applied calculus chapter 4 multiple integrals

66
MULTIPLE INTEGRALS [email protected]

Upload: jeremy-jeremy

Post on 16-Jul-2015

230 views

Category:

Education


3 download

TRANSCRIPT

Page 1: Applied Calculus Chapter  4 multiple integrals

MULTIPLE INTEGRALS

[email protected]

Page 2: Applied Calculus Chapter  4 multiple integrals

xddyyxfdxdyyxf

dydxyxfdxdyyxf

dycbxayxR

x,yf

b

a

d

c

b

a

d

c

d

c

b

a

d

c

b

a

),(),(

),(),(

then

,:),(

regionr rectangula ain continuous is )( If

[email protected]

Iterated Integral

Page 3: Applied Calculus Chapter  4 multiple integrals

1

0

2

1

1

1

2

2

30 (ii)

)23( (i)

x

x

ydydx

dydxxyx

Example1

Evaluate the iterated integrals.

[email protected]

Page 4: Applied Calculus Chapter  4 multiple integrals

14

)1(2)2(226

])1()1(3[])1()1(3[

3)23(

obtain weintegrals, iterated of definition the Using(i)

332

1

3

2

1

2

2

1

2222

2

1

1

1

22

2

1

1

1

2

xdxx

dxxxxx

dxxyyxdydxxyxy

y

[email protected]

Solution :

Page 5: Applied Calculus Chapter  4 multiple integrals

[email protected]

2

3535

)1515(

1530

obtain weintegrals, iterated of definition the Using(ii)

1

0

53

1

0

42

1

0

2

1

0

2

2

xx

dxxx

dxyydydxxy

xy

x

x

Page 6: Applied Calculus Chapter  4 multiple integrals

[email protected]

theorem.sFubini’– integrals iteratedan as

calculated becan function continuousany of integrals

double the1943),-(1879 Fubini Gaudio toAccording

dycbxayxR ,:),(

ifregion r rectangula aon theoremsFubini’

b

a

d

c

d

c

b

a

dydxyxfdxdyyxfdAyxf ),(),(),(R

then

Fubini’s Theorem

Page 7: Applied Calculus Chapter  4 multiple integrals

[email protected]

b

a

y

yR

dydxyxfdAyxf2

1

),(),(

d

c

x

xR

dxdyyxfdAyxf2

1

),(),(

Page 8: Applied Calculus Chapter  4 multiple integrals

(-2,1) and (3,1) (0,0), ertices v

h theregion witr triangulaclosed theis ;),( (iii)

sin and 0

,,0 boundedregion theis ;),( (ii)

20,2:),(;4),( (i)

),( Evaluate

2

2

Rxyyxf

xyy

xxRyyxf

yyxyyxRyxyxf

dAyxfR

[email protected]

Example2

Page 9: Applied Calculus Chapter  4 multiple integrals

[email protected]

Solution :

Page 10: Applied Calculus Chapter  4 multiple integrals

5

36

5

2

42

)26(

]})(2[]2)2(2{[

2)4()4(

2

0

543

2

0

432

2

0

32222

2

0

22

2

0

2

2

2

yyy

dyyyy

dyyyyy

dyxyxdxdyyxdAyxyx

yx

y

y

yx

yxR

[email protected]

Page 11: Applied Calculus Chapter  4 multiple integrals

[email protected]

as dillustrate is Rregion The (ii)

Solution :

Page 12: Applied Calculus Chapter  4 multiple integrals

[email protected]

42

2sin

4

1

)2cos1(4

1

2

sin

2

0

0

0

2

0

sin

0

2

0

sin

0

xx

dxx

dxx

dxy

dydxydAy

xx

x

xy

yR

Page 13: Applied Calculus Chapter  4 multiple integrals

[email protected]

as dillustrate is Rregion The (iii)

Solution :

Page 14: Applied Calculus Chapter  4 multiple integrals

[email protected]

2

1

2

2

5)49(

2

2

1

0

5

1

0

41

0

222

1

0

3

2

221

0

3

2

22

y

dyy

dyyyy

dyyx

dxdyxydAxy

yx

yx

y

y

yx

yxR

Page 15: Applied Calculus Chapter  4 multiple integrals

as described is solid The

.0 and 4 , 9

by bounded solid theof volume theFind

22 zzyyx

922 yx

yz 4

0z

R

[email protected]

Example 3

Page 16: Applied Calculus Chapter  4 multiple integrals

[email protected]

:Rregion theis solid theof base The

Solution :

Page 17: Applied Calculus Chapter  4 multiple integrals

3

3

2

3

3

9

9

2

3

3

9

9

98

24

)4()4(

by given is volume theThus,

2

2

2

2

dxx

dxy

y

dydxydAyV

V

xy

xy

x

x

xy

xyR

[email protected]

Page 18: Applied Calculus Chapter  4 multiple integrals

[email protected]

3622

)sin(

22

sin36

2

2sin36

)12(cos36cos72

)cos3()sin1(9898

2/

2/

2/

2/

2/

2/

2

2/

2/

2

3

3

2

tt

dtttdt

tdttdxxV

Hence . cos3,sin3let Now tdtdxtx

Page 19: Applied Calculus Chapter  4 multiple integrals

[email protected]

Example 4

2

0

1

20

2

(ii) sin

(i)

Evaluate

y

x

x

dxdyedydxy

y

as dillustrate is

Rregion The (i)

Solution :

Reversing The Order of

Integration

Page 20: Applied Calculus Chapter  4 multiple integrals

[email protected]

.integrated becannot sin

But y

y

: nintegratio oforder the reverse ,So dydx dxdy

: becomeregion theThen,

Page 21: Applied Calculus Chapter  4 multiple integrals

21cos

cossin

)0(sin

sin

sinsin(i)

0

0

0

0

0

0 00

yydy

dyyy

y

dyxy

y

dxdyy

ydydx

y

y

y

y

y

y

yx

x

y

y

yx

x

x

x

y

xy

[email protected]

Page 22: Applied Calculus Chapter  4 multiple integrals

[email protected]

as dillustrate is Rregion The (ii)

Solution :

Page 23: Applied Calculus Chapter  4 multiple integrals

[email protected]

.integrated becannot But 2

dxex

:n integratio oforder thereverse So, dydx dxdy

: becomeregion theThen,

Page 24: Applied Calculus Chapter  4 multiple integrals

[email protected]

1

2

1

0

1

0

1

0

1

0

2

0

1

0

2

0

2

0

1

2/

2

2

22

eedue

dxxe

dxye

dydxedxdye

u

u

u

u

x

x

x

x

x

xy

y

x

x

x

xy

y

x

y

y

x

yx

x

Page 25: Applied Calculus Chapter  4 multiple integrals

scoordinatepolar in the

)( of integral theevaluatemay then we)(

to)(function aconvert can that weSuppose

the

in evaluate easier to isit shape,circular involvingWhen

r,fr, fz

x,yz

s.coordinatepolar

[email protected]

Page 26: Applied Calculus Chapter  4 multiple integrals

scoordinatePolar

r

θ

x

y

),( rP

cosrx

sinry

22 yxr

x

y1tan

r0

20

[email protected]

Page 27: Applied Calculus Chapter  4 multiple integrals

R

dA

dV

A

V

R

dArfV

dArfdV

),(

),(

)( r, fz

)( r, fz

Page 28: Applied Calculus Chapter  4 multiple integrals
Page 29: Applied Calculus Chapter  4 multiple integrals

1

0 0

22

2

2

0

4

0

22

)( (ii)

)cos( (i)

scoordinatepolar to

changingby integrals following theEvaluate

2

y

x

dxdyyx

y

dydxyx

[email protected]

Example 5

Page 30: Applied Calculus Chapter  4 multiple integrals

as described is Rn integratio ofregion The (i)

[email protected]

Solution :

Page 31: Applied Calculus Chapter  4 multiple integrals

0r

2r

0

2/

4

4sin

4sinsin

)(cos

)(cos

)cos(

Therefore

2/

0

21

2/

0

4

021

2/

0

4

0

21

2/

0

2

0

2

2

0

4

0

22

2

ddu

dudu

rdrdr

dydxyx

x

[email protected]

Page 32: Applied Calculus Chapter  4 multiple integrals

Solution :

as described is Rn integratio ofregion The (ii)

Page 33: Applied Calculus Chapter  4 multiple integrals

8422

1

2

1sin

2

csc

sin2

sin

)sin(

Therefore

2/

4/

2/

4/

22

2/

4/

2

csc

0

22/

4/

csc

0

2

2/

4/

csc

0

2

2

1

0 0

22

2

dd

dr

drdr

rdrdr

r

dxdyyx

y

r

r

y

[email protected]

Page 34: Applied Calculus Chapter  4 multiple integrals

as described is base its and solid The

3. Example solve toscoordinatepolar the Use

R

3r

R

y

x3 3

[email protected]

Example 6

Page 35: Applied Calculus Chapter  4 multiple integrals

36cos918)sin918(

sin3

2

)sin4()sin4(

)sin4()4(

bygiven is V volume theThus,

2

0

2

0

2

0

3

0

32

2

0

3

0

2

2

0

3

0

d

dr

r

drdrrrdrdr

dArdAyV

r

r

r

r

RR

[email protected]

Page 37: Applied Calculus Chapter  4 multiple integrals

A lamina is a flat sheet (or plate) that is so thin as to be considered two-dimensional.

Suppose the lamina occupies a region D of the xy-plane and its density (in units of mass per area) at a point (x, y) in D is given by ρ(x, y), where ρ is a continuous function on D. This means that

A

myx

lim),(

where Δm and ΔA are the mass and area of a small rectangle that contains (x, y) and the limit is taken as the dimensions of the rectangle approach 0.

Laminas & Density

Page 38: Applied Calculus Chapter  4 multiple integrals

Definition mass of a planar lamina

of variable density

Page 39: Applied Calculus Chapter  4 multiple integrals

[email protected]

1 1

0 0

11

2

00

A triangular lamina with vertices 0,0 , 0,1

and 1,0 has density function , .

Find its total mass.

Solution :

,

1 1...

2 24

x

R

x

x y xy

m x y dA xy dydx

m xy dx unit of mass

Example 7

Page 40: Applied Calculus Chapter  4 multiple integrals

[email protected]

The moment of a point about an axis is the product of its mass and its distance from the axis.

To find the moments of a lamina about the x- and y-axes, we partition D into small rectangles and assume the entire mass of each subrectangle is concentrated at an interior point. Then the moment of Rij about the x-axis is given by

and the moment of Rk about the y-axis is given by

**** ),())(mass( ijijijij yAyxy

**** ),())(mass( ijijijij xAyxx

Moment

Page 41: Applied Calculus Chapter  4 multiple integrals

[email protected]

m

i

n

j D

ijijijnm

x dAyxyAyxyM1 1

***

,),(),(lim

The moment about the x-axis of the entire lamina is

The moment about the y-axis of the entire lamina is

m

i

n

j D

ijijijnm

y dAyxxAyxxM1 1

***

,),(),(lim

Page 42: Applied Calculus Chapter  4 multiple integrals

[email protected]

Center of Mass

The center of mass of a lamina is the “balance point.” That is, the place where you could balance the lamina on a “pencil point.” The coordinates (x, y) of the center of mass of a lamina occupying the region D and having density function ρ(x, y) is

where the mass m is given by

D

x

D

ydAyxy

mm

MydAyxx

mm

Mx ),(

1),(

1

D

dAyxm ),(

Page 43: Applied Calculus Chapter  4 multiple integrals

Moments and Center of Mass of A

Variable Density Planar Lamina

Page 44: Applied Calculus Chapter  4 multiple integrals
Page 45: Applied Calculus Chapter  4 multiple integrals

2

Find the mass and center of mass of the lamina

that occupies the region and has the given

density of function .

a) , 0 2, 1 1 ; ,

4 4: , ,0

3 3

) is bounded by , 0, 0, and 1;x

D

D x y x y x y xy

Ans

b D y e y x x

x

322

2 2

,

4 11 1: 1 , ,

4 2 1 9 1

y y

eeAns e

e e

Example 8

Page 46: Applied Calculus Chapter  4 multiple integrals

[email protected]

Example 9

Find the surface area of the portion of the surface

that lies above the rectangle R in the xy-

plane whose coordinates satisfy

24 xz

40 and 10 yx

Page 47: Applied Calculus Chapter  4 multiple integrals

[email protected]

Example 10

Find the surface area of the portion of the paraboloid

below the plane 22 yxz 1z

Page 48: Applied Calculus Chapter  4 multiple integrals

Gregion closed D-3 aon

)( variables threeoffunction a ofn integratio

an is scoordinateCartesian in integrals Triple

x,y,zf

dzdAdzdydxdV

Page 50: Applied Calculus Chapter  4 multiple integrals

[email protected]

Example 11

Gregion theof volume(ii)The

6),,( wheredV ),,( (i)

evaluate plane,- and plane- ,1

by boundedoctant first in theregion theisG If

G

2

zzyxfzyxf

yzxyyz, xy

Page 51: Applied Calculus Chapter  4 multiple integrals

belowshown as

is plane- xyon the R projection its andG region The

[email protected]

Solution:

Page 52: Applied Calculus Chapter  4 multiple integrals

obtain weThus .1 and

10by bounded Rregion a is plane-

on theG of projection The1 )(z and

0 )( 6z, )( have wecase In this

2

2

1

yxy

, , xxxy

– y. x,y

x,yzx,y,zf

R

R

yz

z

R

yz

zGG

dAy

dAz

dAzdzzdVdVzyxf

2

1

0

2

1

0

)1(3

3

66),,(

[email protected]

(i)

Page 53: Applied Calculus Chapter  4 multiple integrals

35

16

75

3

)331()1(

)1(

)1(3

1

0

753

1

0

642

1

0

32

1

0

13

1

0

1

2

2

2

xxxx

dxxxxdxx

dxy

dydxy

x

x

y

xy

x

x

y

xy

[email protected]

Page 54: Applied Calculus Chapter  4 multiple integrals

RR

yz

zG

dAydAdzdVV )1(

1

0

15

4

103222

1

2

)1(

1

0

531

0

42

1

0

12

1

0

1

2

2

xxxdx

xx

dxy

y

dydxy

x

x

y

xy

x

x

y

xy

[email protected]

(ii)

Page 55: Applied Calculus Chapter  4 multiple integrals

)( rdrddzdzdAdV

x

z

y

dAr

dr

dzdƟ

rdƟ

[email protected]

Page 56: Applied Calculus Chapter  4 multiple integrals

[email protected]

sCoordinatePolar lCylindrica

cosrx

sinry

22 yxr

x

y1tan

r0

20

z

Page 57: Applied Calculus Chapter  4 multiple integrals

.

are plane-

on the R projection its andG region theof solid The

.0 and ,25,9by bounded

solid theof volume thefind toscoordinate lcylindrica e Us

2222

xy

zyxzyx

922 yx

2225 yxz

0z

Example 12

Page 58: Applied Calculus Chapter  4 multiple integrals

3

122

3

61

3

)25(

)25(2

125

25

Thus, 0. z have also We.25 z

obtain we,relation Using

2

0

2

0

9

0

2/3

2

0

9

0

2/1

2

0

3

0

2

2

25

0

22

222

2

1

ddu

dudurdrdr

dArdAdzdVV

-r

r y x

r

r

RR

rz

zG

[email protected]

Solution:

Page 59: Applied Calculus Chapter  4 multiple integrals

[email protected]

Example 13

are plane- xyon the R projection its andG region theof solid The

9.z plane theand paraboloid by the

bounded solid theof volume thefind toscoordinate lcylindrica Use

22 yx z

Page 60: Applied Calculus Chapter  4 multiple integrals

2

81

4

81

42

9)9(

)9(

)9(

is volumerequired theThus

2

0

2

0

3

0

422

0

3

0

3

2

0

3

0

2

2

9

2

d

drr

drdrr

rdrdr

dArdAdzdVV

r

r

RR

z

rzG

[email protected]

Solution:

Page 61: Applied Calculus Chapter  4 multiple integrals

ρ

Ɵ

Ɵ

ϕdϕ

x

y

z

[email protected]

dsin

d

dsin

Page 62: Applied Calculus Chapter  4 multiple integrals

[email protected]

sCoordinatePolar Spherical

Page 63: Applied Calculus Chapter  4 multiple integrals

ddd

ddddV

sin

)sin)()((

2

[email protected]

Page 64: Applied Calculus Chapter  4 multiple integrals

below dillustrate asG region theof solid The

. 3 sphere theinside and

3

1 cone theabove lies that solid theof volume theFind

Example 14

Page 65: Applied Calculus Chapter  4 multiple integrals

92

9

)1cos(9cos9

sin9sin3

sin

is volumerequired theThus

2

0

2

0

3

2

0

0

2

0 0

2

0 0

3

0

3

2

0 0

3

0

2

3

33

3

d

dd

dddd

ddddVVG

[email protected]

Solution:

Page 66: Applied Calculus Chapter  4 multiple integrals

[email protected]

“In order to succeed, your desire for success should be greater than your fear of failure. ”

[email protected]