apw7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · synchronous topology 0.6v low...

16
www.DataSheet4U.com Copyright ANPEC Electronics Corp. Rev. A.1 - Aug., 2006 APW7134 www.anpec.com.tw 1 ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. Dual 1.5MHz, 600mA Synchronous Step-Down Converter Features General Description Applications TV Tuner/Box Portable Instrument The APW7134 contains two independent 1.5MHz con- stant frequency, current mode, PWM step-down converters. Each converter integrates a main switch and a synchronous rectifier for high efficiency without an external Schottky diode. The APW7134 is ideal for powering portable equipment that runs from a single 600mA Output Current on Each Channel 2.5V to 5.5V Input Voltage Range 1.5MHz Constant Frequency Operation Low Dropout Operation at 100% Duty Cycle Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 μA Shutdown Current Current Mode Operation Over Temperature Protection Over Current Protection Up to 94% Efficiency Internally Compensated Lead Free Available (RoHS Compliant) cell Lithium-Ion (Li+) battery. Each converter can sup- ply 600mA of load current from a 2.5V to 5.5V input voltage. The output voltage can be regulated as low as 0.6V. The APW7134 can also run at 100% duty cycle for low dropout applications. Pinouts EN1 SW1 GND1 IN1 FB2 EN2 SW2 GND2 IN2 FB1 Exposed pad on backside APW7134 (Top View) DFN-10 (3mm x 3mm) 7 8 5 4 3 2 1 9 6 10 查询APW7134供应商 捷多邦,专业PCB打样工厂,24小时加急出货

Upload: others

Post on 16-May-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

www.DataSheet4U.com

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw1

ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advisecustomers to obtain the latest version of relevant information to verify before placing orders.

Dual 1.5MHz, 600mA Synchronous Step-Down Converter

Features General Description

Applications

• TV Tuner/Box

• Portable Instrument

The APW7134 contains two independent 1.5MHz con-stant frequency, current mode, PWM step-downconverters. Each converter integrates a main switchand a synchronous rectifier for high efficiency withoutan external Schottky diode. The APW7134 is ideal forpowering portable equipment that runs from a single

• 600mA Output Current on Each Channel

• 2.5V to 5.5V Input Voltage Range

• 1.5MHz Constant Frequency Operation

• Low Dropout Operation at 100% Duty Cycle

• Synchronous Topology

• 0.6V Low Reference Voltage

• Typically 0.1 µA Shutdown Current

• Current Mode Operation

• Over Temperature Protection

• Over Current Protection

• Up to 94% Efficiency

• Internally Compensated

• Lead Free Available (RoHS Compliant)

cell Lithium-Ion (Li+) battery. Each converter can sup-ply 600mA of load current from a 2.5V to 5.5V inputvoltage. The output voltage can be regulated as low as0.6V. The APW7134 can also run at 100% duty cyclefor low dropout applications.

Pinouts

10EN1 SW1

GND1

IN1

FB2

EN2SW2

GND2

IN2

FB1

Exposed padon backside

APW7134 (Top View)DFN-10 (3mm x 3mm)

7

8

5

4

3

2

1

9

6

10

查询APW7134供应商 捷多邦,专业PCB打样工厂,24小时加急出货

Page 2: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw2

Ordering and Marking Information

Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin platetermination finish; which are fully compliant with RoHS and compatible with both SnPb and lead-free soldieringoperations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020Cfor MSL classification at lead-free peak reflow temperature.

APW7134Package Code QA : DFN-10Temp. Range I : -40 to 85 CHandling Code TU : Tube TR : Tape & ReelLead Free Code L : Lead Free Device Blank : Original Device

°Handling CodeTemp. RangePackage Code

Lead Free Code

APW7134 QA: APW7134XXXXX

XXXXX - Date Code

Block Diagram

ControlLogic

EA

Oscillator

0.6V

ΣICOMP

IRCMP

SlopCompensation

FrequencyShift

FB1/FB2

EN1/EN2

IN1/IN2

GND1/GND2

SW1/SW2

R

S

Q

Q

Shutdown

RSENSE

QP

QN

QSENSE

Diagram Represents 1/2 of the APW7134

Page 3: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw3

Pin No. Name Function

1 EN1

Channel 1 Enable Control Input. Drive EN1 above 1.5V to turn on the Channel 1. Drive EN1 below 0.3V to turn it off. In shutdown situation, all functions are disabled to decrease the supply current below 1µA.There is no pull high or pull low ability inside.

2 FB1 Channel 1 Feedback Input. Connect FB1 to the center point of the external resistor divider. The feedback voltage is 0.6V.

3 IN2 Channel 2 Supply Input. Bypass to GND with a 4.7µF or greater ceramic capacitor. 4 GND2 Ground 2. Connected the exposed pad to GND2.

5 SW2 Channel 2 Power Switch Output. Inductor connection to drains of the internal PMOSFET and NMOSFET switches.

6 EN2

Channel 2 Enable Control Input. Drive EN2 above 1.5V to turn on the Channel 2. Drive EN2 below 0.3V to turn it off. In shutdown situation, all functions are disabled to decrease the supply current below 1µA.There is no pull high or pull low ability inside.

7 FB2 Channel 2 Feedback Input. Connect FB2 to the center point of the external resistor divider. The feedback voltage is 0.6V.

8 IN1 Channel 1 Supply Input. Bypass to GND with a 4.7µF or greater ceramic capacitor. 9 GND1 Ground 1. Connected the exposed pad to GND1.

10 SW1 Channel 1 Power Switch Output. Inductor connection to drains of the internal PMOSFET and NMOSFET switches.

Pin Description

Absolute Maximum Ratings

Symbol Parameter Value Unit VIN1/IN2 Input Supply Voltage (IN1/IN2 to GND1/GND2) -0.3 ~ 6 V VFB1/FB2 Voltage on FB1 and FB2 -0.3 ~ VIN1/IN2+0.3 V VEN1/EN2 Voltage on EN1 and EN2 -0.3 ~ VIN1/IN2+0.3 V VSW1/SW2 Voltage on SW1 and SW2 -0.3 ~ VIN1/IN2+0.3 V ISW_PEAK Peak SW Current 1.3 A

TJ Junction temperature 150 °C TSTG Storage temperature -65 ~ 150 °C TSDR Soldering temperature, 10 seconds 300 °C VESD Minimum ESD rating (Human body mode) (Note 1) ±3 KV

Note 1: The device is ESD sensitive. Handling precautions are recommended.

Symbol Parameter Value Unit θJA Junction-to-Ambient Resistance in free air (Note 2) 50 °C/W

Thermal Characteristics

Note 2: θJA is measured on approximately 1 square of 1 oz copper.

Page 4: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw4

Recommended Operating Conditions (Note 3)

Value Symbol Parameter Min. Typ. Max. Unit

VIN1/IN2 Input Supply Voltage (IN1/IN2 to GND1/GND2) 2.5 5.5 V R2/R4 Feedback Resistance (Note 3) 200 KΩ IOUT Output Current 600 mA TA Operating ambient temperature -40 85 °C TJ Operating junction temperature -40 125 °C

Note 3: Please refer to the typical application circuit.

Electrical Characteristics

APW7134 Symbol Parameter Test Conditions

Min. Typ. Max. Unit

VIN1/IN2 Each Converter Input Voltage Range * 2.5 5.5 V

IFB1/FB2 Each Converter Feedback current VFB1/FB2=0.6V * -30 30 nA

VFB1/FB2 Each Converter Regulated Feedback

Voltage * 0.588 0.6 0.612 V

∆VFB1/FB2 Each Converter Reference voltage Line

regulation VIN1/IN2=2.5V to 5.5V * 0.04 0.4 %/V

IPK Each Converter Peak Inductor Current

VIN1/IN2=3V,VFB=0.5V

or VOUT=90%,

Duty cycle < 35%

0.75 1 1.25 A

VLOADR Each Converter Load Regulation 0.5 %

IQ Each Converter Quiescent Current Duty Cycle=0; VFB=1.5V 300 400 µA

The * denotes the specifications that apply over TA = -40°C ~ 85°C, otherwise specifications are at TA=25°C

Page 5: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw5

Electrical Characteristics (Cont.)

The * denotes the specifications that apply over TA = -40°C ~ 85°C, otherwise specifications are at TA=25°C

APW7134 Symbol Parameter Test Conditions

Min. Typ. Max. Unit

IQ-SD Each Converter Quiescent Current in

Shutdown VEN1/EN2=0V,VIN=4.2V 0.1 1 µA

fOSC Each Converter Oscillator Frequency VFB=0.6V 1.2 1.5 1.8 MHz

fOSC_FFB Each Converter Frequency Foldback VFB=0V 210 KHz

RDS-P Each Converter On Resistance of

PMOSFET ISW=100mA 0.4 0.5 Ω

RDS-N Each Converter On Resistance of

NMOSFET ISW=-100mA 0.35 0.45 Ω

ILSW Each Converter SW Leakage Current VEN1=0V,VSW=0V

or 5V,VIN=5V ±0.01 ±1 µA

VEN1/EN2 Each Converter Enable Threashold * 0.3 1 1.5 V

IEN1/EN2 EN1/EN2 Leakage Current * ±0.01 ±1 µA

Application Circuit

Ω

Ω

Ω

Ω

Ω

Ω

EN1

SW1

FB1

EN2

SW2

FB2

IN1 IN2

GND1 GND2

APW7134

CIN1

4.7uF R5100K

VIN1/IN2

OFF ON OFF ON

CIN2

4.7uFR6100K

VOUT1

1.8V600mA

VOUT2

3.3V600mA

COUT1

10uFCOUT2

10uF

R1300K

R4150K

R3680K

R2150K

L12.2uH

L22.2uH

Typical Application

1

3

6

7

5

4

8

2

10

9

Page 6: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw6

0

100

200

300

400

500

600

700

-50 -25 0 25 50 75 100 125

NMOSPMOS

1200

1300

1400

1500

1600

1700

1800

2 3 4 5 6

1200

1300

1400

1500

1600

1700

1800

-50 -25 0 25 50 75 100 1250.585

0.590

0.595

0.600

0.605

0.610

0.615

-50 -25 0 25 50 75 100 125

Typical Operating Characteristics

Temperature (o C) Temperature (o C)

Ref

eren

ce V

olta

ge (V

)

Freq

uenc

y (K

Hz)

Oscillator FrequencyReference Voltage

Temperature (o C)Supply Voltage (V)

ON

Res

ista

nce

(mΩ

)

RDS(ON) vs TemperatureOscillator Frequency vs Supply Voltage

VIN=5.5VVIN=5.5VVIN=2.5VVIN=2.5V

Freq

uenc

y (K

Hz)

TA=25o C VIN=2.7VVIN=2.7V

VIN=3.6VVIN=3.6V

VIN=4.2VVIN=4.2V

VIN=3.6V

Page 7: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw7

0

10

20

30

40

50

60

70

80

90

100

0.1 1.0 10.0 100.0 1000.00

10

20

30

40

50

60

70

80

90

100

0.1 1.0 10.0 100.0 1000.0

0

10

20

30

40

50

60

70

80

90

100

0.1 1.0 10.0 100.0 1000.00

100

200

300

400

500

600

0 1 2 3 4 5 6

Input Voltage (V) Output Current (mA)

ON

Res

ista

nce

(mΩ

)

Effi

cien

cy (%

)

Efficiency vs Output CurrentRDS(ON) vs Input Voltage

Output Current (mA)

Efficiency vs Output Current

Effi

cien

cy (%

)

PMOSPMOS

NMOSNMOS

VOUT=1.2VTA=25o C

VIN=2.7VVIN=2.7V

VIN=3.6VVIN=3.6V

VIN=4.2VVIN=4.2V

VOUT=1.5VTA=25o C

VIN=2.7VVIN=2.7V

VIN=3.6VVIN=3.6V

VIN=4.2VVIN=4.2V

VIN=4.2VVIN=4.2V

VIN=3.6VVIN=3.6V

VIN=2.7VVIN=2.7V

Efficiency vs Output Current

Output Current (mA)

Effi

cien

cy (%

)

Typical Operating Characteristics (Cont.)

VOUT=2.5VTA=25o C

Page 8: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw8

50

55

60

65

70

75

80

85

90

95

100

2 3 4 5 6

200

220

240

260

280

300

320

340

360

380

400

2 3 4 5 650

55

60

65

70

75

80

85

90

95

100

2 3 4 5 6

50

55

60

65

70

75

80

85

90

95

100

2 3 4 5 6

Input Voltage (V) Input Voltage (V)

Effi

cien

cy (%

)

Effi

cien

cy (%

)

Efficiency vs Input VoltageEfficiency vs Input Voltage

Supply Voltage (V)Input Voltage (V)

Dyn

amic

Sup

ply

Cur

rent

(µA

)

Dynamic Supply Current vs Supply VoltageEfficiency vs Input Voltage

Effi

cien

cy (%

)

IOUT=100mAIOUT=100mA

IOUT=600mAIOUT=600mA

IOUT=10mAIOUT=10mA

VOUT=1.5VTA=25o C

IOUT=100mAIOUT=100mA

IOUT=600mAIOUT=600mA

IOUT=10mAIOUT=10mA

VOUT=1.8VTA=25o C

VOUT=2.5VTA=25o C

IOUT=100mAIOUT=100mA

IOUT=600mAIOUT=600mA

IOUT=10mAIOUT=10mA

Typical Operating Characteristics (Cont.)

Page 9: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw9

500

550

600

650

700

750

800

-50 -25 0 25 50 75 100 125

0

50

100

150

200

250

300

-50 -25 0 25 50 75 100 125

Typical Operating Characteristics (Cont.)

Temperature (o C) Temperature (o C)

PM

OS

FET

Leak

ag(n

A)

NM

OS

FET

Leak

age(

nA)

NMOSFET Leakage vs TemperaturePMOSFET Leakage vs Temperature

VIN=5.5V VIN=5.5V

Functional Descriptions

Main Control Loop

The APW7134 has dual independent constant fre-quency current mode PWM step-down converters. Allthe main and synchronous switches are internal toreduce the external components. During normaloperation, the internal PMOSFET is turned on, but isturned off when the inductor current at the input ofICOMP to reset the RS latch. The load current increases,it causes a slight decrease in the feedback voltage,which in turn, causes the EA’s output voltage to in-crease until the average inductor current matches thenew load current. While the internal power PMOSFETis off, the internal power NMOSFET is turned on untilthe inductor current starts to reverse, as indicated bythe current reversal comparator IRCMP, or the begin-ning of next cycle. When the NMOSFET is turned offby IRCMP, it operates in the discontinuous conductionmode.

Pulse Skipping Mode Operation

At light load with a relative small inductance, theinductor current may reach zero. The internal powerNMOSFET is turned off by the current reversalcomparator, IRCMP, and the switching voltage will ring.This is discontinuous mode operation, and is normalbehavior for the switching regulator. At very light load,the APW7134 will automatically skip some pulses inthe pulse skipping mode to maintain the outputregulation. The skipping process modulates smoothlydepend on the load.

Short Circuit Protection

In the short circuit situation, the output voltage isalmost zero volts. Output current is limited by theICOMP to prevent the damage of electrical circuit. In thenormal operation, the two straight line of the inductorcurrent ripple have the same height, it means thevolts-seconds product is the same. When the shortcircuit operation occurs, the output voltage down to

Page 10: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw10

zero leads to the voltage across the inductor maximumin the on period and the voltage across the inductorminimum in the off period. In order to maintain thevolts-seconds balance, the off-time must be extendedto prevent the inductor current run away. Frequencydecay will extend the switching period to provide moretimes to the off-period, then the inductor current haveto restrict to protect the electrical circuit in the shortsituation.

Dropout Operation

An important detail to remember is that on resistanceof PMOSFET switch will increase at low input supplyvoltage. Therefore, the user should calculate the powerdissipation when the APW7134 is used at 100% dutycycle with low input voltage.

Functional Descriptions (Cont.)

Short Circuit Protection Cont. Slope Compensation

Slope compensation provides stability in constantfrequency current mode architecture by preventingsub-harmonic oscillations at high duty cycle. It isaccomplished internally by adding a compensatingramp to the inductor current signal at duty cycle inexcess of 40%. Normally, this results in a reductionof maximum inductor peak current for duty cyclesgreater than 40%. In the APW7134, the reduction ofinductor peak current recovered by a special skill athigh duty ratio. This allow the maximum inductor peakcurrent maintain a constant level through all duty ratio.

Application Description

where fS is the switching frequency of APW7134 and∆IL is the value of the worst current ripple, it can beany value of current ripple that smaller than the worstvalue you can accept. In order to perform high efficiency,

Inductor SelectionDue to the high switching frequency as 1.5MHz, theinductor value of the application field of APW7134 isusually from 1µH to 4.7µH. The criterion to selecting asuitable inductor is dependent on the worst currentripple throughout the inductor. The worst current rippledefines as 40% of the fully load capability. In theAPW7134 applications, the worst value of currentripple is 240mA, the 40% of 600mA. Evaluate L byequation (1):

( )SLIN

OUTOUTIN

fI1

VVVV

L⋅∆

⋅⋅−

=

selecting a low DC resistance inductor is a helpful way.Another important parameter is the DC current ratingof the inductor. The minimum value of DC currentrating equals the full load value of 600mA, plus thehalf of the worst current ripple, 120mA. Chooseinductors with suitable DC current rating to ensurethe inductors don’t operate in the saturation.

Input Capacitor Selection

The input capacitor must be able to support themaximum input operating voltage and maximum RMSinput current. The Buck converter absorbs current frominput in pulses.

(1)

Page 11: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw11

Figure-1 shows a schematic of a Buck structure. Thewaveforms show as Figure-2.

Figure-2

IIN

IOUT

IL

IINI(CIN)

I(COUT)

IOUT

I(Q1)

PWM

D*TS

(1-D)*TS

0A

0A

0A

0A

0A

Observe the waveform of I(CIN),the RMS value of I(CIN) is

( ) ( )[ ] ( )2IN

22INOUTIN D1IDIICI −⋅+⋅−=

Replace D and IIN by following relation:

IN

OUT

VV

D =

OUTIN IDI ⋅=

The RMS value of input capacitor current equal:

( ) ))D1(DICI OUTIN −⋅=

When D=0.5 the RMS current of input capacitor willbe maximum value. Use this value to choose theinput capacitor with suitable current rating.

Figure-1

Q1

Q2

L

COUT

CINVIN

I(CIN)IIN

I(Q1)

I(L) I(COUT)

IOUT

PWM

Application Description (Cont.)

Input Capacitor Selection Cont.

Output Capacitor Selection

The output voltage ripple is a significant parameter toestimate the performance of a convertor. There aretwo discrete components that affect the outputvoltage ripple bigger or smaller. It is recommended touse the criterion has mentioned above to choose asuitable inductor. Then based on this known inductorcurrent ripple condition, the value and properties ofoutput capacitor will affect the output voltage ripplebetter or worse. The output voltage ripple consists oftwo portions, one is the product of ESR and inductorcurrent ripple, the other portion is a function of theinductor current ripple and the output capacitance.Figure-3 shows the waveforms to explain the partdecided by the output capacitance.

I(COUT)0A

∆VOUT1

∆IL

VOUT

0.5TS

Figure-3

(2)

(3)

(4)

(5)

Page 12: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw12

Application Description (Cont.)

1OUTOUTSL VCT21

I21

21

Q ∆⋅=

⋅∆=

where TS is the inverse of switching frequency and the∆IL is the inductor current ripple. Move the COUT to theleft side to estimate the value of ∆VOUT1 as equation (7).

OUT

SL1OUT C8

TIV

⋅⋅∆

=∆

As mentioned above, one part of output voltage rippleis the product of the inductor current ripple and ESRof output capacitor. The equation (8) explains the out-put voltage ripple estimation.

+⋅∆=∆OUT

SLOUT C8

TESLIV

Evaluate the ∆VOUT1 by the ideal of energy equalization.According to the definition of Q,

Thermal Considerations

( ) ( )[ ]D1RDRIP ONN_DSONP_DS2

OUTD −⋅+⋅=

APW7134 has internal over temperature protection.When the junction temperature reaches 150centigrade, APW7134 will turn off both internal powerPMOSFET and NMOSFET. The estimation of the junc-tion temperature, TJ, defined as:

JADJ PT θ⋅=

where the θJA is the thermal resistance of the packageutilized by APW7134.

+⋅=

2

1OUT R

R16.0V

FB

R1

R2

APW7134

VOUT

age setting by the users. A suggestion of maximum

value of R2 is 200KΩ to keep the minimum currentthat provides enough noise rejection ability throughthe resistor divider. The output voltage programmedby the equation:

Output Capacitor Selection Output Voltage Setting

APW7134 has the adjustable version for output volt

APW7134 is a high efficiency switching converter, itmeans less power loss transferred into heat. Due tothe on resistance difference between internal powerPMOSFET and NMOSFET, the power dissipation inthe high converting ratio is greater than low convertingratio. The worst case is in the dropout operation, themainly conduction loss dissipate on the internal powerPMOSFET. The power dissipation nearly defined as:

(6)

(7)

(8)

(9)

(10)

(11)

Layout Considerations

The high current paths (GND1/GND2, IN1/IN2 andSW1/SW2) should be placed very close to the devicewith short, direct and wide traces. Input capacitorsshould be placed as close as possible to the respec-tive IN and GND pins. The external feedback resistorsshall be placed next to the FB pins. Keep the switch-ing nodes SW1/SW2 short and away from the feed-back network.

Page 13: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw13

Package Information

D2E

2L

e

b

AD

EA1

A3

Min. Max. Min. Max.A 0.80 1.00 0.031 0.039

A1 0.00 0.05 0.000 0.002A3b 0.18 0.30 0.007 0.012DD2 2.20 2.50 0.087 0.098E

E2 1.50 1.80 0.059 0.071eL 0.35 0.45 0.014 0.018

0.50 BSC 0.016 BSC

3.00 BSC 0.118 BSC

DimMillimeters Inches

3.00 BSC 0.118 BSC

0.20 REF 0.008 REF

DFN-10

Page 14: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw14

Carrier Tape & Reel Dimensions

t

Ao

E

W

Po P

Ko

Bo

D1

D

F

P1

Application A B C J T1 T2 W P E

178 ± 1 54.4 ± 0.4 13.0 + 0.2 2.3 ± 0.1 12.3 ± 1 1.4 ± 0.5 12 ± 0.3 8.0 ± 0.1 1.75 ± 0.1

F D D1 Po P1 Ao Bo Ko T DFN-10

5.5 ± 0.05 1.5 + 0.1 1.5 + 0.1 4.0 ± 0.1 2.0 ± 0.05 3.3 ± 0.1 3.3 ± 0.1 1.1 ± 0.1 0.3 ± 0.05

Cover Tape Dimensions

Application Carrier Width Cover Tape Width Devices Per Reel DFN-10 12 9.2 3000

A

J

B

T2

T1

C

(mm)

Page 15: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw15

t 25 C to Peak

tp

Ramp-up

tL

Ramp-down

tsPreheat

Tsmax

Tsmin

TL

TP

25

Te

mp

era

ture

Time

Critical ZoneTL to TP

°

Physical Specifications

Terminal Material Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb), 100%Sn Lead Solderability Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.

Reflow Condition (IR/Convection or VPR Reflow)

Classificatin Reflow Profiles

Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly Average ramp-up rate (TL to TP) 3°C/second max. 3°C/second max.

Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (min to max) (ts)

100°C 150°C

60-120 seconds

150°C 200°C

60-180 seconds

Time maintained above: - Temperature (TL) - Time (tL)

183°C 60-150 seconds

217°C 60-150 seconds

Peak/Classificatioon Temperature (Tp) See table 1 See table 2 Time within 5°C of actual Peak Temperature (tp)

10-30 seconds 20-40 seconds

Ramp-down Rate 6°C/second max. 6°C/second max. Time 25°C to Peak Temperature 6 minutes max. 8 minutes max. Notes: All temperatures refer to topside of the package .Measured on the body surface.

Page 16: APW7134 - dzsc.compdf.dzsc.com/88888/2008616145630387.pdf · Synchronous Topology 0.6V Low Reference Voltage Typically 0.1 mA Shutdown Current Current Mode Operation Over Temperature

Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2006

APW7134

www.anpec.com.tw16

Customer Service

Anpec Electronics Corp.Head Office :

No.6, Dusing 1st Road, SBIP,Hsin-Chu, Taiwan, R.O.C.Tel : 886-3-5642000Fax : 886-3-5642050

Taipei Branch :7F, No. 137, Lane 235, Pac Chiao Rd.,Hsin Tien City, Taipei Hsien, Taiwan, R. O. C.Tel : 886-2-89191368Fax : 886-2-89191369

Reliability test program

Test item Method Description SOLDERABILITY MIL-STD-883D-2003 245°C, 5 SEC HOLT MIL-STD-883D-1005.7 1000 Hrs Bias @125°C PCT JESD-22-B,A102 168 Hrs, 100%RH, 121°C TST MIL-STD-883D-1011.9 -65°C~150°C, 200 Cycles ESD MIL-STD-883D-3015.7 VHBM > 2KV, VMM > 200V Latch-Up JESD 78 10ms, 1tr > 100mA

Table 1. SnPb Entectic Process – Package Peak Reflow Temperatures Package Thickness Volume mm3

<350 Volume mm3

≥350 <2.5 mm 240 +0/-5°C 225 +0/-5°C ≥2.5 mm 225 +0/-5°C 225 +0/-5°C

Table 2. Pb-free Process – Package Classification Reflow Temperatures

Package Thickness Volume mm3 <350

Volume mm3 350-2000

Volume mm3 >2000

<1.6 mm 260 +0°C* 260 +0°C* 260 +0°C* 1.6 mm – 2.5 mm 260 +0°C* 250 +0°C* 245 +0°C*

≥2.5 mm 250 +0°C* 245 +0°C* 245 +0°C* *Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C) at the rated MSL level.

Classificatin Reflow Profiles(Cont.)