application of the mips method for assessing the ...lucia mancini, michael lettenmeier, holger rohn,...

28
Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability of production-consumption systems of food Originally published as: Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke (2012): Application of the MIPS method for assessing the sustainability of production- consumption systems of food In: Journal of economic behavior and organization, 81, 3, 779-793 DOI: 10.1016/j.jebo.2010.12.023

Upload: others

Post on 10-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

                 

                               

                                 

Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke

Application of the MIPS method for assessing the sustainability of production-consumption systems of food

Originally published as:

Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke (2012): Application of the MIPS method for assessing the sustainability of production-consumption systems of food In: Journal of economic behavior and organization, 81, 3, 779-793 DOI: 10.1016/j.jebo.2010.12.023

Page 2: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

1  

Lucia  Mancinia*,  Michael  Lettenmeierb,  Holger  Rohnb,  Christa  Liedtkeb  

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  

production-­‐consumption  systems  of  food                      *Corresponding  author:  Lucia  Mancini,  Università  Politecnica  delle  Marche,  SAIFET  Department  [email protected]      a  Università  Politecnica  delle  Marche,  SAIFET  Department  (Ancona,  Italy)    b  Wuppertal  Institute  for  Climate,  Environment  and  Energy      Keywords:  sustainability,  value  chain,  natural  resource,  food,  agriculture,  MIPS  JEL  codes:  Q57,  Q56,  Q10    

 

Short  abstract    The   article   estimates   the   natural   resource   consumption   due   to   nutrition   from   the  supply   and   demand   sides.   Using   the   MIPS   (Material   Input   per   Service   Unit)  methodology,  we   analyzed   the   use   of   natural   resources   along   the   supply   chains   of  three   Italian   foodstuffs:  wheat,   rice  and  orange-­‐based  products.  These   figures  were  then  applied  for  evaluating  the  sustainability  of  diets  in  13  European  countries.  The  results  outline  which  phases  in  food  production  are  more  critical  in  terms  of  natural  resource   consumption.   We   also   observed   different   levels   of   sustainability   in   the  European  diets  and  the  effect  of  different   foodstuffs   in   the  materials,  water  and  air  consumption.  

   

Page 3: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

2  

  1.  Introduction  The   ongoing   increase   of   the  world   population   calls   the   agro-­‐food   systems   of   all  countries   for   huge   challenges.   Agriculture   has   to   satisfy   growing   food  requirements  both   in  quantitative  and  qualitative  terms,  but   the  on  hand  natural  resource   stock   is   quickly   depleting.   Moreover,   food   production   and   energy  production   from   biomass   are   competing   for   land   (Pimentel   2008,   Hahlbrock  2009).  “Nutrition”   is   one   of   the   most   material   demanding   areas   of   need,   accounting  approximately  20%  of  the  total  natural  resource  consumption  of  German  economy  (Rithoff   et  al.  2009).   It   stands   to   reason   that   food-­‐farming  systems  sustainability  has  a  crucial  importance  in  the  world  economy.  Different  assessment  tools  for  evaluating  the  impact  of  food  in  the  ecosystems  can  be  used,  e.g.  Life  Cycle  Analysis,  energy  requirements  indicators,  virtual  water  and  carbon  footprint  of  food  (Kramer  et  al.  1999;  De  Fraiture  et  al.  2001).  Nevertheless,  a  comprehensive  ecological  indicator  should  cover  main  environmental  categories,  consider  the  life  cycle  wide  of  a  product  or  service  and  be  understandable  and  easy  to  communicate  to  a  non-­‐expert  audience  (Burger  et  al.,  2009).  In   this   context,   we   propose   a   material   input   based   methodology   (MIPS,   the  Material   Input  Per  unit  of  Service)   for  assessing   the  environmental  sustainability  of   food   production   and   consumption.   According   to   this   approach,   the   volume   of  primary   materials   that   are   extracted   from   nature   for   the   economic   activities  indicates  a  generic  pressure  on  environment.  Targeted   to  a  product  or  a   service,  MIPS   gives   a   preliminary   estimation   of   the   potential   environmental   impact   of  those   products   or   services   and   allows   comparing   alternatives   that   provide   the  same  service.  The  analysis  regards  both  the  supply  and  demand  side  of   food  sector.   In  the  first  part,   we   calculated   MIPS   for   Italian   foodstuffs   (wheat,   rice   and   orange-­‐   based  products)  along  their  supply  chains.  LCA  data  and  information  from  the  literature  were   the   main   sources   of   data.   We   could   outline   which   factors   and   phases   are  more   relevant   in   the   supply   chains   for   a   reduction   of   the  material   input.   In   the  second  part,  we  used  MIPS  results  on   Italian  productions  and  other   figures   from  the  literature  for  accounting  the  natural  resource  consumption  due  to  nutrition  in  13  European  countries  and  in  EU.  A  set  of  MIPS-­‐based  indicators  was  calculated  for  outlining  the  intensity  in  the  use  of  three  resources:  materials,  water  and  air.  The  interpretation  of   results   allowed  highlighting   the   sustainability  of  different  diets.  We   also   detected   which   foods   in   diets   are   affecting   more   sustainability   and  commented   these   outcomes   with   the   ones   from   another   application   of   MIPS   in  food  consumption.  

2.  Methodology  

2.1  MIPS  concept  MIPS  stands  for  Material   Input  per  Service  Unit  and  estimates  the  environmental  

Page 4: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

3  

pressure  caused  by  products  or  services.  The  equation  

(1)              

shows  that  MIPS  is  the  reciprocal  of  resource  productivity.  Thus,  this  indicator  tells  us   how   much   “nature”   we   are   using   for   producing   or   consuming   something.  Material  Input  (MI)  encompasses  all  matter  and  energy  flows  from  natural  systems  to   techo-­‐sphere,   in   mass   units.   Energy   is   included   through   the   energy   carriers  quantification   in   terms  of  mass.   They   also   include   the   “ecological   rucksacks”,   i.e.  “the  total  mass  of  material  flows  that  are  not  physically  included  in  the  economic  output  under  consideration  but  have  been  necessary  for  production,  use,  recycling  and  disposal”  (Spangenberg,  1999).  Backward  chains  of  a  specific  product  have  to  be  also  accounted  for  a  proper  estimation  of  ecological  rucksacks.  Five   or   six   different   categories   of   material   inputs   are   considered:   abiotic   (non-­‐  renewable   resources   like   mineral   row   materials,   fossil   energy   carriers,   soil  excavations),  biotic  (renewable  resources  from  agriculture  and  silviculture)  earth  movement   in   agriculture   and   silviculture   (mechanical   earth   movement),   water  (surface,   ground   and   deep   ground   water)   and   air   (all   parts   of   the   air   that   are  changed  chemically,   i.e.  mainly   the  quantity  of  oxygen  combusted  that  reflect   the  amount  of  carbon  dioxide  formed);  also  erosion  can  be  calculated  separately.  The   “Service   Unit”   component   (S   in   equation   1)   refers   to   the   benefit   that   is  provided   using   material   or   immaterial   goods.   The   dimension   unit   of   this   part  depends   on   the   object   under   consideration   and   the   specific   performance   it  provides  (e.g.  person-­‐  kilometers  for  a  mean  of  transport,  floor  area  for  buildings).  Products  that  are  used  just  once  (for  instance,  food)  have  S=1  and    (2)          

MI = ER + PW  where  ER   is   the  ecological   rucksack  and  PW   is   the  weight  of   the  product  we  are  considering.    Relating  the  material  input  with  the  service  unit  allows  comparing  different  ways  for  fulfilling  a  need,  or  alternative  productive  techniques  for  producing  something,  on  the  base  of  their  intensity  in  resource  use.  Thus,  MIPS  can  be  also  defined  as  the  “ecological  price  of  a  utility”  (Schmidt-­‐Bleek,  2008)  and  be  easily  integrated  in  the  economic  analysis.  In  order  to  avoid  the  calculation  out  of  primary  data  each  time,  MIPS  calculation  is  often  done  using  average  MI   factors   for  materials  and  other   inputs.  They  are   the  ratio   between   the   quantity   (in   mass   units)   of   resources   used   and   the   quantity  (mass)   of   product   obtained.   Many   MI   factors   of   materials   and   “modules”  (electricity,   transport,  etc.)  have  been  calculated  and  are  published  by  Wuppertal  Institute   (available   online:  http://www.wupperinst.org/uploads/tx_wibeitrag/MIT_v2.pdf).  The  use  of  ready-­‐  calculated  MI  factor  makes  MIPS  calculation  easier,  because  not  every  pre-­‐process-­‐  chain  needs  to  be  recalculated  by  each  user.  The  theoretical  basis  of  MIPS   lays   in  Material  Flow  Analysis  (MFA).  The  common  

Page 5: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

4  

consideration   is   that   productive   processes   are   extracting   resources   from   nature  and   transforming   them   in   something   suitable   (the   product)   and   something  unsuitable  (emissions,  waste,  etc.).  The  quantification  of  the  throughput  of  process  chains  and  the  minimization  of   these  physical  exchanges  between  human  society  and  environment  is  the  aim  of  MFA  (Bringezu  et  al.,  2002).  MIPS   has   an   input-­‐oriented   approach.   Consistently   with   the   matter-­‐energy  conservation  law  it  assumes  that,  as  the  input  and  the  output  side  are  equivalent  in  quantitative   terms,   accounting   the   input   side   is   enough   to   have   a   preliminary  estimation   of   the   environmental   impact   of   products   and   services   (Ritthoff   et   al.  2002;  Schmidt-­‐Bleek,  1993).  The   input-­‐orientated   approach   of  MIPS   also   implies   that  MIPS   is   not   a   sufficient  indicator  when  measuring  specific  outputs   (e.g.  emissions  of  specific  substances)  or  specific  environmental  impacts  (like  acidification  or  toxicity).  Thus,  MIPS  allows  conclusions   on   the   overall   pressure   on   the   environment   (as   any   input   into   the  human  production–consumption   system  will   become  an  output   at   some  point   in  time)   but   not   on   specific   environmental   impacts.   As   MIPS   contains   all   physical  input   flows,   it   is   rarely   used   in   index-­‐type   combination   with   output   indicators,  because  this  would  affect  double-­‐counting  certain  material  flows.  On   a   microeconomic   level,   MIPS   can   be   applied   in   a   variety   of   products   and  services   for   evaluating   eco-­‐innovations   and   identifying   eco-­‐efficiency  improvements  along  the  supply  chains  (Burger  et  al,  2009).  It  is  also  applicable  at  a  macroeconomic   level   for   an   evaluation   of   the   sustainability   of   the   economic  growth  in  national  and  regional  economies.  It  has  also  been  used  for  an  evaluation  of   policies   from   the   environmental   point   of   view   (Lettenmeier   et   al.   2008).   The  most   controversially   discussed   aspect   of   the   MIPS   concept   is   probably   the   link  between  the  mass  flow  of  resources  and  the  environmental   impacts  caused  by   it.  The  traditional  approach  of  environmental  policy  focused  rather  on  the  impact  of  hazardous   substances   in   the   output   flows   than   on   the   material   flow   input,  considering   also   the   possibility   of  material   recycling   and   the   treatment   of  waste  and  emissions.  Nevertheless,  the  importance  of  input  mass  flows  and  the  necessity  of   a   reduction   of   these   amounts   are   evident.   The   both   economic   and   ecological  costs  as  well  as  the  incompleteness  of  output  treatments  and  the  impossibility  of  a  complete   recycling   of   materials   are   some   common   reasons   for   this   approach  (Lettenmeier   et   al.   2006).   Moreover,   the   specific   environmental   impact   of   most  substances  humans  release  to  nature  is  even  partly  known  only  for  a  very  limited  amount   of   substances.   Thus,   the   amount   of  materials  moved   from   their   original  location  can  be   considered  a  proxi  measure   for   the  human  use  of  natural   capital  potential  environmental  impact  (Hinterberger  et  al.,  1997).    2.2  MI-­‐based  indicators  for  sustainability  strategies  A   drastic   reduction   in   material   resources   use   is   necessary   for   approaching  sustainability.   Accounting   the   material   input   of   products   and   economies   is  essential   to   enforce   a   dematerialization   strategy   both   at  micro   and  macro   level.  Depending  on  the  objects  of  evaluation,  different  indicators  based  on  the  material  

Page 6: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

5  

requirements   can   be   used.   For   the   interpretation   of   MIPS   results,   the   different  resource  categories  have  to  be  examined  separately.  So  far,   the  “earth  movement  in  agriculture  and  silviculture”  category  is  often  left  out  from  the  interpretation  as  the   available   documentation   is   still   inadequate   and   just   “erosion”,   which   is  encompassed   in   this   category,   is   considered.   In   this   study,   we   neglected   the  interpretation   of   soil   movements   but   considered   erosion   inside   TMR   (Total  Material  Requirement):  

(3)         MI[TMR]= MI[abiotic] + MI[biotic] + MI[erosion]

This   indicator   gives   instantaneous   information   about   the   use   of   materials   of  different  alternatives  (Rithoff  et  al.,  2002).  In  order  to  implement  dematerialization  strategies  resource  productivity  has  to  be  stressed.   At   the   same   time   requirements   of   resources   should   decrease   also   in  absolute   terms.   Technologies   and   innovations   can   be   evaluated  measuring  MIPS  along  the  various  steps  of  the  value  chain  and  in  the  different  category  of  resources  (Lettenmeier  et  al.,  2009).  At  least  three  equations  should  be  minimized:  (4)          

(5)              

 (6)          

where:  TMR,  MIw  and  MIa  are  the  requirements  of  material  resources,  water  and  air  in  all  the  phases  of  value  chain;  a,  b,  c,  n  represent  the  various  steps  of  the  value  chain,  from  the  extraction  of  raw  materials  up  to  the  consumption  phase;  xn  are  the  amounts  of  good  that  is  produced  or  consumed  in  each  phase.    TMR  is  also  used  in  resource  accounting  of  national  economies  (United  Nations  et  al.,   2003,  Bringezu  et   al.   2001).   In   this   case   it   refers   to   the   total  mass  of  natural  material  resources  used  in  the  economy  and  it  is  calculated  as:    (7)            where:  DMI  is  the  Domestic  direct  Material  Input  i.e.  the  flows  of  domestic  natural  resource  commodities  entering   the  economy;  DHF   is   the  Domestic  Hidden  Flows  i.e.   the  unused  extractions   linked   to  DMI   (e.g.   excavated  and  disturbed  materials  and  biomass   that   is   removed  but  not  used   for  production);   iDMI   is   the   imported  Direct  Material  Input,  that  is  all  the  flows  of  resources  coming  from  abroad;  iHF  is  the  Hidden  Flows  associated  with   imports  (in   the   literature  DMI  often  stands   for  Direct  Material  Input,  that  is  the  sum  of  domestic  and  imported  flows  used  in  the  national  economies).  TMR  of  European  Union  has  been  calculated  by  the  European  Environment   Agency   (EEA,   2001)   and   many   MFA   of   national   economies   are  already  available   in   the   literature.   Information  on  material   flows  can  be  used   for  adjusting  GDP  with  the  depreciation  of  natural  capital  due  to  economic  activity  and  evaluate  the  sustainability  of  economic  growth  (Hinterberger  et  al.,  1997).  

Page 7: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

6  

 Figure  1.  System  boundaries  for  MIPS  calculation  of  foodstuffs.  “T”  stands  for  transport  process  

 

Pursuing   the   eco-­‐efficiency   of   consumption   behaviors   and   production   processes  has  a  positive  feedback  also  in  economic  terms  because  it  allows  gaining  a  better  resource  allocation.  On  the  production  side,  eco-­‐efficiency  entails  a  cost  reduction,  since   the   resources   are   managed   in   a   more   rational   way.   Moreover,   acting  upstream  through  a  minimization  of  resource  use,  the  downstream  costs  for  waste  management,  pollution  treatment  and  purification  are  also  reduced.  Nevertheless,  the   ecological   and   economic   efficiency   can   diverge   when   market   prices  underestimate  the  biophysical  scarcity  of  natural  resources  and  overestimate  the  capacity   of   the   ecosystems   as   a   sink,   thus   encouraging   a   wasteful   management.  Therefore,   an   integrated   evaluation   of   economic   and   ecological   efficiency   of  processes   can  be  useful   for  providing   information  on   the  overall   performance  of  processes.   Using   DEA   (Data   Envelopment   Analysis)   models   Kauppinen   et   al.  (2008)  studied  the  sustainability  of  food  consumptions,  scoring  a  set  of  foodstuffs  on  the  basis  of  the  overall  (economic  and  ecological)  efficiency.  In  this  study,  the  material  intensity  of  foodstuffs  and  their  prices  are  considered  as  inputs  in  the  DEA   model,   while   the   food’s   nutritional   values   are   used   as   output.   The   results  show   the   efficiency   of   each   foodstuff   in   providing   individuals   with   a   proper  amount   of   nutrients   while   minimizing   the   material   input   and   the   household  expenditure.   A   similar   investigation   can   be   applied   on   the   supply   hand   for  evaluating  the  overall  efficiency  of  productive  processes.  

Page 8: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

7  

 2.3  Material  intensity  analysis  of  food  value  chains  In   the   first   part   of   the   study   we   used   the   MIPS   approach   for   investigating   the  ecological   rucksacks   of   three   Italian   foodstuffs   along   their   supply   chains:  wheat,  rice   (milled   and   parboiled   rice   from   conventional   farming   and  milled   rice   from  organic   farming),   and   citrus-­‐based   products   (oranges,   natural   and   concentrated  orange   juice).   The   scope   of   the   study   was   two-­‐fold.   From   the   supply   side,   we  wanted   to   test   the  MIPS  methodology   as   a   tool   for   sustainable   food   production;  from  the  demand  side,  we  wanted  to  use  these  estimations  for  the  assessment  of  natural  resource  consumption  due  to  nutrition  in  different  European  areas.  The   first  step  of   the  supply  chain  analysis  was   to  assess   the  material   intensity  of  some  Italian  foodstuff  and  agricultural  products.  The  choice  of  products  was  based  on   their   representativeness   of   Italian   agro-­‐food   sector   and   their   importance   in  diet.  We  also  considered  the  availability  of  data  and  life  cycle  assessment  surveys,  which   are   the   main   sources   of   information   for   material   intensity   accounting.  Statistics  and  other  surveys  from  the  literature  have  been  also  used  for  completing  the  data  basis.  Soil   erosion  statistics  are  not  available   for  different   crops   in   Italy.  We  applied   to  the   three  crops   (wheat,   rice  and  orange  grove)   the  estimation  of  10   t/ha  year  of  erosion  in  Italian  agriculture  use  published  by  national  statistical  agency  in  2003  (Istat,   2003).   The   system   boundaries   were   defined   from   the   production   and  transportation  of   the  chemicals  and  other   inputs   for  agriculture  (Fig.1)  up   to   the  distribution  to  the  selling  points.  The  transport  of  the  packaging  materials  and  the  means  of  transports  are  also  included,  while  the  impact  of  infrastructures  and  the  capital  goods  is  neglected.  We   choose   the   service   unit   of   1   kg   of   food,   without   considering   the   content   of  different  nutrients  provided  by  the  foodstuff.  Thus,   the   results   are   expressed   as   kg   of   materials   per   kg   of   food.   The   MIPS  indicator   can   focus   both   on   micro-­‐economic   level   (taking   data   from   a   single  enterprise)   and   on   macro-­‐economic   level,   using   average   data   from   different  sources  or  national  statistics  (Baedeker  et  al.,  2008).  Depending  on  the  availability  of  data,  we  used  the  first  or  the  second  approach  with  a  focus  on  micro  level  data  in  production  and  on  macro  level  in  consumption.  The  MIPS-­‐based  indicator,  TMR  (for  details,  see  above),  includes  the  abiotic,  biotic  and  erosion  categories  and  was  used   for   an   interpretation   of   the   results.   Material   intensities   of   fertilizers,  pesticides,  fuels,  means  of  transport  and  all  the  materials  and  energy  carriers  used  in   agriculture   and   food   industry   are   from   the   available   literature   (www.mips-­‐online.info).  They  are  not  specific  for  Italy  but  most  of  them  have  been  calculated  for   Germany   or   Europe.   The   material   intensity   of   electricity   is   available   for  European  and  OECD  countries  and  has  been  applied  in  the  calculation.    For  the  MIPS  calculation  of  wheat  we  used  average  data  from  three  different  LCA  surveys  (Bevilacqua  et  al.,  2001,  2007;  Della  Corte  et  al.,  2003)  that  investigate  the  production   of   two   different   brands   of   pasta.   We   considered   only   conventional  durum  wheat  cultivation,  with  nitrogenous  and  phosphorous  fertilization  and  pest  

Page 9: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

8  

treatments.  Irrigation  is  usually  not  necessary  for  durum  wheat  cultivation,  except  in   case   of   extraordinary   drought.   Therefore,   we   excluded   it   from   the   MIPS  calculation.  The  average  yield  from  the  literature  is  5678  kg/ha;  for  the  accounting  of  earth  movements  in  agriculture  we  assumed  a  maximum  depth  of  ploughing  of  30cm  and  an  average  soil  density  of  1300  kg/m3.  The  system  includes  the  transports  of  raw  materials  and  inputs  and  the  trip  to  the  milling   point.   Information   about   rice   from   conventional   agriculture   (milled   and  parboiled)   is   from   Blengini   and   Busto   (2008).   These   average   data   are  representative  of  a   typical   farm   in   the  Vercelli  district   in   the  North-­‐West  of   Italy  (this   area   provides   33   percent   of   national   rice   production).   We   considered   an  average   yield   of   7040   kg/ha   of   paddy   rice,   with   the   resort   of   nitrogenous,  phosphorous   and   potassic   fertilization   and   pest   treatments.   Earth   movements  include  tilling,  ploughing  and  the  maintenance  of  water  canals;  irrigation  is  based  on   the   network   of   canals   where   water   flows   without   the   use   of   any   pumping  systems.   The   annual   water   consumption   for   irrigation   is   19,800m3/ha.   Fuel  consumption  for   field  operation  is   from  ENAMA  (National  Agency  for  Agriculture  Mechanization)  and  Ministry  for  Agriculture  statistics.  All   the   transports  are   included   in   the  system.  We  assumed  a   local  distribution  to  the   retailers  with   an   average   distance   of   200   km.   Parboiled   rice   needs   a   special  treatment  after   the  drying  of  paddy   rice.   It   consists  of  boiling,   soaking,   steaming  and   drying   again.   The   packaging   of   milled   and   parboiled   rice   is   made   of   a  polyethylene  bag  and  an  external  carton  box.  Data  on  organic  rice  (Mandelli  et  al.,  2005)   refer   to   a   specific   farm,   in   the   area   of  Milan.   The   breeding   activity   of   the  same   farm   provides   manure   and   slurry   for   the   fertilization;   mustard   seeds   are  sowed  before  rice  for  improving  the  chemical  characteristics  of  the  soil.  The  yield  of  paddy  rice  is  5000  kg/ha  and  the  water  for  irrigation  is  2500m3/ha,  according  to  Mandelli.  The  organic  rice  is  packed  in  a  cotton  bag  and  an  internal  polyethylene  film.  We  applied  the  MIPS  methodology  to  the  production  of  oranges,  natural  (NJ)  and  concentrated  (CJ)  orange  juice,  based  on  Beccali  et  al.  (2009)  LCA  information.  The  area   of   cultivation   is   Sicily   and   the   manufacturing   process   of   citrus-­‐derived  products  regards  a  Sicilian  factory  with  regional  representative  size.    In   the   conventional   farming   of   citrus   groves   nitrogenous,   phosphorous   and  potassic  nutrients  are  applied  and  water  consumption  for  irrigation  is  about  4200  t/ha.  We  assumed  the  deepest  ploughing  being  80cm  before  the  planting,  one  time  in   25   years   (the   life   span   of   the   grove)   and   a   soil   density   of   1350   kg/m3.We  neglected   the   nursery   production.   The   average   yield   is   25   t/ha   of   oranges.   The  manufacturing   process   of   NJ   is   composed   of   selection   and   washing,   primary  extraction,   refining,   pasteurization   and   cooling,   refrigeration   and   packaging.   CJ  needs  an  additional  treatment  for  reducing  the  amount  of  water.  One  kilogram  of  oranges  provides  0.142  kg  of  NJ  and  0.028  kg  of  CJ.  We   assumed   average   transport   distances   of   150km   from   the   field   to   processing  and  500km  from  processing  to  retailers.  The  products  are  packed  into  LDPE  bags.    

Page 10: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

9  

2.4  Material  intensity  of  European  diets  MIPS   results   on   foodstuffs   were   applied   for   assessing   the   natural   resource  consumption   due   to   nutrition   in   European   countries.   We   took   into   account   the  consumption  of  18  foodstuffs  in  13  European  countries  and  in  the  European  Union.  The   main   source   of   data   was   the   Eurostat   report   “From   farm   to  fork”(EUROSTAT2008).  It  provided  figures  on  gross  human  apparent  consumption  of   foodstuffs   per   capita   of   the   twenty-­‐seven   European   Union’s   countries.   We  excluded   from   the   analysis   all   the   countries   with   lacking   data   for   food  consumption   in   2007   and   took   only   the   foodstuffs   for  which  material   intensity1  were  available  in  the  literature  (we  excluded  from  27-­‐EU:  Malta,  Denmark,  Estonia,  Lithuania,  Latvia,  Bulgaria,  Czech  Republic,  Hungary,  Romania,  Slovakia,  Slovenia,  Belgium  and  Luxemburg).  Previous  results  on  material   intensities  of  wheat,  rice  and  oranges  were  used  for  this   application.   The   other   figures   are   from   German   (Ritthoff   et   al.   2009)   and  Finnish  (Kauppinen  et  al.  2008)  studies  on  agriculture  and  nutrition.  Some  values  have  been  estimated  by  the  authors  on  the  base  of  similar  food  categories  already  existent.  The  Material   intensity  of  pears,   for   instance,  was  assumed  to  be   like  the  one  of  apples;  we  used  fresh  tomatoes  figures  also  for  processed  tomatoes  and  the  cattle  figures  also  for  sheep  and  goats.  In  table  1  is  a  list  of  material  intensities  and  the   information   sources.   The   same   material   intensities   were   used   for   every  country,  as  no  specific  data  was  available.  This  means  that  the  wide  variability  of  environmental   and   climatic   conditions   as   well   as   specific   agronomic   techniques  and   processes   could   not   be   taken   into   account.   Moreover,   neither   the   cooking,  preparation   of   the   food   at   home,   nor   the   question   if   they   are   domestically  produced   or   imported   were   included   in   the   analysis.   However,   the   same  methodology   proposed   here   can   be   used   with   specific   data   once   they   will   be  available  in  order  to  have  a  more  accurate  assessment.      

                                                                                                               1  In the case of food, MIPS values are also called we Material Intensity because the service has the same unit measurement then the MI (kg/kg).  

Page 11: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

10  

Table  1.  Material  intensities  of  foodstuffs  

(a) Ritthoff  et  al.  2009  (b) Kauppinen  et  al.  2008  (c) Our  MIPS  results  for  Italian  productions  

 

Using  this  set  of  data,  we  calculated  the  following  indicators:  (8)                

(9)          

(10)                

(11)                  

(12)                

(13)                

(14)            

 

(15)            

 

Foodstuffs   ABIOTIC   BIOTIC   WATER   AIR   SOIL   EROSION  Wheat  (c)   0.34   2.13   30.84   0.29   731.9   1.87  Rice  (c)   2.53   3.84   4804   0.94   2589   2.40  Potatoes  (a)   0.10   1.06   0.4   0.01   113   0.22  Vegetable  oils  &  fats  (a)   4.50   3.72   70.5   0.98   5490   11.49  Sugar  (a)   8.58   12.6   53.7   4.70   542   1.15  Apples  (b)   1.00   1.00   7.0   0.01   93   0.32  Oranges  (c)   0.20   1.00   181   0.11   17   0.40  Pears  (b)   1.00   1.00   7.00   0.01   93   0.32  Tomatoes  (b)   8.00   1.00   793   4.00   36   0.01  Cattle  (a)   10.9   26.4   451   2.81   3329              11.1  Poultry  (a)   6.44   5.93   234.9   1.63   3405   5.90  Pigs  (a)   2.57   6.89   62.3   1.01   2968   6.51  Sheeps  and  goats  (a)   10.86   26.39   450.8   2.81   3329   11.12  Fish  &  seefood  (a)   2.80   4.70   271.0   0.83   148   0.17  Drinking  milk  (a)   0.15   2.75   4.7   0.03   259   0.89  Butter  (a)   3.42   56.87   105.8   0.79   5366   18.43  Cheese  (a)   0.84   14.24   25.5   0.20   1344   4.62  Eggs  (a)   1.15   1.98   28.56   0.25   605.9   0.93  

Page 12: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

11  

(16)                      

 

(17)              

where:  

 is  the  foodstuff;    is  the  country  (EU  included);    is  the  resource  category;  Xi,j  are  the  amounts  of  the  foodstuff  i  consumed  in  the  country  j;  RITi,j,k   (Resource   Intensity)   represents   the   amount   of   the   resource   k   that   is   on  average  necessary  for  the  consumption  of  foodstuff  i  by  a  inhabitant  of  the  country  j;  TMRi,j  is  the  total  material  requirement  for  the  consumption  of  foodstuff  i  in  the  country  j;  WRi,j  and  ARi,j  are  the  requirements  of  water  and  air  for  the  consumption  of  foodstuff  i  in  the  country  j;  TMRj  is  the  total  material  requirement  for  food  (that  is   the   set   of   18   foodstuffs)   of   the   country   j;   TWRj   and   TARj   are   the   total  requirements   for  water   and   air   for   food   (that   is   the   set   of   18   foodstuffs)   of   the  country  j;  AMIj,  AWIj,  AAIj  are  the  average  resources  intensity  (for  materials,  water  and  air),  i.e.  the  average  amount  of  resource  that  is  used  for  consuming  one  unit  of  food  in  a  given  country.  The   comparison   of   the   resource   intensities   (materials,   water   and   air)   of   diets  facilitates   a   rough   assessment   of   their   sustainability.   In   addition,  we   can   outline  how  different  groups  of  food  are  contributing  to  the  natural  resource  consumption  of  nutrition.  Countries  were  graded  on  the  base  of   total  annual  consumption  and  TMR  of  the  selected  foodstuffs  per  capita,  and  the  average  intensity  of  materials,  of  water  and  of  air.  

3.  Presentation  and  description  of  results  

3.1  MAIA  analysis  of  the  supply  chains  3.1.1  Results  for  wheat    Table  1  presents   the  material   intensity   results   of   durum  wheat;   fig.   2   shows   the  contribution  of  different  phases  of  the  supply  chain.  The  TMR  for  one  kilogram  of  durum  wheat  is  4.35  kg.  Fig.  2  shows  the  contribution  of  different  input  factors  in  the  total  resource  use  due  to  wheat  cultivation.  84%  of  water  consumption  is  due  to   pesticides   production,  while   two-­‐thirds   of   total   abiotic  materials   are   used   for  producing   chemical   products   for   agriculture   (that   include   fertilizers   and  pesticides).  Fuel  for  field  operation  weigh  40%  of  the  total  air  consumption,  while  transport  operations  from  storage  to  milling  place  consume  13%  of  air  and  12%  of  abiotic  materials.  Table  2.  Material  intensity  of  conventional  durum  wheat  

  ABIOTIC   BIOTIC   EROSION   SOIL   WATER   AIR   TMR  Material  Intensity  (kg/kg)  

0.34   2.13   1.87   731.9   30.84   0.29   4.34  

Page 13: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

12  

 

  Figure  2.  Composition  of  the  material  intensity  of  durum  wheat  

 3.1.2.  Results  for  rice    TMRs   of   rice   are   8.91   kg/kg   for   milled   one,   9.43   kg/kg   for   parboiled   and   9.04  kg/kg  for  organic  one  (table  3).  For  the  three  kinds  of  rice,  more  than  70%  of  TMR  is  due  to  farming  (Fig.  3,4  and  5).  In  conventional  rice  (milled  and  parboiled)  the  impact   of   fertilizers   is   relevant   for   the   category   of   abiotic   resources   (40%   and  34%)   and   irrigation   is   responsible   for   almost   the   total   consumption   of   water.  Transports  are  also  quite  important  for  the  consumption  of  air  (28%  and  21%  of  the   total).   Electricity   affects   more   parboiled   rice,   which   has   higher   material  intensities   also   in   absolute   terms   (in   the   categories   of   abiotic,   air   and   water).  Concerning  the  organic  rice,  the  TMR  is  not  lower  than  the  conventional  ones  (8.93  kg/kg).   In   opposite   to   a   minor   consumption   of   abiotic   resources,   in   which  packaging   materials   and   electricity   are   contributing   more,   biotic   resources   and  erosion   contributes   to   a   higher   TMR.   Air   and   water   consumption   are   lower   in  organic   rice   and   affected   more   by   packaging   materials   than   transport   and  electricity.    Table  3.  Material  intensity  of  rice    

Material  Intensity  (kg/kg)   ABIOTIC   BIOTIC   EROSION   SOIL   WATER   AIR   TMR  

Milled  conventional  rice   2.53   3.84   2.40   2589   4804   0.94   8.77  

Parboiled  conventional  rice   3.20   3.84   2.40   2589   4828   1.37   9.43  

Organic  milled   1.14   4.16   3.57   3866   1457   0.43   8.89  

 

0%   20%   40%   60%   80%   100%  

abiotic  

biotic  

water  

air  

erosion  

soil  

TMR  

Wheat  seed    

N-­‐fertilizers    

P-­‐fertilizers    

Pesticides    

Transport  input  materials    

Diesel    

Biotic    

Erosion  and  earth  movements  

Transport  to  milling    

Page 14: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

13  

   Fig.  3  Material  intensity  composition  of  milled  conventional  rice  TMR  

     Fig.  4  Material  intensity  composition  of  parboiled  conventional  rice  TMR    

     

 Fig.  5  Material  intensity  composition  of  organic  milled  rice  

0%   20%   40%   60%   80%   100%  

abiotic  

biotic  

water  

air  

erosion  

soil  

TMR    Seed  production  

Fertilizers  

Pesticides  

Water  for  irrigation    

Diesel  for  qield  operation    

Rice  cultivation  

Electricity  for  seed  storage  

Electricity  and  fuels  for  processing  

Materials  for  packaging    

Transport  

0%   20%   40%   60%   80%   100%  

abiotic  

biotic  

water  

air  

erosion  

soil  

TMR    

Seed  production  

Fertilizers  

Pesticides  

Water  for  irrigation    

Diesel  for  qield  operation    

Rice  cultivation  

Biomass  

Electricity  for  seed  storage    

Electricity  and  oil  for  processing  Water  for  processing    

Materials  for  packaging    

0%   20%   40%   60%   80%   100%  

abiotic  

biotic  

water  

air  

erosion  

soil  

TMR     Seed  production  

Mustard  seed    

Diesel  for  qield  operation    

Water  for  irrigation    

Rice  cultivation  

Water  for  processing    

Electricity  and  oil  for  processing  

Materials  for  packaging    

Transport  

Page 15: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

14  

 3.1.3.  Results  for  oranges  and  citrus-­‐based  products    Material   intensity  results  are  much  more  higher   for  CJ,  due   to   the  minor  yield  of  juice  of  a  factor  of  five  (35  kg  of  oranges  for  1  kg  of  CJ,  7  kg  of  oranges  for  1  kg  of  NJ).   If   we   would   consider   products   at   the   moment   of   consumption   we   should  include   the   dilution   of   the   concentrated   juice,   and   these   values   will   be   more  similar.   Abiotic   resource   consumption   is   especially   higher   in   CJ,   due   to   the  electricity   and   fuels   for   industrial   processing   (82%)   while   fertilizers   are  responsible  for  about  50%  of  the  abiotic  resource  consumption  in  NJ.  Materials  for  packaging  contribute  overall  in  the  air  category  (82%  in  NJ  and  40%  in  CJ),  while  water   consumption   depends  most   on   irrigation.   Considering   oranges   production  fertilizers  have  a  relevant  influence  on  abiotic  materials,  accounting  for  77%  of  the  total.  The  impact  of  pesticides  on  the  material  input  is  negligible.  Fertilizers,  diesel  for   field   operations   and   transport   combine   with   almost   equal   parts   to   the   total  consumption  of  air.  Table  4.  Material  intensity  of  citrus-­‐based  products  

Material  Intensity  (kg/kg)  

ABIOTIC   BIOTIC   EROSION   SOIL   WATER   AIR   TMR  

Oranges   1.42   7.06   0.40   17   181   0.11   1.60  Natural  orange  juice   2.17   7.06   121.9   2.82   1302   6.73   12.05  

Concentrated  orange  juice   35.56   35.27   609.5   14.1   6901   13.92   84.94  

 

 Fig.  6  Material  intensity  composition  of  oranges  

0%   20%   40%   60%   80%   100%  

abiotic  

biotic  

water  

air  

erosion  

soil  

TMR     Fertilizers    

Pesticides    

Transport  inputs    

Diesel  for  qield  operation    Irrigation    

Biotic    

Erosion  and  earth  movement    Transport    

Page 16: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

15  

 Fig.  7  Material  intensity  composition  of  natural  orange  juice  

 Fig  8  Material  intensity  composition  of  concentrated  orange  juice  

   3.2  Resource  intensity  of  European  diets    Fig.  9  and  10  show  total  annual  consumption  and  TMR  of  the  selected  foodstuffs  in  the  European  countries.  Results  on  the  use  of  the  three  resources  (materials,  water  and   air)   follow.   We   observe   in   fig.   9   that   Germany,   Austria   and   Italy   have   the  highest   value   of   AMI   (see   chapter   2.4   for   indicators’   equations),  with   11.4,   11.3,  10.7  kg  of  material  resources  for  producing  1  kg  of  food.  Poland,  with  8.4  kg/kg  has  the   lowest.  Table  5   illustrates   the  share  of  different  groups  of   foodstuffs   (cereals  and  potatoes,   fruits  and  vegetables,  meat,   fish  and  eggs,  milk  and  dairy  products,  sugar,   vegetable   oils   and   fats)   in   the   TMR   for   food.   Countries   in   the   table   are  graded   according   to   the   AMI   values,   from   the   less   intensive   up   to   the   more  intensive.  Considering  EU  diet,  the  biggest  share  of  material  requirement  is  due  to  meat,  fish  and  eggs  consumption  (36%);  milk  and  dairy  products  follow  with  19%.  Not   remarkable   differences   emerge   between   low   and   high-­‐AMI   countries   in   the  composition  of  diets   from   this  analysis.  Considering   the   resource   “water”,   fig.  12  and   table   6   present   results   of   intensity   in   water   use   (AWI)   and   composition   of  water   requirements   among   the   groups  of   food.  Values   for   Italy   and  Portugal   are  

0%   20%   40%   60%   80%   100%  

abiotic  

biotic  

water  

air  

erosion  

soil  

TMR    Fertilizers  

Pesticides    

Diesel  for  qield  operation    

Water  for  irrigation    

Oranges  

Water  for  processing  

Electricity  and  fuels  for  processing  Materials  for  packaging  

Transport  

0%   20%   40%   60%   80%   100%  

abiotic  

biotic  

water  

air  

erosion  

soil  

TMR    Fertilizers  

Pesticides    

Diesel  for  qield  operation    

Water  for  irrigation    

Oranges  

Water  for  processing  

Electricity  and  fuels  for  processing  Materials  for  packaging  

Transport    

Page 17: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

16  

considerably   higher   than   the   other   countries   (almost   250   kg/kg   vs.   92   kg/kg   of  Poland).  Looking  at   the   table  we  can  observe   that  water   requirement  are  mostly  due   to   cereals   and  potatoes   in  Portugal   (61%)   and   fruits   and  vegetables   in   Italy  (42%).  The   same   categories  have   the  biggest  weight   also   in  EU  diet.   Fig.   13   and  table   7   illustrate   the   intensity   of   air   (AAI)   and   the   contribution   of   the   different  groups  of  food  in  the  total  air  requirement  (TAR),  in  each  country.  Italy  is  again  the  most   intensive   country,   consuming   1.2   kg   of   air   for   each   kg   of   food.   Comparing  with   the  values  of   EU,   Italy  presents  higher   share  of   fruit   and  vegetables   (38%).  Sugar  has   a   considerable   impact   in   this   category   of   resource   in   all   the   countries  (32%  in  EU).  

   Fig.9   Total   consumption   of   the   selected   foodstuffs   in   the   13   European   countries   and   in   EU  (kg/capita/year)  

 

 Fig.   10   Total   Material   Requirement   for   the   selected   foodstuffs’   consumption   in   13   European  countries  and  in  EU  (kg/capita/year)  

0  

100  

200  

300  

400  

500  

600  

700  

800  

0  

1000  

2000  

3000  

4000  

5000  

6000  

7000  

8000  

Page 18: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

17  

 

 

 Fig.  11  Average  Material  Intensity  of  food  in  13  European  countries  and  EU  (kg/kg)      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00  

02  

04  

06  

08  

10  

12  

Page 19: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

18  

Table  5  Composition  TMR  of  European  diets  among  six  groups  of  food  (%)  

   

 

 

 Fig.  12  Average  Water  Intensity  of  food  in  13  European  countries  and  EU  (kg/kg)  

   

0  

50  

100  

150  

200  

250  

300  

AMI  (%)   Cereals  &  Potatoes  

Fruits  &  Vegetables  

Meat,  Fish  Eggs  

Milk  &  Dairy  Products  

Sugar   Vegetable  Oils  &  Fats  

Poland     18.8   4.6   36.3   20.4   17.4   2.4  Ireland     13.6   5.8   44.9   17.3   13.0   5.4  Netherland     11.1   9.0   40.9   21.0   11.2   6.8  Finland   9.2   6.6   37.8   28.2   16.3   1.8  Portugal   16.0   5.2   48.0   11.8   11.8   7.3  EU     15.5   7.8   36.1   18.8   15.1   6.7  Greece   18.8   12.5   34.0   11.8   9.1   13.7  Sweden   10.2   6.6   41.3   21.4   19.5   1.0  Spain     12.1   7.5   48.2   10.9   10.6   10.7  UK     14.6   3.5   45.9   17.0   10.0   9.1  France   11.7   8.2   42.4   20.5   12.6   4.7  Italy   15.6   11.7   36.7   12.9   14.8   8.3  Austria     10.5   5.8   43.9   19.2   16.1   4.5  Germany   11.4   5.0   38.2   22.3   16.2   6.9  

Page 20: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

19  

Table  6  Composition  of  water  requirements  of  European  diets  among  six  groups  of  food  (%)  

AWI  (%)   Cereals  &  Potatoes  

Fruits  &  Vegetables  

Meat,  Fish  Eggs  

Milk  &  Dairy  Products  

Sugar   Vegetable  Oils  &  Fats  

Poland     29.7   34.6   28.7   2.4   3.8   0.8  Austria     28.9   32.1   32.2   2.1   3.3   1.4  Germany   33.0   31.1   28.0   2.5   3.3   2.1  Finland   30.2   35.3   29.0   2.5   2.6   0.4  UK     41.1   18.0   35.4   1.5   1.7   2.3  Ireland     42.6   27.3   26.0   1.3   1.8   1.1  Netherland     25.6   46.6   23.4   1.5   1.5   1.4  EU     36.0   36.5   22.6   1.4   2.1   1.4  Sweden   38.1   30.5   26.7   1.7   2.8   0.2  Spain     31.1   33.9   30.6   0.8   1.4   2.2  France   30.8   39.3   25.7   1.5   1.7   0.9  Greece   22.7   54.3   18.6   0.8   1.1   2.5  Portugal   60.7   13.0   23.6   0.6   1.1   1.0  Italy   37.5   42.3   16.7   0.7   1.6   1.3  

 

   Fig.  13  Average  Air  Intensity  of  food  in  13  European  countries  and  EU  (kg/kg)    

   

0  

0,2  

0,4  

0,6  

0,8  

1  

1,2  

1,4  

Page 21: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

20  

Table  7  Composition  of  air  requirements  of  European  diets  among  six  groups  of  food  (%)  

AAI  (%)   Cereals  &  Potatoes  

Fruits  &  Vegetables  

Meat,  Fish  Eggs  

Milk  &  Dairy  

Products  

Sugar   Vegetable  Oils  &  Fats  

Ireland     9.1   17.0   36.7   1.8   32.2   3.2  Netherland     7.4   26.6   32.5   2.3   27.2   3.9  Poland     11.3   18.1   27.6   2.0   39.7   1.3  UK   10.8   15.3   39.9   1.9   26.5   5.6  Finland   5.8   21.5   29.9   3.0   38.8   1.0  Portugal   11.9   15.1   39.7   1.2   28.1   4.1  France   8.5   23.8   32.8   2.3   30.0   2.6  EU     9.7   26.5   26.3   1.8   32.3   3.4  Spain     7.6   27.1   35.9   1.0   23.0   5.5  Sweden   6.2   20.7   28.6   2.0   42.0   0.5  Germany   7.5   19.6   28.7   2.4   38.0   3.8  Greece   10.8   43.1   21.1   1.0   17.7   6.3  Austria     6.9   19.8   32.0   2.0   36.9   2.5  Italy   9.1   38.0   21.3   1.1   27.0   3.6  

 

A  second  step  of  analysis  takes  into  account  the  whole  hamper  of  foods,  in  order  to  evaluate  the  weight  of  each  foodstuff  in  the  total  natural  resource  consumption  for  nutrition.   For   each   foodstuff,   we   observed   how   much   it   weights   in   the   food  consumption   (i.e.   in   the   total   amount   of   consumed   food)   and   in   the   resources  requirements.  The   factor   of   difference   between   these   two   components   is   presented   in   table   8.  The  figures  are  average  values  of  all  the  countries.  Factors  are  higher  than  1  when  the  incidence  on  diet   is  smaller  than  incidence  in  the  total  resource  consumption  for   that   foodstuff.   The   higher   is   the   factor,   more   resource   intensive   is   the  corresponding   foodstuff.   Butter,   with   8.1,   has   the   highest   factor   for   TMR.   This  means  that  the  share  of  TMR  due  to  butter  is  8  times  higher  than  its  share  in  total  food  consumption.  Cattle  and  sheep  and  goats  are  also  highly  resource  intensive,  with  a  factor  of  5  and  are   then   followed   by   sugar   and   vegetable   oils   and   fats.   Above  we   observed   that  “cereals”   is   the  most   impacting   group   for   water.   Factor’s   analysis   indicates   that  rice   is  strongly  affecting  this  value,  with  an  average  factor  of  33.5.  Tomatoes  and  meat  (especially  cattle  and  sheep)  are  also  important  groups  contributing  to  water  consumption,  with  a  factor  of  5.5  and  3.1.  Regarding   the   air   category   sugar   is   confirmed   to   have   a   severe   impact.   Its  incidence   in   resource   use   is   5.3   times   the   incidence   in   food   consumption.  Tomatoes   and   meat   (meat   and   sheep   and   goat)   are   also   quite   intensive,   with  factors  of  4.5  and  3.2,  respectively.      

Page 22: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

21  

 Table  8  Average  factor  of  difference  between  food  consumption  share  and  resource  use  share  

  TMR   Water     Air  Wheat   0.6   0.3   0.4  Rice   0.9   33.5   1.1  Potatoes   0.1   0.0   0.0  Vegetable  oils  &  fats   2.0   0.5   1.1  Sugar   2.3   0.4   5.3  Apples   0.2   0.0   0.0  Oranges   0.2   1.3   0.1  Pears   0.2   0.0   0.0  Fresh  tomatoes   0.9   5.5   4.5  Cattle   5.0   3.1   3.2  Poultry     1.9   1.6   1.8  Pigs   1.6   0.4   1.1  Sheeps  &  goats   5.0   3.1   3.2  Fish  &  seefood   0.8   1.9   0.9  Drinking  milk     0.4   0.0   0.0  Butter   8.1   0.7   0.9  Cheese     2.0   0.2   0.2  Eggs   0.4   0.2   0.3  

4.  Interpretation  of  results  

The  analysis  of  three  food  chains  showed  how  different  elements  and  phases  in  the  production   are   having   an   environmental   impact.   We   observed   the   organic   rice  farming   impact  being  almost  similar   to   the  conventional  one,  due   to   the  use  of  a  bigger  area  of  land  for  gaining  the  same  unit  of  food.  A  major  use  of  the  soil  implies  consequently   a   higher   value   of   erosion.   The   consumption   of   biotic   resources,  bigger  then  in  conventional  rice,  is  also  due  to  the  use  of  mustard  seed,  the  cotton  bag  for  packaging  and  the  major  amount  of  seeds  for  hectare  that  is  required  (200  kg/ha  vs.  120  kg/ha  of  conventional  one).  The  saving  of  abiotic  raw  materials  is  instead  relevant  once  chemical  products  for  agriculture   are   avoided   and   transport   distances   are   reduced,   like   in   the   organic  farm.    In  general,  a  minimization  of  external  inputs  employment  contributes  to  reducing  production  costs  and  can   improve  the   farm  profitability.  A  specific  MIPS  analysis  on   a   production   system   allows   the   comparison   of   different   strategies   of   farm  management   and   the   evaluation   of   the   most   efficient   in   terms   of   input/output  rates.   Instead,   the   results   on   rice   disclose   that   a   major   yield   does   not   imply   a  higher  productivity  when  this  gain  is  obtained  with  more  than  proportional  inputs.  The  better   performance  of   organic   rice   in   the   category  of   abiotic  materials   (that  encompasses   all   the   external   and   purchasable   inputs   like   agro-­‐chemicals,  electricity,   fuels,  etc.  as  well  as   the  hidden  material   flows  behind   these)  suggests  that  the  farm  profitability  can  be  improved  through  the  strategy  of  minimizing  the  

Page 23: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

22  

inputs  instead  of  the  most  common  “productivist”  scheme  of  yield  maximization.  Although   toxicity   is   not   especially   evaluated   in   the  MIPS   concept,   the   impact   of  pesticides   and   other   chemicals   on   the   results   is   visible.   However,   with   the  resources  of  this  study  it  was  not  possible  to  perform  a  detailed  material  intensity  assessment  of   the  use  of  pesticides  that  are  applied   in  smaller  and  smaller  doses  thanks  to  technological  progress.    The   calculation   of   natural   resource   consumption   due   to   nutrition   in   European  countries  used  the  same  material  intensities  of  foodstuffs,  which  came  from  three  different  areas  of  production:  Italy,  Germany  and  Finland.  Thus,  the  only  variable  was  the  amount  of  different  foodstuffs  that  are  consumed  in  each  country.  For  this  reason   an   analysis   of   diets’   compositions   allow   gleaning  which   elements   in   food  habits  are  more  responsible  for  a  high  intensity  in  resources  use.  Meat  and  animal  based  products  demonstrated  requirement  for  a  large  amount  of  material   resources,   confirming   the   evidence   from   other   studies   using   different  assessment  methods  (e.g.,  greenhouse  gas  emissions  in  Kramer  et  al.,  1999).  The   high   water   consumption   of   rice   has   also   been   also   proven.   High   values   for  fruits   and   vegetable   are   probably   affected   by   using   MIPS   values   from   Finnish  productions.  Calculation  could  be  repeated  once  data  from  a  more  suitable  area  of  production  is  available.  MIPS  was  also  applied  in  a  research  on  food  consumption  in  Finnish  households  in  Kotakorpi   et   al.   (2008).   In   this   project   data   on   consumption   are   from   direct  interviews  with  the  households.  Using  the  Finnish  data  basis  on  material  intensity  of  foodstuffs  the  TMR  of  each  household  was  calculated  (Fig.  14).  In   this   case,  we  observe   a  higher   variability   of   results   than  when   comparing   the  countries’   diets.   Statistics   do   not   provide   the   same   insight   into   the   impact   of  different   lifestyles   and   consumption   patterns   as   detailed   as   micro   level   studies.  Nevertheless,   statistics   can   show   differences   in   the   impact   of   average   diets   of  different   countries   even   without   the   need   for   in-­‐depth   study   of   the   specific  households.  Concerning   the   components   of   TMR   in   Finnish   households,   the   biggest   share  comes  from  dairy  products  and  meat  consumption.  

Page 24: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

23  

 Fig.   14   Contribution   of   the   sub-­‐components   to   the   TMR   of   foodstuffs   for   27   Finnish  households  (from  Kauppinen  et  al.  2008)  

   

5.  Conclusions  

The   actual   trend   of   growing   population   and   economic   development   in   some  countries   represents   new   challenges   for   the   agricultural   sector   in   terms   of   food  supply   capacity   and   natural   resource   management.   Food   systems   are   asked   be  productive,   but   at   the   same   time   to   preserve   the   available   natural   resources.  Sustainability   is   becoming   an   urgent   need   and   governments,   international  institutions  and  local  administrations  are  approaching  new  initiatives  to  promote  sustainability  in  food  production  and  consumption.  Concerning  the  food  supply,  MIPS  results  suggest  that  policy  should  foster  the  eco-­‐efficiency  of  agricultural  processes  and  turn  them  towards  a  lower  use  of  external  inputs.   It   would   provide   a   double   benefit.   On   the   one   hand,   the   environmental  protection   is   improved;   while   on   the   other   hand,   it   contributes   to   reducing   the  dependence  on  supplier  inputs  and  cutting  the  production  costs.  At  the  same  time,  results   showed   that   food   transportation   contributes   substantially   to   the   air   and  abiotic  materials’  consumption.  Sustaining  and  propelling   local   food  systems,  can  produce   considerable   advantages   for   the   producers,   the   consumers,   and   a  sustainable  regional  development.  From   the   analysis   of   European   countries’   diets   emerged   that   cattle,   sugar   and  butter  are   the  most   resource   intensive   foodstuffs   (fruits   and  vegetables  are  very  demanding   in  water   and   air,   but   the   data   used   refers   to   the   Finnish   production,  and  it  stands  to  reason  that  these  would  change  significantly  considering  crops  on  

Page 25: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

24  

a  more  favorable  climatic    condition).  These   outcomes   hint   that   a   reciprocal   relation   could   exist   between   the  environmental  performance  of   food  production  and   its  healthiness.  Many  studies  have  pointed  to  the  negative  effects  of  high  meat,  sugar  and  fat  consumption  and  our   results   confirmed   that   these   products   embody   huge   amount   of   natural  resources.  Thus,  acting  on  eco-­‐efficiency  and  natural  resource  saving  could  enable  the  achievement  of  positive  effects  on  the  environment  and  on  health  at  the  same  time.   Obesity,   diabetes   and  many   other   diseases   caused   by   a   bad   nutrition   have  enormous  costs  in  terms  of  public  expenditure.  The  chemicals  used  in  agriculture  are  also  dangerous  for  the  health  as  well  as  more  processed  and  treated  foodstuffs  containing   higher   amounts   of   additives,   preservatives   and   other   harmful  substances.  An  agricultural  policy  focused  on  the  reduction  of  inputs  and  on   the  production  of  natural   and  healthy   food  would   contribute   to   reducing  the   expenditures   for   the   public   health,   and   preserving   the   ecosystems.  Contemporaneously,   spreading   a   basic   knowledge   on   sustainability   and   raising  public  awareness  of  the  benefit  of  a  healthy  nutrition  would  contribute  to  creating  and  reinforcing  a  demand  for  an  organic  and  low-­‐impact  agriculture.  Sustainability  requires  a  reduction  of  material   throughputs   in  the  economies  and  the  optimization  of  resources  productivity  (Risku-­‐Norja  and  Mäenpää,  2007).  For  this  purpose  physical  inputs  have  to  be  evaluated  in  an  unambiguous  way  and  for  the  whole  food  chain.  At   the   same   time,   the   promotion   of   sustainability   needs   suitable   and   readily  communicable  indicators  for  guiding  consumers  and  producers’  choices,  as  well  as  appropriate  tools  for  supporting  decision-­‐making.  MIPS   has   been   used   for   an   assessment   of   the   natural   resource   consumption   in  agro-­‐food   systems.   The  methodology   allowed   encompassing   different   aspects   of  nutrition’s  environmental  burden,  providing  a  raw  estimation  of  the  use  of  nature  due  to  this  activity,  both  from  the  supply  and  demand  side.    Concerning   the  production  of   food,  we  observed   that   the  most   important  phases  affecting   the   sustainability   of   the   supply   chain   are   the   agricultural   phase   in   rice  and  wheat   and   the   processing   phase   one   in   orange   juices.   In   the   latter   case,   an  ecoefficiency   strategy   should  basically   focus   on   the   energy  provisions.   Fuels   and  electricity  efficiency  should  be  improved  and  the  use  of  low  input  energy  sources  (see   e.g.   Rohn   et   al.,   2010)   could   be   evaluated   in   order   to   reduce   the   impact.  Improving   sustainability   in   agriculture   can   be   obtained   through   a   decreasing   of  pesticide  use  in  the  case  of  wheat  and  improving  the  efficiency  in  water  use  in  rice  cultivation.  Sustainability  in  food  consumption  has  been  evaluated  through  the  calculation  of  a  set  of  indicators  based  on  material,  water  and  air  intensities.  The  Italian  diet  was  shown   to   be   the   least   sustainable   for   the   three   categories   of   resources.   On   the  contrary,  the  Polish  diet  is  the  most  sustainable.    Results  confirmed  the  high   impact  of  animal  products,  especially   for  the  material  resources.  Between  them,  cattle  provide  the  most  resource-­‐intensive  meat.  Sheep  

Page 26: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

25  

and  goats  present  the  same  results  because  we  assumed  MIPS  figures  to  be  equal  to   the   ones   of   cattle.   Butter   has   also   an   important   impact   on  material   resources  while  rice  is  heavily  affecting  water  requirements.  Fruits  and  vegetables  have  high  water  and  air  requirements  and  tomatoes  are  the  most  resource-­‐intensive  crop  in  this  group.  Crop  irrigation  and  greenhouse  infrastructures  can  explain  this  result.  Further  research  could  outline  how  much  results  would  vary  when  applying  more  country-­‐specific   data,   e.g.   when   considering   open   field   tomato   crops   in  Mediterranean   areas   instead   of   greenhouse   cultivation   in   Finland.  Moreover   the  material  intensity  evaluation  should  be  extended  to  many  other  products  in  order  to  achieve  a  broader  data  basis  for  the  evaluation  of  natural  resource  consumption.  On  the  basis  of  this  first  attempt  of  evaluating  sustainability  of  food  production  and  consumption  many  developments  are  possible.  Land  use  could  be  integrated  in  the  analysis,  including  the  occupation  of  soil  in  the  natural  resource  consumption  due  to  nutrition.  In  a  macroeconomic  perspective,  the  use  of  resources  in  agriculture  could  also  be  related  with  economic  indicators,  in  order  to  trace  the  trend  of  the  sector  in  terms  of  sustainability  over  time.  From  a  microeconomic  point  of  view,  the  assessment  of  material   intensity   along   the   supply   chain   can   help   implementing   eco-­‐efficiency  strategies.  Further  research  at   this   level  could   investigate   the  relation  between  a  low   application   of   external   inputs   in   agriculture   (using   a   material   intensity  approach)  and  the  profitability  of  these  farms,  in  comparison  with  others  adopting  more  intensive  farming  techniques.    

6.  References  

Baedeker,  C.,  C.  Kaiser,  S.  Kolberg,  C.  Liedtke  and  H.  Wallbaum  (2008)  Resource  intensity  in  global   food   chains:   examples   of   hot   spot   analysis.   Presentation  held   at   IGLS   International  Conference  on  System  Dynamics  and  Innovation  in  Food  Networks,  Innsbruck,  Austria,  18-­‐22  Feb.  2008.  

Beccali,   M.,   M.   Cellura,   M.   Iudicello,   M.   Mistretta   (2009)   Resource   Consumption   and  Environmental   Impacts   of   the   Agrofood   Sector:   Life   Cycle   Assessment   of   Italian   Citrus-­‐Based  Products  Environmental  Management  43:  707-­‐724.  

Bevilacqua,  M.,  M.  Braglia  M,  G.  Carmignani,  F.A.  Zammori  (2007)  Life  Cycle  Assessment  of  pasta  production  in  Italy  Journal  of  Food  Quality  30:  932-­‐952.  

Bevilacqua,  M.,  P.  Buttol,  F.  Cecchini,  L.  De  Pietri,  P.  Neri,  L.F.  Ruini  (2001)  Analisi  del  ciclo  di  vita  di  due  tipi  di  pasta  della  ditta  Barilla.  ENEA  Report,  Bologna.  

Blengini   G.   A.,   Busto,  M.   (2008)  The   life   cycle   of   rice:   LCA   of   alternative   agri-­‐food   chain  management   systems   in   Vercelli   (Italy)   Journal   of   Environmental  Management  90:1512-­‐1522.  

Bringezu  S.,  Y.  Moriguchi  (2002)  Material  flow  analysis.  In  Handbook  of  Industrial  Ecology,  R.V.  Ayres,  L.  W.  Ayres,  Edward  Elger  Publishing.  

Bringezu  S.,  H.  Schütz  (2001)  Total  material  requirement  of  the  European  Union.  Technical  

Page 27: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

26  

Report  E.  E.  Agency,  Copenhagen  European  Environment  Agency  35.  

Burger   E.,   S.   Giljum.,   C.   Manstein,   F.   Hinterberger   (2009)   Comprehensive   ecological  indicators   for   products:   three   case   studies   apllying   MIPS   and   ecological   footprint.  Presentation  held  at  8th   International  Conference  of   the  European  Society   for  Ecological  Economics,  Ljubljana,  Slovenia,  29th  June  -­‐  2nd  July.  

De   Fraiture,   C,   D.   Molden,   U.   Amarasinghe,   I.   Makin   (2001)   PODIUM,   projecting   water  supply   and   demand   for   food   production   in   2025   International   Water   Institute   26(11-­‐12):869-­‐876.  

Della  Corte,  C.,  F.  Cecchini,  F.  Franchini,  G.  Scherillo,  P.  Neri,  P.  Naddeo  (2003)  Analisi  del  ciclo  di  vita  di  1  kg  di  pasta  della  ditta  "Antonio  Amato".  ENEA  Report,  Bologna.  

EEA  (2001)  Total  material  requirement  of  the  European  Union,  Technical  Report  No  55.  

EUROSTAT  (2008)  Food:  from  farm  to  fork  statistics.  Pocketbooks.  Luxemburg.  

FAO,   2010.   Forest   insects   as   food:   humans   bite   back.   In:   Proceedings   of   a  workshop   on  Asia-­‐Pacific  resources  and  their  potential   for  development   ,  Chiang  Mai,  Thailand,  19–21  February  2008.  

Hahlbrock,  K.  (2009)  Feeding  the  Planet:  Environmental  Protection  through  Sustainability.  Haus  Publishing,  London.  

Hinterberger  F.,  E.  K.  Seifert  (1997)  Reducing  Material  Throughput:  A  Contribution  to  the  Measurement  of  Dematerialization  and  Sustainable  Human  Development.  In  Environment,  Technology  and  Economic  Growth  -­‐  The  Challenge  to  Sustainable  Development.  Tylecote  A.,  van  der  Straaten  J.,  Cheltenham,  UK  -­‐  Northhampton,  MA,  USA  Edward  Elgar.  

ISTAT  (2003)  1980-­‐1998  Material-­‐Input-­‐Based  Indicators  Time  Series  and  1997  Material  Balance  of  the  Italian  Economy.  Rome.  

Kauppinen,  T.  S.  Lähteenoja,  M.  Lettenmeier   (2008)  Data  Envelopment  Analysis  as  a  Tool  for   Sustainable   Foodstuff   Consumption.   Presentation   held   at   2nd   Conference   of   the  Sustainable  Consumption  Research  Exchange  (SCORE!)  Network,  Brussels,  Belgium,  10-­‐11  March  2008.  

Kotakorpi,   E.,   S.   Lähteenoja,   M.   Lettenmeier   (2008)   Household  MIPS   -­‐   Natural   resource  consumption  of  Finnish  households  and  its  reduction.  Helsinky.  

Kramer,   K.   J.,   H.   C.   Moll,   S.   Nonhebel,   H.   C.   Wilting   (1999)   Greenhouse   gas   emissions  related  to  Dutch  food  consumption  Energy  Policy  27(4):  203-­‐216.  

Lettenmeier   M.,   Rohn   H.,   Liedtke   C.,   Schmidt-­‐Bleek   (2009)   Resource   productivity   in   7  steps.  How  to  develop  eco-­‐innovative  products  and  services.  Wuppertal  Spezial  (Draft).  

Lettenmeier,   M.,   A.   Maijala   (2006)   Eco-­‐efficiency   Management   of   Municipal   Services:  Water  Supply,  Delivery  and  Wastewater  Treatment  article  draft.  

Lettenmeier  M.,   V.   Salo,   (2008)   Natural   resource   consumption   of   different  waste   policy  options   in   the  Helsinki  metropolitan   area,   Presentation  held   at   ConAccount  2008  Urban  metabolism:   measuring   the   ecological   city,   Pregue   Czech   Republic,   11-­‐   12   September  2008.  

Mandelli,   S.,   P.  Neri.,   L.  Bruni,   L.   Stanca,   F.   Cecchini,   F.   Franchini   (2005)  LCA   -­‐   Fattori   di  caratterizzazione  nella  categoria  human  health.  Applicazione  allo  studio  della  produzione  di  riso.  Enea  Report,  Bologna.  

Pimentel  D.,  M.  H.,  Pimentel  (2008).  Food,  energy  and  society.  New  York,  CRC  Press.  

Page 28: Application of the MIPS method for assessing the ...Lucia Mancini, Michael Lettenmeier, Holger Rohn, Christa Liedtke Application of the MIPS method for assessing the sustainability

Application  of  the  MIPS  method  for  assessing  the  sustainability  of  production-­‐consumption  systems  of  food  

27  

Risku-­‐Norja   H.,   I.,   Mäenpää   (2007)   MFA   model   to   assess   economic   and   environmental  consequences  of  food  production  and  consumption  Ecological  Economics  (60:  700-­‐711).  

Ritthoff,   M.,   C.   Kaiser   and   H.   Rohn   (2009)   Wie   viel   Natur   kostet   unsere   Nahrung?   Ein  Beitrag  zur  Materialintensität  ausgewählter  Produkte  aus  Landwirtschaft  und  Ernährung.  NRW,  Wuppertal  Papers  Wuppertal  Institute.  

Ritthoff,  M.,  H.  Rohn,  C.  Liedtke,  T.  Merten  (2002)  Calculating  MIPS  -­‐  Resource  productivity  of   products   and   services.   Wuppertal   Special   27e,   Wuppertal   Institute.   Available   at   at  www.mips-­‐online.info  

Rohn,   H.,   Wiesen,   K.,   Lettenmeier,   M.,   Pastewski,   N.,   (2010)   Quantitative   benefits   of  sustainable   innovation:   resource   efficiency   potentials   of   technologies,   products   and  strategies.   In:   Paper  Presented   at   Sustainable   Innovation  2010,   Creating  Breakthroughs:  Green  growth,  Eco-­‐innovation,  Entrepreneurship  and  Jobs  –  15th  International  Conference  ‘Towards  Sustainable  Product  Design’,  Rotterdam,  The  Netherlands,  8th–9th  November  

Schmidt-­‐Bleek,   F.   (2008)   The   Earth   -­‐   Natural   Resources   and  Human   Intervention,   Haus  publishing,  London.  

Schmidt-­‐Bleek,   F.,   (1993).   The   Fossil   Makers,   English   translation   of   “Wieviel   Umwelt  braucht   der   Mensch?   MIPS   –   Das   Maß   für   ökologisches   Wirtschaften”.Available   from:  http://factor10-­‐institute.org/publications.html.  

Spangenberg,   J.H.,  F.  Hinterberger,  S.  Moll,  H.  Schütz  (1999)  Material  Flow  Analysis,  TMR  and   mips-­‐Concept:   A   Contribution   to   the   Development   of   Indicators   for   Measuring  Changes   in   Consumption   and   Production   Patterns   International   Journal   of   Sustainable  Development  2(4):  491-­‐505.  

United  Nations,  et  al.   (2003),   Integrated  Environmental  and  Economic  Accounting  2003-­‐  Handbook   on   national   accounting,   United   Nations,   European   Commission,   International  Monetary  Fund,  OECD,  World  Bank.