.8 247.1 248.1 249.2 257.9 259.0 260.1 269.1 270.3 271.4 280.7 281.9 283.1 292.8 294.0 295.2 305.2 306.5 307.7 318.0 319.3 320.7

1555

0.6 0.7 0.8 0.9

34.864 35.062 35.261 35.462 36.891 37.099 37.308 37.518 39.018 39.237 39.457 39.677 41.251 41.480 41.710 41.942 43.595 43.836 44.078 44.320 46.050 46.302 46.556 46.811 48.627 48.891 49.157 49.424 51.323 51.600 51.879 52.160 54.156 54.446 54.737 55.030 57.11 57.41 57.72 58.03 60.22 60.54 60.86 61.18 63.46 63.79 64.12 64.46 66.86 67.21 67.56 67.91 70.41 70.77 71.14 71.51 74.12 74.50 74.88 75.26 78.00 82.05 86.28 90.69 95.29

100.11 105.13 110.35 115.80 121.47 127.38 133.55 139.96 146.64 153.58 160.80 168.30 176.10 184.20 192.63 201.37 210.45 219.87 229.65 239.8 250.3 261.2 272.6 284.3 296.5 309.0 322.0

78.40 82.46 86.71 91.14 95.77

100.60 105.64 110.89 116.36 122.05 127.99 134.18 140.62 147.32 154.29 161.58 169.07 176.90 185.03 193.49 202.26 211.37 220.83 230.65 240.9 251.4 262.3 273.7 285.5 297.7 310.3 323.3

78.80 79.20 82.87 83.29 87.14 87.58 91.59 92.05 96.24 96.72

101.10 101.59 106.16 106.68 111.43 111.97 116.92 117.48 122.63 123.21 128.60 129.21 134.81 135.45 141.28 141.94 148.00 148.69 155.00 155.71 162.28 163.02 169.84 170.61 177.70 178.50 185.86 186.70 194.35 195.42 203.16 204.06 212.30 213.23 221.79 222.76 231.65 232.65 241.9 242.9 252.4 253.5 263.5 264.6 274.9 276.0 286.7 287.9 298.9 300.2 311.6 312.9 324.7 326.0

( continued)

1556 APPENDIX

TABLE Q2. continued

Temperature (0 C)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

78 327.3 328.7 330.0 331.4 332.7 334.1 335.5 336.8 338.2 339.6 79 341.0 342.4 343.8 345.2 346.6 348.0 349.4 350.8 352.2 353.7 80 355.1 356.5 358.0 359.4 360.9 362.4 363.8 365.3 366.8 368.3 81 369.7 371.2 372.7 374.2 376.7 377.3 379.8 380.3 381.8 383.4 82 384.9 386.4 388.0 389.5 391.1 392.7 394.2 395.8 397.4 399.0 83 400.6 402.2 403.8 405.4 407.0 408.6 410.3 411.9 413.5 415.2 84 416.8 418.4 420.1 421.7 423.4 425.1 426.8 428.5 430.2 431.9 85 433.6 453.3 437.0 438.7 440.5 442.2 443.9 445.7 447.4 439.2 86 450.9 452.6 454.4 456.2 458.0 459.7 461.5 463.3 465.1 466.9 87 468.7 470.5 472.3 474.1 476.0 477.8 479.7 481.5 483.4 485.2 88 487.1 489.0 490.9 492.7 494.6 496.5 498.4 500.3 502.3 504.2 89 506.1 508.0 510.0 511.9 513.9 515.9 517.8 519.8 521.8 522.8 90 525.76 527.76 529.77 531.78 533.80 535.82 537.86 539.90 541.95 544.00 91 546.05 548.11 550.18 552.26 554.35 556.44 558.53 560.64 562.75 564.87 92 566.99 569.12 571.26 573.40 575.55 577.71 579.87 582.04 584.22 586.41 93 588.60 590.80 593.00 595.21 597.43 599.66 601.89 604.13 606.38 608.64 94 610.90 613.17 615.44 617.72 620.01 622.31 624.61 626.92 629.24 631.57 95 633.90 636.24 638.59 640.94 643.30 645.67 648.05 650.43 652.82 655.22 96 657.62 660.03 662.45 664.88 667.31 669.75 672.20 674.66 677.12 679.59 97 682.07 684.55 687.04 689.54 692.05 694.57 697.10 699.63 702.17 704.71 98 707.27 709.83 712.40 714.98 717.56 720.15 722.75 725.36 727.98 730.61 99 733.24 735.88 738.53 741.18 743.85 746.52 749.20 751.89 754.58 757.29

100 760.00 762.72 765.45 768.19 770.93 773.68 776.44 779.22 782.00 784.78 101 787.57 790.37 793.18 796.00 798.82 801.66 804.50 807.35 810.21 813.08

R. MISCELLANEOUS

o 8.8

10 18 20 25 30 40 50 60 80

100

TABLE Rl. Solubility of Barium Salts in g/lOOg H20

23.8

25.0

26.3 27.1 27.7 28.9

31.6 34.3 37.5

0.0016

0.0022

0.00115

0.002

0.0024 0.00223

0.0014 0.00285

0.00336

0.0039

APPENDIX

TABLE R2. Solubility of Calcium Sulfate in NaCl

Solution

Specific gravity NaC1 (g/IOOcc) CaS04 (g/100cc)

0.9998 0.000 0.212 1.0644 9.115 0.666 1.0981 14.399 0.718 1.1012 14.834 0.716 1.1196 17.650 0.712 1.1488 22.876 0.670 1.1707 26.417 0.650 1.2034 32.049 0.572

(With perrnission frorn Japan Soda Industry Association)

TABLE R3. Equivalent Conductance of Ions in Solutions of Infinite Dilution

Cations 0°C 25°C 100°C Anions 0°C 25°C 100°C

H+(H20) 225.0 349.7 637 oH- 105 200 446 Li+ 19.1 38.68 120 p- 55.6 Na+ 25.85 50.1 150 CI- 41.4 76.3 207 K+ 40.3 73.5 200 Cl0_3 36 64 172 Rb+ 43.5 76.4 Cl04 37.3 68 179 cs+ 44 76.8 200 Br- 43.1 78.3

NHt 40.3 73.7 184.3 Br0_3 31 56 155 (1/2)Mg2+ 28.5 53.06 170 r- 42 76.8 (1/2)Ca2+ 30.8 59.50 187 ro- 21 41 127 3 (l/2)Ba2+ 33.6 63.7 200 104 55.6

( 1 j3)Ce3+ 67 (l/2)SO~- 41 79.8 256 ( 1 /3)Cr3+ 67 N0_3 40.2 71.42 189 (1 /2)Mn2+ 27 53.5 H2P04 36

( 1 /2)Fe2+ 28 53.5 (I/2)HPO;- 57 (1/3)Fe3+ 68 HC0_3 44.5

(1 /2)Co2+ 28 54 0/2)CO~- 36 72 (1 /2)Ni2+ 28 54 cN- 78

0/2)Cu2+ 28 56 (1/2)Cro;- 42 85 Ag+ 33 61.9 180 (I/2)Mo0~- 74.5 (1 /2)Zn2+ 28 53.5 Mn04 36 62.8 (1 /2)Cct2+ 28 54 CH3coo- 20 41 130 Ţ]+ 43.3 74.9 Hcoo- 47 at l8°C

( 1 /2)Pb2+ 37.5 70 0/2)C2o;- 63atl8°C

Source: From F. Hine. Electrode Processes and Electrochemical Engineering. P1enurn Press. New York ( 1985). p. 77.

1557

1558

TABLE R4. Ion Hydration Energy and Number of Waters of Hydration

H+ Li+

Na+ K+ Rb+ Ag+

Mg2+ ca2+ Ba2+ zn2+ Fe2+ cu2+ cct2+ Pb2+ p-C!­Br-1-

Cl04

NO}

Hydration energy (kcal/g ion)

255 131

97 77 73

123 83 73 63

Number of waters

of hydration

4 6 4

2-3 2

3-4 9-13

8-10

6-8 ll-13 11-13

ll-13 10-12 5-7

5

3 2

0-1

o 2

Source: From F. Hine, Electrode Processes and Electrochemical Engineering, Plenum Ptess, New York (1985), p. 194.

1 1 1 1

0.7 1--+-+--- 1 Atmosphere 25'C-100'C _

\ \ \

Vapor Pressure above 1 OO'C

.................. QL-----~----~----~---·--·~--~-·~·~·=·-~·--~ o 50 100 150 200 250

Temperature ee)

FIGURE Rl. Solubility ofCaS04 in brines.

APPENDIX

APPENDIX

26

24

~ 22 o -~ 20 c

18 o :;::; ro 16 ..... -c Q) 14 (.) c o 12 o '<t 10 o

CI) N ro z

8

6

4

2

o

~sooc\ 75°C

100°~~ \ ~ f-- f---

"\ ~ 1~ ~ ~ ~ ~ ~ ~ ~ ~ ~

j "f~ ~ ..... ~

1 ' 1

o 2 4 6 8 1 o 12 14 16 18 20 22 24 26 NaCI Concentration (wt%)

FIGURE R2. NaCI-Na2S04-H20 system at various temperatures.

120

- 110 o N

I 100 Ol

r- _\ N~2,~~4~~~-2~ ------ ,1 ' -- --~~2804 -----, ' , '

60 -50 o

N I

40 Ol

o 90 o ..-

80 --.9 - 70 C/) Q) c 60 :.J

:Q 50 o ~ 40

, , , f- ,

,/""---- Na2S04·10H20 , ,

, ,

i.L- / , , V f- , ,

, , NH~ , , _,

t----""

~ ~ V

r- Na2C03-1 OH20

NaCI

o 30 o ..---20

Ol --C/)

10 Q) c:

o :.J "O Q)

.J:: C/)

ro >.

:'.::::: 30 :.c ::::l 20 o

(/) 10

~ K._ Na2C03-10H20 ~

~ ~3 1 1 o

o >.

:'.:::::

:.c ::::l o (/)

o 1 o 20 30 40 50 60 70 80 90 1 00

Temperature (0 C)

1559

FIGURE R3. Solubility of sodium chloride, sodium carbonate, sodium bicarbonate, sodium sulfate, and ammonium chloride. (Courtesy of Japan Soda lndustry Association.)

1560

1.4 >. -·:;: 1.3 ~

(.9 () 1.2

;.;::::: "[) Q)

1.1 0.. CI)

1.0

Concentration 40%

Saturat:on ...:::::: 38-36-

32 J4-

.............. 30-

28-26-

24--;;:

Freezing Point .......

20-

16___:ţ: 14-

12-

8~ "ţ--4 ~=

-50 -40 -30 -20 -10 o Temperature (0 C}

10 20

APPENDIX

FIGURE R4. Specific gravity of calcium chloride solutions. (Courtesy of Japan Soda Industry Association.)

0.8

0.7

E' (.) ..._

0.6 ~ >. -·:;:

+=' 0.5 (.) ::J

"O c o

(.) 0.4

3M KCI

1\_ 70°C )1 \\ 50°C )

\ 30°C )

0.3

o 2 4 6 8 10 12 14 pH

FIGURE RS. Conductivity vs pH of 3M KCI at constant temperature. (F. Hine, Electrode Processes and Electrochemical Engineering, p. 80, Plenum Press, New York (1985).)

Index

A

Absorption, 1070 gas absorption, 885 of chlorine

in aqueous systems, 665 in caustic solution, 901, 1378 in organic solvents

in CCI4, 885 in others, 14 79

packed column, 1067 penetration theory, 1068

AC impedance, 147 Aciplex® membranes, 307, 361 Activated complex, 95 Activated cathodes (see cathodes), 241, 244,

251,252 Active chlorine, 1349, 1386 Activity coefficient, 1022

potassium chloride, 1515 potassium hydroxide, 1531 sodium amalgam, 86 sodium chloride, 1504 sodium hydroxide, 1524

Adaptive gain pH control system, 1103, 1110 Adiabatic change, 1017 Adiabatic compression, 1058, 1059 Adsorbable organic halogens (AOX), 59,72 Adsorption, 1074

adsorption isotherms, 107 5 followed by chemical reaction, 1070 continuous operation, 1079 gas-phase adsorption, 1075 liquid-phase adsorption, 1078

Advanced Diaphragm Ce il Technology (ADCT®), 410

Air systems, 1196 breathing air, 1200 dry air, 1199 instrument air, 1199 plan! air, 1196 purified air, 1198

1561

Alkali-related chemicals inorganic, 15 organic, 14

Alkaline fu el ce li, 14 72 Alternative processes, 1349

caustic soda, 1389 chlorine, 1351 hypochlorite, 1372

Aluminum busbar, 731 Amalgam, sodium

activity coefficient, 86 amalgam butter, 194 decomposition, 375, 378, 404,447, 1149 electrode process, 85, 114

Amalgam cell (see mercury cells) Amalgam process (see mercury cells) Analysis of process streams, 1287 Analytical manual, 1225 Annular flow (see flow pattems), 1055 Angel curve, 287 Anode adjustment system, 403 Anodes (see coated anodes), 211 Anodic protection, 1309 Anticaking additive, 499 Asahi Chemical Industries, see Asahi Kasei Asahi Glass membrane cells (AZEC® cell), 432 Asahi Kasei membrane cells, 428 Asbestos, 272, 296 Asbestos diaphragm, 21, 272, 291 Asbestos waste, 1413, 1445 Atomic force microscopy, 150 Avogadro's number, 164 Azeotropic mixtures (HCI + H20), 1551

B

Backflow preventer, 1213 Back-pulse filtration (see filtration), 603, 1475 Barometric condenser, 1208 Barium salts, 1556

1562

Beer, H.B., 24, 212 Bell jar cell, 271 Beneficiation of KCl, 489 Bemoulli's theorem, 1048 Berthing and storage of membrane

cells, 1254 BiChlor® cell, 435 Billiter ce li, 21, 22 Bipolar membrane cell, 27, 33, 388,405, 413 Bipolar diaphragm cell

Dow cell, 405 Glanor ce11, 405

BiTAC® cell, 431 Black body, 1066 Bleach, 11,191,890,1372

chemical production, 1378 decomposition, 1381 electrochemical production, 1373 filtration, 1385 materia1s of construction, 1383 specifications and analyses, 1386

Blind current losses, 179, 193 Bode p1ot/AC impedance, 150 Boiler feed water, 1194 Boiling points of solutions

potassium chloride, 1514 potassium hydroxide, 1527, 1528 sodium chloride, 1507 sodium hydroxide, 990, 1521

Boiling point rise (BPR), 483, 969 Boilout of diaphragm-cell evaporators, 1193 Boltzman's constant, 95 Boolean algebra/truth table, 1433, 1434 Boundary layer, 1053 Breakdownlrupture potential, 1318 Breakthrough/adsorption columns, 1079 Breathing air, 1200, 1214 Brine (NaCI or KCI solution)

preparation, 495, 509 composition of salt and brîne, 529 dissolving processes, 509, 1093, 1234

delivery of salt, 501 selective dissolving, 519 solution mining (see sulfate control), 515 standard dissolvers, 511

processing, 44 7 depleted brîne

collection, 1107 dechlorînation, Il 09 destruction of chlorate, 1107

concentrated brîne circulation around ce lis, 44 7, 449 concentrations in ce lis, 1092, 127 4 evaporation, 473, 480 feed to cells, 1104, 1111 heating and cooling, 527 pipe1ines, 528

pumping, 527 pure brîne storage, 1101 reverse osmosis, 472, 478 storage, 525, 1094, Il 02

evaporation, 480

INDEX

materials of construction, 486 mechanical vapor-recompression, 484 multiple-effect evaporation, 481 therrnal vapor recompression, 486 vapor-recompression evaporation, 484

quality anodes, 227, 354 cathodes, 263, 354 chemical analysis, 625

frequency, 626 composition of brîne, 529 diaphragms, 294, diaphragm cells, 294, 533 impurîties (see effects ofbrine impurities)

aluminum, 653 ammonia, 656 bromide, 660 ftuoride, 659 iodine, 661 mercury, 658 nickel and iron, 655 nitrate, 665 organics, 654 silica/silicates, 651 sulfate (see sulfate control), 634

ion-exchange membranes, 353,337,341, 342,348,354,537

membrane cells, 341, 342, 348, 354, 537 mercury cells, 194, 195, 530, 531

saturation (see brîne preparation, dissolving systems)

specifications, 194, 294, 341, 531, 543, 1277

diaphragm ce11s, 294, 533 membrane ce11s, 341, 342, 348, 354,537,

1277 mercury cells, 194, 195, 531

treatment, 43,444,465, 529,545, 1097, 1234 acidification, 626

supply of HCI, 631 technical aspects, 627

clarification, ( also see clarifiers/thickeners ), 444,564,1097,1234

filtration, 587, 1099, 1235 ion exchange, 446, 606, 1236 pH control, 1105, 1109, 1276 precipitation, 545

ftocculation, 561 process parameters, 556 treating chemical supply, 552 treating tank design, 559, 1097, 1234

thickening (see clarification)

INDEX

waste disposal brine caverns, 1452 filter cakes, 1457 removal of mercury, 1456 sludges, 1446

Brine caverns, 517, 1452 Brine dechlorination (see dechlorination) Bruggemann's equation (see bubble effect),

276, 1483 Bubble effect (see Bruggemann's equation),

201, 1483 Bubb1e flow (see flow patterns), 1055 Bui1ding arrangement (cell room), 706 Building venti1ation, 712

gravity ventilators, 712 Busbar instal1ation, 728

aluminum, 731 arrangement, 728 assembly, 733 capacity, 728 comparison, a1uminum and

copper, 731 copper, 731 electromagnetic force, 734 interna! cell connections, 734

Butler-Volmer equation, 97 Bypass current (see parasitic current), 391 Byproduct salt (see salt), 476 Byproducts, 884, 995

c

amalgam, 1003 bleach, 890 byproduct handling, 990 calcium carbonate, 1006 evaporator (CP) salt, 995 ferric chloride, 892 hydrochloric acid, 886, 1350 sodium sulfate (Glauber's salt), 997

Caking (see salt), 492, 499 Calcium sulfate, 1557 Calomel electrode, 92 Carnot cycle, 1017, 14 71 Castner, H.Y., 30 Catalytic Carrier Process, 1357, 1360 Catalytic decomposition (see dechlorination),

686 Cathode depolarization, 933 Cathode design, 23, 24, 927 Cathodes (see activated cathodes), 241, 265

amalgam cathode, 85, 114 cathode design, 23, 927 composition/preparation, 251 costlperformance, 246 deactivationlstability, 248, 263

depolarization, 933, 1372, 1466 effects of shutdowns, 263, 300 electrocatalytic activity, 246 insitu activation, 259 low overvoltage cathodes, 244 Ni-based alloy cathodes, 252, 256, 257 oxide-coated cathodes, 258 Raney Ni cathode, 252 sulfide-coated cathodes, 259

Cathodic protection, 1309 Catholyte quality, 1287 Catholyte system commissioning, 1237 Caustic evaporation, 452, 968, 1159

boiling point rise (BPR), 969 commissioning, 1244 control systems, 1159

feed rate control, 1160 packaged instrumentation, 1159 produc! concentration control, 1162 production rate control, 1159

diaphragm-cell caustic, 974 boilout and cleaning, 1193 mechanical design, 974 quadruple-effect example, 977

KOH evaporation, 982 membrane-cell caustic, 980

1563

double-effect heat and mass balance, 981 mu1tiple-effect evaporation, 969 process design, 971

types of evaporator, 971 liquor flow paths, 973

Caustic liquor processing, 947, 1152, 1204 blending, 966 centrifugation, 963

pusher centrifuge, 963 solid-bowl centrifuge, 964

circulation, 1152, 1155 collection and storage, 1152 concentration in cells, 1274 cooling,958

membrane-cell catholyte, 960 range of duties, 961 diaphragm-cellliquor, 962

dilution, 966 evaporation (see caustic evaporation), 968,

1204 filtration, 965 materials of construction, 948 piping, 953 pumping, 957 purification, 983, 986 valves, 954

Caustic sodalpotash, 11, 15, 41,944 produc! handling, 990, 1150, 1154 anhydrous,988 boiling points, 990 diaphragm-cell caustic, 945

1564

Caustic soda/potash Contd. market/price, 58, 65 materials of construction, 948 membrane-cel! caustic, 946 mercury-cell caustic, 945 processing, 11, 14, 41, 451 product handling, 990, 1150, 1154 purification, 983

removal of ch1orate, 986 removal of metal ions, 986 removal of salt by extraction, 983

simultaneous production ofNaOH and KOH,448

solid products (bulk, ftake, prill), 987 Caustic soda, production without chlorine, 1389

causticization of soda ash, 1389 electrochemical methods, 1393 salt splitting, 1392

Caustic waste liquor, 985, 1407, 1449 Causticization of soda ash, 1389 Cavitation darnage (see corrosion), 1320 Cel! line working zone, 711 Cel! performance, 224, 456 Cel! renewal, 753

switching, 753 transport of electrolyzers, 754

Cel! resistance (see cel! voltage), 127 Cel! room systems design, 458, 745

building ventilation, 712 cell-to-cell variation, 463 ftoor, roof, rows, wal1s, walkways, 707 process control

concentrations,462 pressure, 461 temperature, 462

Cel! vo1tage and its components, 195, 200, 1272 diaphragm cells, 206 membrane cells, 206 mercury cells, 206

Centrifugal compressors, 1122 Centrifuges, 105 8 Chemical hazards, 761 Chemical potential, 77, 78, 1022 Chemical supp1y (brine treatrnent)

carbon dioxide, 552 carbonates, 553 hydroxides, 556

Chilled water, 1188 absorption refrigeration, 1191 mechanical refrigeration, 1190 stearn-jet refrigeration, 1190 thermal duty in chlorine cooling, 1189

Chior -alkali industry Brazii, 60 Canada, 59 China, 65 Eastem Europe, 64

India, 65 Japan, 64 Korea, 65 Mexico,60 Middle East, 64 Taiwan, 65 United States, 52 Westem Europe, 60 world, 47

Chlorate decomposition, 118, 665, 689, 1107

destruction by HCI, 690

INDEX

destruction by reducing agents, 694 miscellaneous methods of destruction, 695 suppression of C102 formation, 693

Chlorate formation, 167, 191 Chlorinated condensate, 789 Chlorinated ethanes and methanes, 55 Chlorination, 68 Ch1orine-based chemicals, 4, 11 Chlorine butter, 747 Ch1orine, depressurization and evacuation of

equipment, 1130 Chlorine dioxide, 693 Chlorine electrode process, 81, 109, 220 Chlorine Emergency Plan (CHLOREP), 876 Ch1orine gas quality, 923, 1271 Chlorine hazards, 1403, 1438

enviromnental fate, 1406 liquid form, 1440 mitigation of effects of release, 1438 monitoring for exposure, 1404 protective equipment, 1405 risk assessment, 1443 toxicity, 1439 vapor form, 1438

Chlorine header pressure, 1114 Chlorine header safety, 1115 Chlorine hydrate, 790, 839

composition, 790 effects in liquefaction systems, 846 in liquefaction systems, 839 region of existence, 791

Chlorine processing, 40, 450, 765, 923, 1113, 1239

absorption, 885 applications, 4, 55, 57 commissioning of systems (see under

process step) dry systems, 1239 pre-energization testing, 1238

compression, 807, 1121, 1241, 1486 centrifugal compressors, 81 O

materials of construction, 814 mechanical specifications, 814 performance curve, 813, 823 surge, 813

INDEX

control, 821, 1122 protective systems, 825 pressure, 821, 1114, 1125

discharge pressure, 1125, 1126 surge, 821, 1126 throughput, 824

diaphragm compressor, 820 energy consumption, 808 evacuation, 925 liquid-ring compressor, 818, 1121 reciprocating compressor, 817

cooling, 771,825, 1117 chilled water, thermal duty, 1189 chlorinated condensate, 789 compressor interstage coolers, 828 direct contact, 771, 778, 826 effect of gas temperature, 788 flow diagram, 792 heat duty curve, 773 heat transfer calculations, 771

AMTD, 773, 938 LMTD, 772, 938

indirect, 771, 785, 829 pressure operation, 1483 simultaneous heat and mass

transfer, 775 transfer unit concept, 780 transport process analogies, 776

density, 1499, 1535, 1536 dissociation constant, 1500 drying, 792, 1118, 1485

acid consumption, 792 drying columns, 795

packed columns, 795 process control, 798 tray columns, 799

equilibrium behavior, 793 flow diagram, 798 pressure operation, 1485 process control, 1118 processredundancy, 800

equilibrium constant, 1501, 1534 evacuation of lines and

equipment, 925 history, 2 hydrolysis constant, 1501 1iquefaction, 829, 1128, 1241, 1486

achievable degree of, 832 commissioning, 1241 control, 1128

addition of dry air, 1128 process control, 1129

hydrate, formation of, 839 liquefaction process, 831 noncondensables, 833 partition of water, 843 refrigerants, 835

refrigeration process, 829 tai! gas, 885 use of barrier fluid, 836 utility approach to refrigeration, 837 without gas compression, 1486

materials of construction, 767 reaction with titanium, 768 wet vs. dry chlorine, 768

oxygen in chlorine, 833, 923 physical properties, 1532 so1ubility, 1534, 1535 specific heat, 1500, 1538 thermal conductivity, 1500, 1539 thermodynamic properties, 1533

1565

transfer - see chlorine storage and handling vapor pressure, 1499, 1537 viscosity, 1500, 1536

Chlorine production, 37, 398,405,413 Chlorine, production without caustic

electrochemical processes, 1361 aqueous e1ectrolysis of HCl, 1361 indirect electrolyses, 1365 molten-salt electrolysis, 1368 vapor-phase electrolysis of HCl, 1365

oxidation processes, 1351 oxidation of HCl, 1352 oxidation of salt, 1351 regenerative oxidation processes, 1359

Chlorine recovery, 1479 Chlorine storage and handling, 847,

856, 1242 confined storage, 854 expansion chambers, 907 gaskets, 861 liquid chlorine, 847,862 low-pressure seals, 895 low-pressure storage, 853 mechanical relief devices, 899 piping systems, 858 pressurized storage, 852 reference documents, 847 safety devices, 895 transfer, 862

pressurization, 862 air required for, 873 with air, 863 with chlorine, 864

pumping, 865 valves, 860, 883 vaporization,881 vent scrubbers (see scrubbers, chlorine), 901 water seal, 895

Chlorine transportation and packaging, 874 accident statistics, 878 barge transport, 878 Chlorine Emergency Plan (CHLOREP), 876 labeling of transport containers, 87 5

1566

Cblorine transportation and packaging Contd. loading and unloading, 868

system requirements, 868 tankcar loading system, 872 transfer boses, 869

packaging, 879 pumping, 865 raii transport, 87 6 road transport, 877 unloading by air pad, 870

Cblorobenzene, 56 Cblorofluorocarbons, 7, 9, 56, 835 Chrysotile (see asbestos), 272, 296 Clarification and thickening, 552, 564, 1057,

1058 free settling, 567 thickening, 569

Clarifiers/thickeners, 574, 581 centrifuges, 587 feedwells, 575 beat loss, 586 inclined-plate separators, 585 overflow systems, 576 rakes, 578 sludge removal, 579 solid contact reactors, 584 solids recycle, 582 standard brine clarifiers, 574

Clausius-Clapeyron equation, 1016, 1061 Cleaning and flushing (precomrnissioning), 1226 Coated anodes, 212

chlorine evolution reaction, 11 O, 220 composition/preparation, 236 cost, 235 degradation/failure, 224, 227, 231 dimensionally stable anodes (DSA ®), 212 electrocbernical bebavior, 217 impurity effects, 227 lifetime, 235 pbysica1 properties and morpbology, 214, 215 preparation, 237 rejuvenation/recoating, 232 structure, 232

Coated cathodes (see catbodes ), 251 Cogeneration, 1174

combined-cycle operation, 1175 beat/power ratio, 1175

Colburn j-factor, 776 Cole-Cole plot (see AC impedance), 149 Combustion of bydrogen, 930 Commercial considerations/membrane cells, 424 Comrnissioning (see precomrnissioning), 1217,

1231 brine system, 1234

decblorination, 1236 filtration, 1235 ion excbange, 1236

catholyte system, 1237 caustic evaporation system, 1244 caustic storage systems, 1246 chlorine system, 1238

compression and liquefaction, 1241 dry systems, 1239 storage, 1242

control systems, 1230 documentation, 1223 equipment cbecklists, 1220 bydrogen system, 1243 instrumentation, 1232 organization, 1218 planning, 1219 rectifier/transformers, 124 7 training, 1220

Common-ion effect, 523 Compressibility, 1059 Compressible fluid flow, 1052 Compression, 807,934, 1060

adiabatic compression, 1059

INDEX

chlorine (see chlorine compression), 807, 1121

bydrogen (see bydrogen systems), 934, 1143 isothermal compression, 1060 polytropic compression, 1060

Condensate evaporator (or process), 455, 981, 1192 steam, 1173

Conductive beat transfer, 1063 Conductivity, electrica!

diaphragms, 156 electrolytic solutions, 155 equivalent conductance, 153, 290 hydrochloric acid, 1551 measurements, 150, 203 membranes, 157 molar conductivity, 153 potassium chloride, 1515, 1560 potassium hydroxide, 1530 sodium cbloride, 1509 sodium hydroxide, 1523 specific conductivity, 150

Conforma! transformation/mapping, 1033 Control system interface, 1100 Control system se1ection, 1092 Convection, 1064 Conversion factors, 1491

area, .1492 current density, 1495 density, 1493 energy, 1493 beat transfer coefficients, 1495 length, 1491 power, 1493 pressure, 1494 thernial conductivity, 1494

INDEX

viscosity, 1494 volume, 1492 weight, 1492

Conveying (see salt transfer) Cooling towers, 1 181

blowdown, 1186 concentration factor, 1186 construction, 1182 instrumentation, 1185 piping, 1185 process control, 1187 tower fill, 1185

Copper busbar capacity, 728 comparison with aluminum, 731

Copper losses (see transformer), 715 Corrosion

ch1or-alkali industry, 1328 classification, 1295 diaphragm cell cathode, 242, 248, 1046,

1330, 1331 Corrosion current/corrosion rate, 1306, 1311 Corrosion data survey, 1325 Corrosion fatigue, 1323 Corrosion inhibition, 1309

inorganic inhibitors, 131 O organic inhibitors, 1311 vapor-phase inhibitors, 1311

Corrosion potential, 1306 Corrosion prevention, 1308, 1344

brine area, 1329 caustic system, 1336 cell room, 1331 ch1orine system, 1333 electrolyzer, 1329

Cost analysis, 388 Crevice corrosion, 1314 Crystallization

potassium chloride, 490 sodium chloride, recrystallization of, 487 sodium sulfate, 647 solar salt, 470

Current breakers, 740 Current density /reaction rate, 95 Current distribution, 1031

calcu1ation methods, 1040 diaphragm cell, 1042 gas-generating e1ectrode, 1042 membrane cell, 1046 primary current distribution, 1031 secondary current distribution, 1036 tertiary current distribution, l 039 vertical e1ectrolyzers, 1040

Current efficiency, 165, 168, 207 chlorine, 167, 168 diaphragm cell, 179 hydrogen, 207

membrane cell, 176 mercury cell, 182 oxygen, 188 plant measurement of, 1288

1567

sodium hydroxide, 165, 167, 168, 173 Current inefficiency (see current efficiency ),

174,185,457 Current interruption technique, 134 Current leakage, 391, 397, 398, 738

piping header arrangements, 7 40 Current measurement, 735 Cyclic voltammetry, 142

D

Darcy equation, 27 4, 1051 DC power supply (see rectifier/transforrner) Deacon process, 17, 1352 Deactivation (see failure/degradation) Deaeration of boiler feedwater, 1195 Dealloying by selective leaching, 1319 Dechlorination ofbrine, 447,448,665

aeration, 671, 674 mass transfer, 676 plate column for, 677

catalytic decomposition, 686 on activated carbon, 686 on metal catalysts, 688

chemica1 reduction, 678 chlorine recovery, 665 Hydecat® reactor, 688 length of transfer unit, 676 McCabe-Thiele diagram, 674 primary dechlorination, 670 process control, 684 secondary dechlorination, 678

use of hydrogen peroxide, 682 use of sulfur compounds, 678

forms of supply, 678, 680, 681 steam stripping, 677 system control, 11 09 vacuum dechlorination, 672

packed column for, 673 Dechlorination of spent sulfuric acid, 804 Decommissioning of mercury cell

plants, 1290 Decomposition voltage, 89,

127, 1023 diaphragm cell, 196 membrane cell, 196 mercury cell, 198

Degradation (see failure) inorganic materials of

construction, 1325 organic materials of construction, 1325

1568

DeNora cells diaphragm cells (Glanor® cell), 405 mercury cells, 400 runner an ode, 401

Density chlorine, 1499, 1535, 1536 potassium chloride, 1498, 1510 sodium chloride, 1497 sodium hydroxide, 1498 NaCl + NaOH, 1501

Depolarized cathodes, 933, 1027, 1372, 1467 Deposit attack, 1316 Deposited diaphragms (see diaphragms), 295 Design coordination of control systems, 1091 Dezincification, 1319 Diamond cell, 23, 26 Diaphragms, 271

asbestos diaphragms, 25, 272, 291 deposition, 296 dimensionally stable diaphragms, 25 effects of shutdowns, 300 HAPP, 291 mass transfer in, 27 4, 279 modeling, 281, 286 non-asbestos diaphragms, 293 Polyramix®, 26,293,294,410 porosity, 157, 276 retrofit, 34 SM-1, 291 SM-2, 291 SM-3, 291 Tephram®, 294 tortuosity, 157, 276 voltage drop, 289

Diaphragm cells/process, 18, 405, 408, 446 cell efficiency, 179 decomposition voltage, 196

Diaphragm celllevel control, 1151 Differential capacitance, 137 Differential pressure ( d/p) transmitter, 1096 Diffusion current, 105 Diffusion equation, 1068 Diffusion layer, 115, 141 Dilution of caustic liquor, 966 Dimensionally stable anodes (DSA ®), 24, 212 Dimensionally stable diaphragm, 25 Dimensionless groups, 1495 Diode rectifiers, 717, 14 77 Dioxins, 73 Direct methano1 fuel cell (DMFC), 1472 Dirichlet boundary condition, 1032 Discharge step (see electrode process), 99, 110 Distillation, 1081 Distributed control system, 1092, 1231 Dissociation constant

chlorine, 1501 water, 85

Donnan potential, 315 Dow cells

diaphragm ce li, 27, 405 magnesium cell, 1370

Downs cell, 1368 Dry air system, 1199 Diihring diagrams

E

NaCllwater, 1507 NaOH/water, 1522

INDEX

Eckert chart (see pressure drop in packed column), 784

Effects ofbrine impurities, 352, 354,529,537, 1277

aluminum, 369 ammonia, 656 ana1ytica1 methods, 352, 365 anodes, 227 bariurn,227,346,367 brornide, 660 calcium, 342, 365, 534, 537 cations, 342 coated cathodes, 227 control rnethods, 365 diaphragm cell, 533 fluoride, 227 iodide, 346, 368, 661 magnesium, 342, 366, 534 membrane cell, 341,365,537 mercury, 658 rnercury cell, 530 nickel, iron, 227, 368 nitrate, 665 organics, 654 silica, 345 strontium, 367 sulfate, 343

Effects of caustic impurities, 1280 Ejectors, 1202, 1204 Electric power supply, 713, 1170

demand management, 744 energy efficiency, 736 phase ang1e/power factor, 7 41

Electrica! hazards in cell rooms, 755 Electrica! metering, 735 Electrocatalysis, 107 Electrochemical processes (see e1ectrode

processes) Electrochernical reaction rate (see reaction rate) Electrochernical techniques

non-steady state techniques, 142 polarization measurements, 128 steady state techniques, 128

INDEX

Electrochemical unit (ECU), 4 7, 166 Electrode processes

amalgam electrode, 85 chlorate reduction, 118 ch1orine e1ectrode, 81, Il O Horiuti-Heyrovsky mechanism, 99 hydrogen electrode, 83, 99, 1 07 hypochlorite reduction, 118 kinetics, 95 mass-transfer controlled process, 104 oxygen electrode, 122, 186

Electrodia1ysis (see seawater), 478 Electrolysis of hydrochloric acid, 1361, 1365 Electrolysis of molten magnesium chloride, 1370 Electrolysis of moi ten sodium chloride-calcium

chloride mixtures, 1368 Electrolysis of sodium sulfate, 1393 Electrolyzer area (see cell room design) Electrolyzer assembly, 1247, 1253

externalleakage test, 1254 membrane handling, 124 7 membrane installation, 1249 membrane leakage test, 1253 record keeping, 1255 storage and berthing of electrolyzers, 1254

Electrolyzer installation, 707 diaphragm cells, 707 membrane cells, 71 O mercury cells, 709

Electrolyzer shutdown, 1264 emergency, 1266 maintenance, 1267 normal, 1264

Electrolyzer startup, 1267 Electrolyzer (cell) voltage, 195, 1272 Electromagnetic field, 734, 758

effects on busbars, 734 proposed limits for exposure to variable fields,

759 threshold limiting value, 758

Electromotive force, 77, 377, 1021 Electronegativity, III E1ectroosmosis, 332 E1emental chlorine free (ECF) bleaching, 57 ELTECH cells, 432 Embrittlement/alloys, 1340

475°C embrittlement, 1340 sigma embrittlement, 1340

Emergency response planning guide (ERPG), 761

Emissivity/radiation, 1066 End uses of chlorine and caustic soda, 4, Il, 14 Energy balance (see voltage balance), 1013,

1025 electrochemical process, 1023, 1025

Energy consumption in ch1orine production, 163, 165, 1270

diaphragm cells, 413 from hydrochloric acid, 1362 membrane cells, 415, 1270 mercury cells, 399, 448 theoretica1 coefficients, 166

1569

Energy consumption in magnesium production, 1370

Energy consumption in sodium production, 1370 Energy flow/reactor, 1014 Energy ftow diagrams, 1028 Energy losses in DC systems

current leakage, 738 rectifier efficiency, 736

Entha1py, 75, 1019 Environmental considerations, 66

chlorinated solvents, 72 chlorination, 68 chlorine derivatives, 70 chlorine-based pesticide, 68 EDCNCM/PVC, 67 inorganic chemicals, 72 organic chemicals, 55 phosgene,68 propylene chlorohydrin, 67

Equilibrium constant, 1023, 1501, 1534 Equilibrium potential (see reversible potential) Equipotentiallines, 1036 Equivalent conductance, 153, 289, 1509, 1557 Equivalent weight, 308 Erosion corrosion, 1319 Error analysis, 209 Ethylene dichloride (EDCNCM/PVC), 4,

1350, 1478 Evacuation systems, chlorine, 925 Evaporated salt, 995 Evaporation of brine (see brine evaporation), 480 Evaporation of caustic solutions (see caustic

evaporation), 968 Exchange current density, 97, 99 Explosion hazards, 909

evacuation, 925 hydrogen,909,943

control with diluent gases, 911 nitrogen trichloride, 912

Explosive limits (H2 and Cl2 in 02, N2, air), 909, 1541

F

Failure/degradation coated anodes, 224, 227, 231 coated cathodes, 263 ion exchange membranes, 341,350

Fanning equation, 274, 1051 Faradaic resistance, 98

1570

Faraday constant, 77, 165 Faraday's 1aw, 164 Fault tree analysis, 1429, 1431 Feedwater (to boilers), 1194 Ferric chloride, 769, 892

physical chernistry of hydrates, 769 production from liquefaction tail gas, 892

Filiform corrosion, 1316 Filter aids, 444, 597

adrnix (body feed), 598 cellulosic, 601 composition, 600 diatomaceous earth, 599 handling of, 601 perlite, 599 precoat, 597 solubility in brine, 599

Filtration,444,587, 1057,1475 backwash, 590, 602 bed filters, 589 brine,587, 1099,1235 cake compressibility, 597 cake filtration, 594 cake removal, 602 cake washing, 602 candle filters, 588, 592 cartridge filters, 588 caustic,965 ceramic filters, 594 leaf filters, 588, 592, 594 medium, 588 rnixed-media filters, 589 polishing filters, 592, 601 primary filtration, 588 sand filters, 588

Finger-type cells, 23, 405 First law ofthermodynarnics, 1014 Fixed bed/continuous

operation, 1079 Flade potential, 141, 1308 Flat plate cells, 388 Flernion®, 34, 360 Flocculating agents, 561 Flotation of KCl ores, 489 Flow patterns

gaslliquid rnixture, 1055 pipe, 1049

Fluid dynamics, 1048 Fluid flow

compressible fluid, 1052 flow patterns, 1049, 1055 noncompressible fluid, 1052

Fluorocarbons, 835, 1350 FM21-SP® cell, 433 475°C embrittlement of alloys, 1340 Free energy, 75, 1020, 1297

Gibbs free energy, 1021

Freezing point of solutions hydrochloric acid, 1550 potassium chloride, 1514 potassium hydroxide, 1528, 1529 sodium chloride, 1508

Fretting corrosion, 1320 Freundlich isotherm, 1076 Friction factor, 1052 Froth flow (see flow patterns ), 1055 Fue1 cells, 931, 1466, 1471

alkaline fuel cell (AFC), 1472

INDEX

direct methanol fuel cell (DMFC), 1472 molten carbonate fuel cell (MCFC), 1472 phosphoric acid fue1 cell (PAFC), 1472 proton exchange membrane fue1 cell

(PEMFC), 1472 solid oxide fuel cell (SOFC), 14 72

Fugacity (see activity), 779, 1022 Future developments, 1463

G

Galvanic cell, 89 Galvanic corrosion, 1313 Gas absorption, 1067

penetration theory, 1068 two-film theory, 1068

Gas diffusion e1ectrodes, 1467 Gas-liquid interface, 1067 Gas-phase adsorption, 1075 Gas turbines in cogeneration, 1174 Gas void fraction in cells, 201, 1483 Gate tum-off thyristor, 14 77 General corrosion, 1313 Gibbs-Duhem equation, 840, 1082

approximate so1utions, 840 Gibbs free energy, 77, 1021 Gibbs-He1mholtz equation, 1021 Glanor® ceH, 27, 405 Glauber's salt (sodium sulfate decahydrate),

647,997 Global warrning potential, 70 Glossary, 1458 Glycerin, 56 Grain boundary, 1318 Graphite anodes, 24, 211 Graphite packings, 386 Greenhouse gas, 72 Griesheim Elektron cell, 18 Grosvenor-Miller process, 1359

H

Hagen-Poiseulle flow theory, 274 Hardy-Schu1ze rule, 1179

INDEX

Hargreaves-Bird cell, 19 Hazards, 755, 1402, 1419

cell room, 755 chemical, 761 electrica!, 755 electromagnetic, 758

explosion, 761,909,912,925 hydrogen, 943 materials, 1402 mechanical, 1402 process, 1419

Hazard analysis, 1428 hazard and operability study (HAZOP), 1430,

1443 fault tree analysis, 1431

Hazard protection and mitigation, 1421 chlorine release, 1438 hazard analysis, 1428 inherent safety, 1423 mechanical integrity, 1426 process design, 1423 process safety management (PSM), 1423 Responsible Care®, 1436 safety equipment, 1421 safety-oriented programs, 1422 training, 1437

Hazard rating, 1403 Heat -affected zone, 1319 Heat capacity

hydrochloric acid, 1546, 1547 hydrogen, 1541 H2, N2, 02, 1541, 1542 sodium chloride solution, 1506

Heat content (see enthalpy), 75, 1016 Heat of dilution (NaOH), 1517 Heat of solution (NaOH), 1517 Heat/power ratio in cogeneration, 1175 Heat transfer, 1063

chlorine cooler, 771 conduction, 1063 convection, 1064 evaporation, 1066 in brine, 1027 Newton's law, 1064 radiation, 1065

Heat transfer duty curves chlorine cooler, 773, 787 hydrogen cooler, 938

Height of transfer unit (see chlorine cooler), 380, 780

Henry's law, 681, 1067 Hess's law, 1021 High-performance membranes, 355 High-temperature corrosion, 1323

liquid metal corrosion, 1324 molten salt corrosion, 1324 nitriding, 1324

oxidation, 1324 sulfidation, 1324 vanadium attack, 1324

History of chlor-alkali industry, 17, 28, 31 Hooker cell, 23, 26 Horiuti-Heyrovsky mechanism, 99 Hydecat® reactor, 688 Hydration energy, 1558 Hydraulic length, 277 Hydraulic radius/diameter, 275, 1053 Hydrazine, 1173, 1344 Hydrina® process, 1394 Hydrochloric acid, 886, 909, 1350,

1407, 1546 azeotropic mixtures (HCI + H20), 1551 byproduct, 1350 conductivity, 1551 electrolysis (see HCI electrolysis), 1361 enthalpy, 1547 freezing point, 1550 from tai! gas

synthesis of HCI, 886 heat effects in absorption, 888

hazards, 1407 heat capacity, 1546, 154 7 partial pressure, 1549 solubility, 1548 specific heat, 1549 surface tension, 1550 viscosity, 1548

Hydrochloric acid electrolysis, 1361 aqueous solution electrolysis, 1361 indirect electrolysis, 1365 Kyoto process, 1367 Uhde process, 1362 vapor phase electrolysis, 1365 Westvaco process, 1367

Hydrochloric acid oxidation process, 1352 Catalytic Carrier Process, 1357, 1360 Deacon process, 1352 Kel-Chlor process, 1353 MT Chior process, 1355 regenerative oxidation, 1352 Weldon process, 1352

Hydrochlorofluorocarbons (HCFC), 836 Hydrodynamics, 1048 Hydrofluorocarbons (HFC), 836 Hydrogen electrode reaction, 83, 97, 99,

107,261 Hydrogen header control, 1135

atmospheric pressure operation, 1135 positive pressure operation, 1138 safety systems, 1140

Hydrogen peroxide as decolorizing agent, 986 handling of, 683 in dechlorination, 682

1571

1572

Hydrogen purge, 1140 Hydrogen purification, 939

removal of mercury, 939 as calomel, 941 by activated carbon, 939

removal of oxygen, 942 Hydrogen systems, 909, 927, 1134

combustion, 930 commissioning, 1243 compression, 934, 1143 control

compressed hydrogen distribution, 1146 compressor discharge pressure, 1145 diaphragm ce li systems, 114 7

cooling, 936 energy economy, 929 explosion hazard, 943 fuel cell, 931 hazards,909,943, 1407

embrittlement of stee1, 943, 1322 explosion, 909, 943 fire, 944

physica1 properties, 1539 processing, 40, 451 so1ubility, 1540 uses, 928

Hydrogen damage, 244, 1324 Hydro1ysis constant (see ch1orine), 1501 Hydrostatic test (see precommissioning), 1227 Hydroxide precipitates, 542 Hypochlorites, 1372, 1403, 1451

1

analyses, 1386 calcium hypoch1orite, 1389 chemical production, 1378 decomposition, 1380 electrochemical production, 1373

electrode processes, 1376 membrane cell process, 1374 on-site production, 1373 undivided cells, 1375

filtration, 1385 hazards, 1403 materials of construction, 1383 miscellaneous applications, 1388 reduction (see dechlorination), 118 safety, 1388 specifications, 1386 wastes, 1451

Impedance spectroscopy, 147 Impingement attack, 1320 Impurity effects, membrane cells, 538 Impurity-resistant membranes, 1474

Incompressible fluid flow, 1052 Indoor vs outdoor cell rooms, 706 Industrial hygiene, 1401 INEOS cells, 433

INDEX

Inhibitors (see corrosion inhibition), 1309 Instrument air, 1199 Instrumentation commissioning, 1232 Instrumentation system design, 1089

design coordination, 1091 nomenclature, 1090 se1ection of control systems, 1092

Insulated gate bipolar thyristor, 1477 Integrated gate commuted thyristor, 14 77 Integrated production of EDC, 1478 Interface, control systems, 1100 Intergranular corrosion, 1318, 1320 Interna! energy, 75 International Commission on Non-Ionizing

Radiation Protection (ICNIRP), 760 Ion exchange, 606, 1080, 1236

basic principles, 606 breakthrough curve, 610 brine,606, 1236 capacity, 312, 607 chemical ana1ysis, 625 commissioning, 1236 effects of operating variables, 611 ion exchange system control, 1102 mechanical details, 618

column internals, 618 delivery of regenerants, 622 materials of construction, 619 number of beds, 620

merry-go-round operation, 622 recontamination of brine, 623 regeneration effluent, 617, 1450 regeneration sequence, 616 required bed volume for multiple species, 614 simultaneous removal of two species, 613 space velocity, 612

Ion-exchange membranes, 306, 355,421, 1445, 1473

Aci plex®, 307 anion transport, 333 bilayered membrane, 307, 355 blistering, 348, 350, 359 brine quality, 353 conductivity, 316 damage to, 343, 350 diffusivity in, 320 e1ectroosmosis, 332 equivalent weight (EW), 308, 312 Flemion®, 307 handling, 124 7 high-performance membranes, 355 impurity effects, 337, 341, 354 impurity-resistant membranes, 1474

INDEX

installation, 1249 ion exchange capacity, 312 leakage test, 1253 Nafion®, 307 network model, 309 operating conditions, 1273 osmotic pressure, 332 perftuorinated membranes, 306 perftuorocarboxylate, 307, 355 perftuorosulfonate, 307, 355 performance, 341 pH/NaOH concentration profile, 342 physicochemical properties, 31 O reinforcement, 358, 362 selectivity, 313 structure, 308, 355 tears, 350 water content/uptake, 31 O, 317 water transport, 333

Ion-exchange resin bed length of transfer zone, 608 multi-bed system, 620

Ion hydration energy/waters of hydration, 1558

Iron losses (see transformers), 715 Isentropic expansion and compression, 809,

1058, 1206 Isocyanates, 1350 Isothermal change, 1017 Isotherrnal compression, 1 060

K

Kel-Chlor process, 1353 Kellner, K., 30 k-factor/vo1t-ampere curve, 206, 725, 1465 Kinetics/reaction kinetics, 95, 1303 Kinetic parameters

chlorine electrode process, 111, 120, 201 hydrogen electrode process, 201, 247 oxygen electrode process, 120, 124, 201

Kirchoff's law, 395 Krebskosmo cell, 403

L

Laboratory control analyses, 1287 Laminar ftow, 1050 Langmuir adsorption isotherrn, 107, 1075 Laplace equation, 396, 1032 Latent heat, 1016, 1 060 Leakage test for membranes, 1253 Leakage current (see parasi tic current) LeBlanc process, 17

Length of transfer zone, 676 LeSueur diaphragm cell, 20 Lime-soda process, 35 Limiting current density, 105 Linear polarization method, 1307 Liquefaction (see chlorine processing) Liquid-phase adsorption, 1078 Liquid-ring compressor control, 1121 Liquid-ring pump, 818, 1203 Liquid wastes, 1448

caustic, 1449 hypochlorite, 1451 ion exchange regenerants, 1450 process condensate, 1448 refrigerant, 1451 su1furic acid, 1448 utility system blowdown, 1450

Local measurements in cell rooms, 1116 Localized corrosion, 1296, 1314 Logarithmic mean sectional area, 1064 Low-pressure storage of chlorine, 853

1573

Lowest observed adverse effect level (LOAEL), 1409

Luggin-Haber probe, 132

M

MacMullin number, 156, 205, 277, 286, 301 Magnesium chloride electrolysis, 1370

Dow process, 1370 Norsk Hydro process, 1371

Magnetic field, 734, 758 Maintenance manual, 1225 Makeup water control in brine system, 1095 Marsh cell, 23 Mass balance

membrane cells, 453 anode side, 456 cathode side, 456

reactor, 168, 1013 Mass transfer

diaphragm, 279 membrane, 323 modeling, 281

Mass transfer coefficient, 779, 1068 Mass transfer controlled process, 104 Material hazards, 1402

asbestos, 1413 caustic soda and potash, 1407 chlorine and hypochlorites, 1403 hydrochloric acid, 1407 hydrogen, 1407 mercury, 1408 miscellaneous materials, 1416 nitrogen trich1oride, 1415 sulfuric acid, 1408

1574

Material safety data sheet (MSDS), 1402 Material specifications in .cell room, 1276

brine purity, 1276 demineralized water, 1277 hydrochloric acid, 1277

Materials of construction brine, 527, 619, 1329 brine evaporator, 486 calcium chloride, 524 caustic system, 948, 1336 cell components, 1329 cells, 1329 cell room, 1331 chlor-alkali plant, 1346 chlorine system, 767, 814, 858, 1333 hydrochloric acid, 633 hydrogen peroxide, 683 hypochlorite system, 1383 potassium chloride, 492 steels in hydrogen service, 943 sulfuric acid, 801, 802

McCabe-Thiele diagram, 674, 1084 Mechanical factors/corrosion, 1297 Mechanical integrity, 1426 Mechanical pressure relief (see chlorine), 899 Mechanical vapor recompression, 484

steam economy, 485 Membranes (see ion-exchange membranes),

421, 1445, 1473 Membrane cells/processes, 31, 39,413,426,448

Asahi Glass cells, 432 Asahi Kasei cells, 428 caustic system, 946, 1152 Chlorine Engineers cells, 429 current efficiency, 176 decomposition voltage, 196 ELTECH cells, 432 hydrogen system control, 1135 INEOS cells, 433 Uhde cells, 436

Membrane filtration, 604 Mercury cells, 28, 38, 398, 447

caustic system, 945, 1149 control, 1149 in tandem with membrane cells, 945

current deficiency, 182 decommissioning, 1290 decomposition voltage, 198 hydrogen system control, 1135

Mercury-containing waste, 1452 air emissions, 1454 solids, 1454 waste water, 1456

Mercury rocking cell, 31 Mercury toxicology, 1408

hygiene, 1412 mechanisms, 1409

medical surveillance, 1411 monitoring, 1411 protective equipment, 1412

INDEX

Merry-go-round system (see ion exchange), 622 Metal catalysts in dech1orination, 687 Migration ofions (see mass transfer), 281, 333 Mist elimination (see chlorine), 1120 Mist elimination (see su1furic acid), 805 Mist ftow (see ftow patterns), 1055 Mitigation of chlorine release, 1404, 1438 Mixed gases

explosive 1imits, 1541 heat capacity, 1541, 1542 thermal conductivity, 1542

Mixed potential, 1301, 1305, 1306 Modeling (see bypass current), 394 Modified asbestos diaphragm, 26, 290 Mo1ten carbonate fuel cell (MCFC), 1472 Molten salt electrolysis, 1368

production of magnesium, 1370 production of sodium, 1368

Monitoring of plant operation, 1286 analytical program, 1287 current efficiency determination, 1288 operating data, 1286 voltage monitoring, 1290

Monopolar cells, 33, 388 MT Chior process, 1355 Multiple-effect evaporation, 481

steam economy, 482 Multistage ejectors, 1208

N

Nafion® membranes, 33, 307, 362, 364 Nanofiltration (see sulfate control), 639, 1475

operating resu1ts, 640 module construction, 641

National Institute of Occupational Safety and Health (NIOSH), 1407

Navier-Stokes equation, 1054 Nelson diagram (see hydrogen damage), 943 Nernst equation, 78, 1302 Nernst-Planck equation, 333 Network model (see perfluorinated membrane),

309 Neumann boundary conditions, 1032 New Desulfation System (NDS), 638 Newton's equationlheat transfer, 1064 Nickel in caustic service, 949, 950, 1343 Nitrogen, 1201, 1215 Nitrogen trichloride, 826, 912, 1415

accumulation, 826, 913, 920 avoidance, 915 decomposition in vaporizers, 923

INDEX

decomposition rate, 917 destruction,917,923 detection, 916 fractionation, 919 sources, 913 vapor pressure, 920

Nonasbestos diapbragms, 25, 293 Nonmetallic materials, 1325 Non-Random Two-Liquid Model (NRTL), 840 Nonsteady state technique, 142

(see electrochemical techniques) Norsk Hydro process for magnesium

production, 13 71 Number of transfer units (NTU), 380

air stripper, 676 chlorine cooler, 780 gas absorption, 1071

Nyquist plot (see AC impedance method), 149

o

Occupational Safety and Health Administration (OSHA), 1413

Ohmic drop, 201 Olin mercury cells, 403 On-line analyzers, 1287 On-the-job training, 1221 Operating conditions in membrane cells, 346,

1273 brine concentration, 1274, 1283 brine pH, 1276 caustic concentration, 1274, 1283 current density, 1283 electrolyzer feed rates, 1284 recording, 1286 temperatures, 1275, 1284, 1285

Operating manual, 1223 Operating parameters, recording of, 1286 Operating specifications, cell room, 1271 Operating variables (membrane cells), 458 Operation under pressure, 1480

advantages and disadvantages, 1481 cell operation, 1482 chlorine compression and liquefaction, 1486 chlorine cooling, 1483 chlorine drying, 1485

Operator analyses, 1287 Organic inhibitors, 1311 Organic materials of construction, 1325 Osmotic pressure, 332 Outhenin-Chalandre cell, 20 Overview of chlor-alkali industry, 37 Overvoltage (overpotential), 97 Oxidation states of chlorine, 81, 1349 Oxide-coated anodes (see coated anodes ), 212 Oxychlorination, 1358

Oxygen cathodes, 122,933, 1027, 1466 Oxygen content in cell gas, 186, 188, 923 Oxygen evolution processes, 116, 186, 191 Ozone depletion potential (ODP), 70, 836

p

Packaged instrumentation, 1159 Packed column/gas absorption, 1071 Parasitic current, 391, 738, 1332

measurement, 397 minimization, 398 modeling/equivalent circuit, 395

Paris Marine Commission (PARCOM), 60 Particle size distribution (PSD), 491, 496 Passivation, 1308 Peclet number, 302 Penetration theory of gas

absorption, 1068 Perfiuorinated membranes, 306, 355

(see ion-exchange membranes) Performance

anode,224,235 cathode, 244, 265 electrolyzers, 399, 413, 415 membranes, 341

Permeability of porous media, 278 Personal protective equipment, 1402, 1421 Pesticides, 56, 68 pH control in brine system, 1103 pH profile in membranes, 342 Phase angle/power factor, 150,720,

735,741,744 (see electric power management)

Phase diagrams FeCl3-H20 system, 770 Na2C03-H20 system, 555 NaC1-HzO system, 500 NaCl-NazS04-H20 system, 647 NaOH-H20 system, 1521

Phosgene,68 Phosphoric acid fuel cell (PAFC), 1472 Physical properties

barium salts solubility, 1556

bleach specific gravity, 1552

calcium chloride specific gravity of solutions, 1560

calcium sulfate solubility, 1557, 1558

chlorine density, 1499, 1535, 1536 general properties, 1532 latent heat of vaporization, 1537 solubility, 1534, 1535

1575

1576

Physical properties Contd. chlorine Contd.

specific heat, 1500, 1538 thermal conductivity, 1500, 1539 thermodynamic properties, 1533 vapor pressure, 1499, 1537 viscosity, 1500, 1536

hydrochloric acid azeotropic mixtures ofHCl + H20, 1551 conductivity, 1551 enthalpy, 1547 freezing point, 1550 heat capacity, 1546, 1547 partial pressure, 1549 solubility, 1548 specific heat, 1549 surface tension, 1550 viscosity, 1548

hydrogen explosive limits, 1541 generalproperties, 1539 heat capacity, 1541 solubility, 1540 thermal conductivity, 1542 viscosity, 1542

nitrogen trichloride general properties, 1415 vapor pressure, 920

potassium carbonate solutions specific gravity, 1553 viscosity, 1553

potassium chloride solutions activity coefficient, 1515 boiling point, 1514 conductivity, 1515 density, 1498, 1510 freezing point, 1514 heat capacity, 1512 solubility, 490, 1510 specific heat, 1498 vapor pressure, 1513 viscosity, 1511

potassium hydroxide solutions activity coefficient, 1531 boiling point, 1527, 1528 conductivity, 1530 freezing point, 1528, 1529 heat capacity, 1526 heat of solution, 1529 specific gravity, 1525 specific heat, 1499 thermal conductivity, 1524, 1525 vapor pressure, 1527 viscosity, 1526

sodium amalgam activity coefficient, 86 equilibrium potentials, 199

sodium carbonate solutions specific gravity, 1553 viscosity, 1553

sodium chloride activity coefficient, 1504 angle of repose, 494 boiling point, 1507 conductivity, 1509 density, 1497 density (NaCI + NaOH), 1501 Diihring diagram, 1507 enthalpy, 1497, 1508 equivalent conductance, 1509 freezing point, 1508 general properties, 496 heat capacity, 1506 osmotic pressure, 1504 specific heat, 1503 solubility, 490, 509, 1496, 1497 solubility (NaCI + NaOH), 1518 specific gravity, 1502, 1505 surface tension, 1503 thermal conductivity, 1509 uniformity coefficient, 496 vapor pressure, 1497, 1506 viscosity, 1505

sodium hydroxide activity coefficient, 1524 boiling point, 1521 conductivity, 1523 density, 1498 Diihring diagram, 1522 enthalpy, 1522 generalproperties, 1516 heat of dilution, 1517 heat of solution, 1517 phase diagram, 1521 solubility (NaCI + NaOH), 1518 specific gravity, 1516 specific heat, 1519 surface tension, 1523 thermal conductivity, 1524 vapor pressure, 152 viscosity, 1518

sodium sulfate solubility, 647

water pH, 1554 vapor pressure, 1554

Piping materials brine system, 748 catholyte system, 749 chlorine system, 745

FRP laminates, 746 hydrogen system, 747

Pitting corrosion, 1317 Planck's constant, 95

INDEX

INDEX

Plant air, 1196 Plant operation, 1263

brine acidification, 1263 initial startup, 1256 electrolyzer startup and

shutdown, 1264, 1267 load changes, 1262 normal operation, 1261

Plant performance test, 1268 Plug ftow (see ftow patterns ), 1055 Pneumatic test (see precommissioning), 1228 Polarization curve, 128, 137, 1305 Polarization measurements, 128, 137

galvanostatic, 137 potentiostatic, 137

Polarization resistance method, 1307 Polycarbonate, 56 Polyramix® diaphragms, 26, 293, 294,410 Polytropic compression, 1 060 Polyvinyl chloride (PVC), 49, 55 Porosity of diaphragms, 205, 275, 276 Positive materials identification), 1428 Postprecipitation (see precipitation) Potassium carbonate solutions, 1553

specific gravity, 1553 viscosity, 1553

Potassium chloride, 487, 1498, 1510 activity coefficient, 1515 beneficiation, 489 boiling point, 1514 caking, 499 conductivity, 1515 crystallization, 490 density, 1498, 151 O ftotation, 489 freezing point, 1514 beat capacity, 1512 materials of construction, 492 partide size distribution, 491, 496 solubility, 490, 1510 sources, 487 specific beat, 1498 storage, 492 sylvinite, 488 vapor pressure, 1513 viscosity, 1511

Potassium hydroxide solutions, 15, 1499, 1525

activity coefficient, 1531 boiling point, 1527, 1528 conductivity, 1530 freezing point, 1528, 1529 beat of solution, 1529 beat capacity, 1526 specific gravity, 1525 specific beat, 1499 thermal conductivity, 1524, 1525

vapor pressure, 1527 viscosity, 1526

Potential sweep method, 142 Pourbaix diagrams, 1301 Power factor/phase angle, 741

improvement with capacitors, 742 Power measurement, 735 PPG/DeNora Glanor® cell, 405 Prandtl number, 776

1577

Precipitation of brine impurities, 545, 1058 (see

clarification and thickening) calcium carbonate, 548 chemicals supply, 552 concentrations of precipitants, 557 effects of Ca:Mg ratio, 558 magnesium hydroxide, 546 postprecipitation, 550, 560 simultaneous precipitation of Ca and Mg, 550 sulfate-calcium, 551

sources of barium ion, 551 calcium vs barium, 552

use of co2 gas, 562 Precipitation patterns of hydroxides, 542 Precoat (see filtration) Precommissioning (see commissioning), 1226

control systems, 1230 ftushing and cleaning, 1226 packaged equipment, 1230 pressure testing, 1227 punch lists, 1229

Preparation coated anodes, 212 deposited diaphragms, 295

Pressure drop compressible ftow, 1052 noncompressible ftow, 1052

Pressurized electrolysis, 1481 Pressurized storage (see chlorine storage ), 852 Primary dechlorination (see dech1orination), 670 Primary filtration (see filtration), 588 Primary current distribution, 1031 Process control, 459, 749

brine clarifier, 1098 brine concentration, 1094 brine feed to cells, 1104 brine filters, 1099 brine pump tank level, 1096 brine purge, 1106, 1109, 1111 brine saturation system, 1093 brine system inventory, 1094 brine treatrnent tanks, 1097 cell room, 749, 1111, 1114

control and measuring devices, 749 effects of magnetic field, 752 header pressure control and safety systems,

1114 chlorine compressor, 821, 1125

1578

Process control Contd. chlorine drying, 798, 1118 dechlorination system, 1109 evaporator production rate, 1159 hydrogen discharge pressure, 1135, 1138,

1145 ion exchange process, 1101 makeup water to brine system, 1095 pH control in brine system, 1103

Process hazards, 1419 Process safety management (PSM), 1423 Process/utility connections, 1212 Product quality

chlorate in caustic, 191, 985, 989 diaphragm cell caustic, 41, 983,986 membrane cell caustic, 339, 986 oxygen in chlorine, 186,923

Product recovery caustic soda, 451 chlorine, 449 hydrogen,451

Production capacity/demand, 47, 52 Programmable logic controller (PLC), 1092 Propylene chorohydrin, 67 Protection potential, 1318 Protective equipment, 1405, 1421 (also see

under relevant hazards) Proton exchange membrane fuel cell (PEMFC),

1472 Pseudocapacitance, 143 Purification of products

caustic,983 hydrogen,939

Purified air, 1198 Purified water, 1191

R

boiler feedwater, 1194 deaeration, 1195 demineralized water, 1191 evaporator condensate, 1192 oxygen scavengers, 1196 soft water, 1191

Radiation, 1065 Rake (see clarifier) Raney nickel cathode, 252 Raoult's law, 1081 Rapid dissolving (see selective dissolving,

short-contact dissolver) Rate constant, 95 Rate-controlling step, 101, 110 Reaction kinetics, 95, 1303 Reaction rate/current density, 95 Rebuilding of cells - see cell renewal Record of operating parameters, 1286

INDEX

Recovery of chlorine (see dechlorination), 670 Rectifier/transformer, 717, 124 7, 14 77

arrangement, 719,723 control, 718 design considerations, 719 diode rectifiers, 717 distortion, 722 electrica! efficiency, 736 harmonics, 720

alleviation, 721 interference with communications, 722

multi-pulse system, 721 operation in parallel, 724 semiconductor rectifiers, 717 thyristor rectifiers, 717 uncontrolled diode plus DC chopper, 1477

Reference electrodes, 92, 129 calomel electrode, 92, 130 copper-cupric sulfate electrode, 132 hydrogen electrode, 92, 129 mercury-based electrodes, 130 silver-silver chloride electrode, 93, 132

Refrigerants, 835, 1451 ammonia, 837 chlorofluorocarbons (CFC), 835 chlorohydrofluorocarbons (HCFC), 836 flarnmability in chlorine, 836 hydrofluorocarbons (HFC), 836

Regeneration (see ion exchange), 615, 1450 Relative volatility, 1082 Resaturation (see salt dissolving), 509,511,513 Resistivity (see conductivity) Responsible Care®, 67, 874, 1431, 1436 Retired brine caverns, 1452 Reverse osmosis, 472, 1475 Reversible potentials, 81

amalgam electrode, 200 chlorine electrode, 197 hydrogen electrode, 197

Reynolds number, 115, 141,275, 1052 Risk analysis, 1443 Rotating electrodes, 141 Rupture/breakdown potential, 1318

s Safety devices in chlorine lines, 895

mechanical relief, 899 pressure/vacuum seal, 897 water seal, 895

Safety equipment, 1402, 1421 Safety management, 1256, 1402 Safety-oriented programs, 1422 Salt (see sodium chloride)

brine, 466 byproduct salt, 4 7 6

INDEX

caking, 492, 499 crystallization, 470, 487 dissolving, 509,511,513 evaporator salt (CP salt), 995 freezing, 500 halite, 488 handling, 495 inland sources, 475 mining, mechanical, 466, 467 mining, solution, 515

from domes, 515 from stratified deposits, 516 partide size distribution

(PSD), 496 refining, 478 rock salt, 466 selective dissolving, 519 sources, 465 solar salt, 469 solubility, 509, 1496, 1497 storage, 492 transfer, 501 vacuum pan salt, 475 vacuum purîfied, 480 washing, 478

Salt dissolvers, 512 Salt domes, 467 Salt mine engineering, 469 Salt splitting, 1392 Salt transport

belt conveyors, 501 bucket elevators, 503 conveyor drîve systems, 507 feeders, 507 pneumatic conveyors, 508 screw conveyors, 504 slurry transfer, 508

Sand filter, 588 Scanning tunneling microscopy, 150 Scheele, C.W., 2 Schmidt number, 777 Schwartz-Chrîstoffel transformation, 1035 Screen sizes, 498 Scrubbers/chlorîne, 901

administrative control, 905 apparatus, 902 chemistry, 901 collection systems, 903 mass transfer in, 906

Sea salt (see solar salt) Seawater (see brîne)

composition of, 470 electrodialysis of, 4 78

Secondary current distribution, 1036 Secondary dechlorînation (see dechlorînation),

678 Sedimentation (see precipitation), 566, 1057

Selective dissolving, 519 common-ion effect, 523

supply of CaCI2, 524 control of process, 519 short -contact dissolver, 520 solubility inhibitors, 521

1579

Selective leaching/dealloying, 1319 Self-contained breathing apparatus (SCBA),

1406 Sensible heat, 1016, 1060 Shunt current/parasitic current, 391, 738, 1332 Shutdown

effect on anodes, 228, 231 effect on cathodes, 248, 263 effect on diaphragms, 300 effect on membranes, 351 effect on product quality, 251, 336 for maintenance, 1267 in emergency, 1266 normal, 1264

Sigma embrîttlement, 1340 Silica (see brîne impurities), 651 Silver-silver chlorîde electrode, 93 Similar exposure groups (SEG), 1405, 1411 Simultaneous precipitation of Ca and Mg, 550 Slug flow (see flow patterns), 1055 Soda ash, causticization of, 1389 Sodium, production of, 1368 Sodium amalgam (see amalgam) Sodium chlorîde, 1496, 1502

activity coefficient, 1504 angle of repose, 494 boiling point, 1507 conductivity, 1509 density, 1497 density (NaCI + NaOH), 1501 Diihring diagram, 1507 entha1py, 1497, 1508 equivalent conductance, 1509 freezing point, 1508 heat capacity, 1506 osmotic pressure, 1504 physical properties, 496 solubility, 490, 509, 1496, 1497 solubility (NaCI + NaOH), 1518 specific gravity, 1502, 1505 specific heat, 1503 surface tension, 1503 thermal conductivity, 1509 uniformity coefficient, 496 vapor pressure, 1497, 1506 viscosity, 1505 wet storage, 512

Sodium hydroxide, 1516 activity coefficient, 1524 boiling point, 1521 conducitivity, 1523

1580

Sodium bydroxide Contd. density, 1498 Diihring diagram, 1522 enthalpy, 1522 beat of di1ution, 1517 beat of so1ution, 1517 pbase diagram, 1521 pbysical properties, 1516 so1ubi1ity (NaCl + NaOH), 1518 specific gravity, 1516 specific beat, 1519 surface tension, 1523 thermal conductivity, 1524 vapor pressure, 1520 viscosity, 1518

Sodium bypocblorite (see bypocblorites), 1378

Sodium sulfate (Glauber's salt), 647, 997

Sodium sulfate electrolysis, 1393 Solar salt, 469

energy efficiency in production,475

evaporation of seawater, 473 fractional crystallization of, 4 71 inland sources, 475 percolation ofbrine, 474 pond management, 471 seawater intake, 472 structure of particle, 478

Solid waste, 1445 asbestos, 1445 brine sludges, 1446 filter solids, 1447 membranes, 1445 miscellaneous solids, 1447

Solid oxide fuel cell (SOFC), 1472 Solid polymer electrolyte (SPE), 1467 Solid caustic, production of, 987 Solid removal, 1057 Solubility

BaS04, 645 CaS04,644, 1557,1558

crystalline forms of, 64 3 HCI, 629, 1548 KCl, 490, 1498 NaCl,490, 1496,1497 Na2S04, 647 NaCl + NaOH mixed solutions, 1518 NaCl-BaS04-H20 system, 645 NaCl-CaS04-H20 system, 644 NaCl-Na2S04-H20 system, 1559 barium salts, 1556 cblorine,208,665,671, 1534,1535

in acid solution, 669 in brine, 669, 671 in water, 665

bydrogen, 1540 sulfur compounds, 678 various salts, 1559

Solubility inhibitor, 521 Solubility products, 650 Solvay process, 17

INDEX

Specific beat, 1016, 1060, 1498, 1499, 1500, 1503, 1519, 1538, 1544, 1549

Spray flow (see flow patterns ), 1055 Specific gravity

bleacb, 1552 calcium cbloride solution, 1560 bydrocbloric acid, 1552 sodium cbloride, 1502, 1505 sodium bydroxide, 1516

Specific beat cblorine, 1500, 1538 bydrocbloric acid, 1549 sodium bydroxide, 1519

Standard electrode potential, 79, 1300 Standard bydrogen electrode (SHE), 83, 92 Star connection in transformers, 715 Startup, 1256, 1267 Steam cycle in cogeneration, 1174 Steam jets, 1203 Steam systems, 1171

steam, 1171 steam condensate, 1173 treatment cbemicals, 1173

Steam turbines, 1174 Stefan-Boltzmann law, 1066 Stoicbiometric coefficient (number), 77, 107 Storage and berthing of

membrane cells, 1254 Storage of solid raw materials

potassium chloride, 492 soda ash, 553 sodium chloride, 492

Storage policy, brine, 525 Stratified flow (see flow patterns ), 1055 Stray current (see parasitic Cl!rrent) Stress corrosion cracking (SCC), 1320 (see

materials of construction, corrosion prevention)

Sulfate control, 634 crystallization, 64 7 Glauber's salt, 647 low-sulfate salt, 634

chemically pure (CP), 635 vacuum-purified, 634

New Desulfation System (NDS), 638 removal from brine

ion exchange, 638 nanofiltration, 639 precipitation, 642 purge,636

removal from salt, 636

INDEX

Sulfate ratio, 177 Sulfur compounds (see dechlorination), 678 Sulfuric acid, 1118, 1408, 1448, 1543

density, 1543 enthalpy, 1545 freezing point, 1545 hazards, 1408, 1448 heat generation, 1546 specific heat, 1544 vapor pressure, 1544 viscosity, 1543

Supplied-air respirator, 1406 Surface analysis, 150 Surface coverage, 97 Surface ten sion

hydrochloric acid, 1550 sodium chloride, 1503 sodium hydroxide, 1523

Symmetry factor, 96

T

Tafel equation and Tafel slope, 98 Tafel step, 99 Tai! gas from chlorine liquefaction, 884

recovery of chlorine, 884 as bleach, 890 as ferric chloride, 892 by absorption/desorption, 885 by synthesis of HCI, 886 miscellaneous processes, 894

Temkin adsorption isotherm, 100 Tephram® diaphragms, 26, 294 Tertiary current distribution, 1039 Theoretical plate/distillation, 1083 Thermal conductivity

H2, N2, 02, 1542 chlorine, 1500, 1539 sodium chloride, 1509 sodium hydroxide, 1524

Thermal vapor recompression, 486 Therrnobalance vo1tage, 1027 Thermodynamic properties/chlorine, 1533 Thermodynamics, 75, 1014, 1297

first law, 1014 Therrnoneutral voltage, 1023 Thickening ( see clarification) Threshold limiting vall}eS (TLV), 1402,

1405, 1458 (see under relevant materials)

Thyristors (see rectifiers), 1477 Time-to-failure of membranes, 343 Toxic gas release modeling, 1435 Tortuosity, 157,276 Total chlorine free (TCF) bleaching, 57

Townsend cell, 22 Training of personnel, 1220, 1427 Transfer hoses for liquid chlorine, 869 Transformers, 713, 1247

commissioning, 1247 copper losses, 715 iron losses, 715 phase voltage, 716 principle of operation, 714 star connection, 715 Y-L'. configuration, 715

Transgranular corrosion, 1320 Transpassivation, 1308 Transport number, 1 06 Trihalomethanes, 57 Trona, 1391 Turbulent flow, 1052, 1055 Two-film theory of mass transfer, 1068 Two-metal corrosion, 1313 Two-phase flow, 1055

u

Uhde cells membrane cells, 436 mercury cells, 402

Ultrafiltration, 14 7 5 Uniform general corrosion, 1313 Uniformity coefficient, 496 Uninterruptible power supply (UPS), 1092 Universal constants, 1491

1581

Universal Quasi-Chemical Activity Coefficient Model (UNIQUAC), 840

U.S. chlor-alkali industry, 52 Utility piping systems, 1211

breathing air, 1214 dry air and nitrogen, 1215 steam, 1214 utility/process connections, 1212 water, 1212, 1214

Utility-process connections, 1212 Utility systems, 1169

backup systems, 1201 Utility system blowdown, 1450

V

Vacuum systems, 1201 hybrid systems, 1208 liquid-ring pumps, 1203 process control, 1210 sources, 1202 stream jets, 1204 vapor condensers, 1208

1582

Vapor release from process, 1438 Vapor phase electrolysis of

HCI, 1365 Vapor phase inhibitors, 1311 Vapor pressure

chlorine, 1499, 1536 ferric chloride hydrates, 769 potassium chloride, 1498 sodium chloride, 1497, 1506 sodium hydroxide, 1520

Vapor recompression evaporation, 484

Vaporization of chlorine, 881 Ventilation, 712 Vertical electrolyzers, 1040 View factor/radiation, 1066 Viny1 ch1oride monomer

(VCM), 4, 67 Vinylidene chloride, 56 Viscosity

chlorine, 1499, 1536 hydrochloric acid, 1548 sodium chloride, 1505 sodium hydroxide, 1518

Volatility, 1082 Volcano p1ots, 109 Volmer step, 99

Voltage balance, 1013, 1025 Voltage monitoring, 1290

w

Wagner number, 1038 Waste disposal, 518, 1445 Water balance in membrane cells, 444 Water systems, 1177

chilled water, 1188 cooling water, 1180 purified water, 1191 sources and their quality, 1177 treatment, 1179

Water transport in membranes, 333 Water transport coefficient, 460 Wave flow (see flow pattems), 1055 Weld decay, 1319 Westvaco process, 1367 Wheatstone bridge, 153

y

Y-~ configuration, 715

INDEX