applications and benefits - abb

65
X JORNADAS TÉCNICAS - ABB EN CHILE, 11-12 ABRIL, 2017 HVDC – Systems Applications and Benefits Felipe Nobre, Gerente de Subestaciones, Chile

Upload: others

Post on 19-Nov-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

X JORNADAS TÉCNICAS - ABB EN CHILE, 11-12 ABRIL, 2017

HVDC – SystemsApplications and Benefits

Felipe Nobre, Gerente de Subestaciones, Chile

ABB y la Innovación

Porque HVDC

Tecnología HVDC

Experiencia en el Proyecto Rio Madeira, HVDC ± 600 kV

April 18, 2017 Slide 2

Agenda

Moldando el mundo hoy por medio da la innovaciónPionera en tecnología desde 1883

Os fundadores

1900

Robôs industriais

Turbochargers

HVDC

Ultra-alta tensão

Painéis isoladosa gás

Acionamentos einversores de frequência

Turbina a vapor

1920 1930 1940

1990 2000

19601970

Sistema deacionamentoelétrico paralocomotivas

1950

Motor sem redutor

1980

Sistemas depropulsão elétrica

Sistemas decontrole distribuído

Turbinaa gás

April 18, 2017 Slide 3

Slid

e4

(22)

HVDC historyHistory and Introduction

First commercial HVDCtransmission in 1954(100 kV, 20 MW)

Gotland – Swedishmainland Cable length: 100 km

April 18, 2017 Slide 4

HVDC historyABB, the pioneer in HVDC

April 18, 2017 Slide 5

Liderazgo global en HVDCABB subministró más de la mitad de todos los proyectos

April 18, 2017 Slide 6

Opportunities to deliver value to our customers

Power Grids Division

April 18, 2017 Slide 7

Renewables and distributed generation

Longer transmission distances

Power quality

Power grid automation

New grids: emerging markets

Aging grids: developed markets

Service and asset health management

Market drivers

Sistema DC EuropeuFuturo

April 18, 2017 Slide 8

ABB y la Innovación

Porque HVDC

Tecnología HVDC

Experiencia en el Proyecto Rio Madeira, HVDC ± 600 kV

April 18, 2017 Slide 9

Agenda

Slid

e10

(22)

HVDC characteristics

Why use HVDC instead of AC?

DC Decreases total cost for long distance powertransmission with overhead lines and/or cables.DC enables connection between asynchronous AC networks.Gives fast and accurate control of the power flow.

Generator HVDC transmission system Load

April 18, 2017 Slide 10

AC Terminal costs

Total AC cost

Total cost DC vs. ACInvestment Costs

Distance

DC terminalCosts

Total DC Cost

VariablesCost of LandCost of MaterialsCost of LabourTime to MarketPermits…etc.

Critical Distance

AC DC

April 18, 2017 Slide 11

Slid

e12

(22)

Lower losses

HVDC 2x500 kV

April 18, 2017 Slide 12

Transmisión ACCamino de la línea aérea

April 18, 2017 Slide 13

Transmisión ACCamino de la línea aérea con compensación de FACTs

April 18, 2017 Slide 14

Transmisión ACCamino de la línea aérea con compensación de FACTs

April 18, 2017 Slide 15

Transmisión HVDCCamino de la línea aérea

April 18, 2017 Slide 16

Transmisión HVDCCamino de la línea aérea

April 18, 2017 Slide 17

Transmisión HVDC LightCamino de cables subterráneos

April 18, 2017 Slide 18

Slid

e19

(22)

Why use HVDC for interconnections?Exact power flow controlEfficient use of generating capacityStability controlNo increase of short circuit currentsLess environmental impactLow losses for long distance transmissionsLower investment

Interconnection of power systems

DC

HVDC

HVAC with FACTS

Conventional HVAC

April 18, 2017 Slide 19

ABB y la Innovación

Porque HVDC

Tecnología HVDC

Experiencia y aplicaciones

April 18, 2017 Slide 20

Agenda

Thyristor Function

Block high voltage in both directions

Conduct current in forward direction

Turn on when given firing pulse and positive voltage

Turn off when the thyristor current crosses zero

+ Vthyr -

Current direction

April 18, 2017 Slide 21

HVDC Light – Link of two technologiesLCC + SVC = VSC

LCC

SVC

VSC

{Uv

Uv

April 18, 2017 Slide 22

Introducción: tipos básicos de ConversorHVDC e HVDC Light

April 18, 2017 Slide 23

HVDC Classic

BU Grid Integration Product Portfolio

April 18, 2017 Slide 24

ABB offers a complete portfolio:

– Turnkey HVDC transmission systems

– DC voltage up to 1,100 kV

– Power range up to 10,000 MW

– System retrofit through upgrading, uprating & major retrofit of converterstations

– Power Semiconductors: Thyristors for HVDC

HVDC Classic can be applied for the following:

– Connecting remote generation

– Bulk transmission of energy

– Interconnecting grids

– Connecting remote loads

– Upgrades

Portfolio and application

VSC – HVDC Light®

BU Grid Integration Product Portfolio

April 18, 2017 Slide 25

ABB offers a complete portfolio:

– Turnkey HVDC Light® transmission systems

– Land cable, overhead line or sea cable connections

– Power range 50 -1,800 MW

– Power Semiconductors: IGBTs

HVDC Light® can be applied for the following:

– Connecting remote generation, Interconnecting grids, Offshore windconnections

– City center infeed

– Power from shore

– DC links in AC grids

– Connecting remote loads

– Upgrades

Portfolio and application

Tecnologías HVDC - Conversoras

HVDC Light (Conmutación forzada), “VSC”No requiere nivel mínimo de corto-circuitoNo requiere nivel mínimo de potenciaNo demanda potencia reactivaControl independiente de la potencia activa yreactivaSoporte dinámico de voltaje: Q ~= ± 0.5 xPdnom

HVDC Clásico (Conmutación natural), “LCC”Nivel de corto-circuito mínimo: SMVA > 2 x Pd

(>1.3 x Pd con CCC)Nivel mínimo de potencia: 5-10%Demanda potencia reactiva en los terminalesPotencias mas altas, escalas de economía

April 18, 2017 Slide 26

Slid

e27

(22)

HVDC Light: Potencia Activa y ReactivaComparación con HVDC Clásica

1,0

0,5

Id

Q

0,13

- 0,5Consumo de la conversora

Desbalace conla red

Suministro de bancosde capacitores yfiltros

HVDC Clásica:~ compensación reactiva con filtros ybancos en paralelo maniobrados

0.75 0.5 0.25 0 0.25 0.5 0.75

1.25

1

0.75

0.5

0.25

0.25

0.5

0.75

1

1.25P (p.u.)

Qgen

(p.u.)Qabs(p.u.)

Rectifieroperation

Inverteroperation

HVDC Light:No requiere compensación reactiva; STATCOM conun rango dinámico ~ 0.5Pd/+0.5Pd Mvarbajo un factor de potencia de 90%.

Operación individual posible enqualquier punto dentro de la curva(respetando que PR~PI ), i.e. QR y QIpueden ser despachadastotalmente distintas(Diagrama válida en operaciónBtB)

April 18, 2017 Slide 27

HVDC Light versus HVDC ClásicaRangos comparativos

Ucd en kV

HVDC Clásicacon líneas aereas

Potencia en MW

HVDC Lightcon líneas aereas

800

700

600

500

2000 3000 4000 5000 6000 7000

HV

DC

concables

MI

400

300

200

0

0 1000

HVDC Lightcon cablespoliméricos

April 18, 2017 Slide 28

Slid

e29

(22)

100 W

-100 V

99 W

-99 V

0 V

-99 V -100 V

1A

1W

Inverter Rectifier

~~

Power reversal:

100 W 99 W

+99 V+100 V

0 V

+100 V +99 V

InverterRectifier 1A

~~

Power direction:

1W

HVDC ControlLine-commutated converters

April 18, 2017 Slide 29

Slid

e30

(22)

HVDC Transmission Configurations

Connection between Converter Stationscan be Overhead Lines or Cables

=~

=~

Symmetric monopole

=~

=~

Asymmetric monopole, metallic return

=~

=~

=~

= ~

Bipole

Bipole, metallic return

=~

=~

=~ = ~=

~=

~Asymmetric monopole, ground return

April 18, 2017 Slide 30

Slid

e31

(22)

HVDC Transmission Configurations

=~

=~

Multiterminal Symmetric monopole

=~

=~

=~

=~

= ~

Bipole with parallel converters (doubling current)

=~

=~

=~

= ~

April 18, 2017 Slide 31

Slid

e32

(22)

Single-line diagram for a typical converter station

11thharmonicfilter

13thharmonicfilter

High-passfilter

AC yard

Valve hall

Pole line

DC filter

DC yardConverter

To ground electrodeor metallic returnMonopolar Converter Station

April 18, 2017 Slide 32

Slid

e33

(22)

Single-line diagram for a typical converter station

11thharmonicfilter

11thharmonicfilter

13thharmonicfilter

13thharmonicfilter

High-passfilter

High-passfilter

AC yard

Valve hall

AC bus

Pole line

Electrodelines

Pole line

DC filter

DC yardConverter

Pole 1

Pole 2DCFilter

To electrodelines

Bipolar Converter Station

April 18, 2017 Slide 33

Slid

e34

(22)

HVDC VSC Evolution

April 18, 2017 Slide 34

Three-phase, two-level voltage-source converter for HVDC

Three-phase, three-level, diode-clamped voltage-source converter for HVDC

The very first VSC-HVDC scheme installed(the Hellsjön experimental linkcommissioned in Sweden in 1997) until 2012,most of the VSC HVDC systems built werebased on the two level converter.

In an attempt to improve on the poor harmonicperformance of the two-level converter. In arefinement of the diode-clamped converter, theso-called active neutral-pointclamped converter, the clamping diode valvesare replaced by IGBT valves, giving additionalcontrollability. Such converters were used onthe Murraylink project in Australia and the CrossSound Cable link in the United States.

Slid

e35

(22)

HVDC VSC Evolution

April 18, 2017 Slide 35

Three-phase Modular Multi-Level Converter (MMC) for HVDC.

The Modular Multi-LevelConverter (MMC) is now becoming themost common type of voltage-sourceconverter for HVDC.Like the two-level converter and the six-pulse line-commutated converter, aMMC consists of six valves, eachconnecting one AC terminal to one DCterminal.

1997Hellsjön± 10 kV, 3 MW

2000Directlink, 354 km± 80 kV, 60 MW

2010DolWin 1, 330 km± 320 kV, 800 MW

2004Estlink, 210 km± 150 kV, 350 MW

Cables HVDC Light

2001Murraylink, 360 km± 150 kV, 220 MW

Para HVDC Light ABB ha desarrollado cables triple-extruidos de bajopeso y con empalmes prefabricados, que:

ØSon probados, secos, confiables y rápidos de montarØNo require búnker de hormigón, sino solamente una

cubierta de arenaØPermite juntar cables con diferentes areas del

conductor 2014± 525 kV, 2600 MW

April 18, 2017 Slide 36

ABB y la Innovación

Porque HVDC

Tecnología HVDC

Experiencia en el Proyecto Rio Madeira, HVDC ± 600 kV

April 18, 2017 Slide 37

Agenda

HVDC Project Map – South America

South AmericaSA 1: Itaipu 2x 3150MW, 600kV, bipole

SA 2: Brazil-Argentina interconetion2x 1100MW, CCC back to backSA 3: Rio Madeira 2x 400MW, CCCback to backSA 4: Rio Madeira 3150MW, 600kV,bipole

April 18, 2017 Slide 38

§ 2 x 1000 MW deliverycapability

§ 50/60 Hz B-t-B converterstation : 4 x 550 MW blocks

§ 2 x 488 km, 500 kV actransmission line

§ 22 months to commercialoperation, each stage

§ CCC Converter stationssolution to comply with thelow short circuit ratio.

ItáRinconSantaMaria

Garabi

Argentina - Brasil Interconnection I & II “Garabi”

April 18, 2017 Slide 39

PLC Equipment

500 kV, 50 Hz

PLC Equipment

525 kV, 60 Hz

92.5 MVArLine Shunt

Reactor

250 MVArLine Shunt

Reactor

Spare Phase

550 MW 12-Pulse Converter Block± 70 kV, 3930 A

85 MVAr AC Filter Bank

Ring Bus

161.1 MVAr per6-Pulse Converter

94.8 MVAr per6-Pulse Converter

85 MVAr AC Filter Bank

Figure 6 Garabi Converter Station SingleLine Diagram

Argentina – Brasil 1 : Garabi BtB Converter

April 18, 2017 Slide 40

Line 2

Line 1

Line 2

Line 1

Garabí 2

Block 1

Block 2

Block 3

Block 4

AC filter

Shunt reactor

Garabí 1

Tie-breakersTie-breakers

Argentina - Brasil : Garabi 1 + 2

April 18, 2017 Slide 41

Argentina - Brazil Interconnection I & II “Garabi”

Garabi Converter AreaTransformers,Valve Modules,CCC Capacitors

2x550 MW Blocks

Garabi Valve Modules,± 70 kV4000 A

April 18, 2017 Slide 42

60 Hz

50 Hz

550 MWBlock 1

550 MWBlock 2

Argentina - Brasil : Garabi BtB Converter

April 18, 2017 Slide 43

• Distributed containers withcontrol systems close to the yard

• Optical CV and VTs• Optical DCCT• CCC Capacitors Banks

Argentina - Brasil : Garabi BtB Converter

Valve Modules3xQuadrivalve

CCC capacitors

CCC capacitors

ConverterTransformers

April 18, 2017 Slide 44

Argentina - Brasil : Garabi 1 + 2

April 18, 2017 Slide 45

Desafios da Transmissão Rio MadeiraDistancia 2350 kmPotencia 6450 MWDos usinas 88 generadoresGeneradores 72 e 75 MW

Desafíos:•Distancia muy grande.•Múltiples generadores de pequeño porte.•Interconexión con sistema de 230 kV flaca.

Soluciones:•Eficiencia con uso de HVDC en ± 600 kV.•Uso de “controlabilidad” de HVDC•Flexibilidad usando de Back-to-Back con CCC

Experiencia:•25 anos de HVDC en ± 600 kV, Furnas/Itaipu•Garabi 2200 MW Back-to-Back con CCC

April 18, 2017 Slide 46

Bipole 1± 600 kV line

Lot D

CPV stationBtB 2x400 MW

Lot A

Bipole 23150 MW

Lot F

Sistema de Transmisión del Rio Madeira

Bipole 13150 MW

Lot C

Bipole 2± 600 kV line

Lot G

April 18, 2017 Slide 47

Sistema de Transmisión del Rio Madeira

The two back-to-back blocks are each rated 400 MW, although maximum powertransmission into the 230kV is limited to 600 MW, at least until 2017. To overcome theproblems of feeding into such a weak system, the back-to-back uses CapacitorCommutated Converters (CCC), improving not only performance related tocommutation failures, but also reducing the need for shunt reactive compensation.Although not strictly necessary from a performance point of view the 500 kV side of theback-to-back also uses CCC technology. This permits use of harmonic filters with arelatively low Mvar rating on both sides of these converters.

April 18, 2017 Slide 48

Operating modes

The back-to-back has to operate in variousconsiderably different configurations of thenetwork:

1. Feeding weak 230 kV networksynchronous with the Brazilian network.

2. As normal operation, but with a large gasfired thermal unit in operation locally inPorto Velho.

3. As normal operation initially, butseparating from the Brazilian System(Isolated operation).

4. Start-up in isolated operation (Blackstart).

5. Feeding 500 kV converter bus from 230kV (Reverse power direction).

Sistema de Conexión Acre - Rondônia

April 18, 2017 Slide 49

Notes:Includes metallic return, paralleling of bipoles and of linesLot C includes Master Control of Back-to-Back and Bipole 2

Bipolo 1, 3150 MW Rio Madeira Transmisión, Lote C

Porto Velho Araraquara

April 18, 2017 Slide 50

Conversoras da Transmissão em HVDC

CPV Bipole 1 Valve Hall

QuadrivalvulasTrasformadores de tres enrolamientos

April 18, 2017 Slide 51

Bi-valves en AraraquaraQuadri-valves en Porto Velho

Bipolo 1, 3150 MW Rio Madeira Transmissão, Lote CSalas de válvulas:Two winding trafoHeight: 18 mWidth: 53 mDepth: 25 mThree winding trafoHeight: 23 mWidth: 27 mDepth: 25 m

April 18, 2017 Slide 52

Bipolo 1, 3150 MW Rio Madeira Transmissão, Lote C

Estacion Araraquara – Rio Madeira ± 600 kVJunho 2012

April 18, 2017 Slide 53

Largest HVDC transformerSingle phase 3 winding

Power: 621/310,5/310,5 MVAConnection: Yn/Y/D

HVDC transformers

April 18, 2017 Slide 54

Rio Madeira TransmissionTransporte transformadores para Porto Velho, via Manaus

April 18, 2017 Slide 55

Coletora Porto Velho

Lot LA-CC

Lot LF-CC Lot LC-CC

Future

April 18, 2017 Slide 56

Rio Madeira HVDC ProjectPictures from Site

Porto Velho Back to Back station

April 18, 2017 Slide 57

ABB Araraquara Converter station (right) and Alstom station in the middle

Two transformers moved into position

Rio Madeira HVDC ProjectPictures from Site

April 18, 2017 Slide 58

Coletora Porto Velho

April 18, 2017 Slide 59

BtB 1, 400 MW Rio Madeira Transmissão, Lote ATeste de tipo, Octo-Valvula

CCC, Transformador de três fases, Octo-valvulas ± 50 kV

April 18, 2017 Slide 60

Line Faulttest

Rio Madeira HVDC ProjectPictures from Site

April 18, 2017 Slide 61

T. Rio

BeloMonte

Madeira

Araraquara

Itaipu

Int. N – SParauapebas

Assis

Estreito

Int NE – SEGraçaAranha

Silvania

Proyectos futuros en Brasil

April 18, 2017 Slide 62

Tapajos

Bipoles A & B

Tapajos 1 & 2HPP Tapajós Transmission System

Voltage: ± 800 kV DC

Power: 8,000 MW for 2 bipoles

Expected Auction/Award: 2019/2020BP1 2020/2021 BP2

Transmission Line: 1,500 km BP12,500 km BP2

N/SE and NE/SE Transmission Expansion

Transmission Line: 2,100 km N/SE1,500 km NE/SE

Voltage: ± 800 kV DC

Power: 7,500 MW for 2 bipoles

Expected Auction/Award: 2018/2019

Cuando y porque usar ellos de CorrienteContinua?

1. Menos costo de inversión2. Distancias longas3. Perdidas menores4. Interconexiones asíncronas5. Flexibilidad de controle6. Limitación de corrientes de corto7. Medio-ambiente

SumarioMais eficienteMais robustoMenos impacto ambiental

Razones para el uso de HVDC.

April 18, 2017 Slide 63

Contactos

April 18, 2017 Slide 64

Felipe NobreGerente de Grid IntegrationTeléfono: +56 2 2471 4322Celular: +56 9 4432 3687E-mail: [email protected]