aqua top planning document

100
Planning Document Br in e-W ater an d Water-Water  A QUAT OP T Heat Pu mp s General information Calculation s, dimensionin g, installations and commissionin g with regard to the products described in this document may only be executed by proven experts. Locally valid regulations must be observed; they may deviate from the information in this document. Changes remain reserved. 10/2010  Art . No. 12 090 438

Upload: anghel-dumitriu

Post on 03-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 1/100

Planning Document

Brine-Water and Water-Water  AQUATOP T Heat Pumps

General information• Calculations, dimensioning, installations and commissioning

with regard to the products described in this documentmay only be executed by proven experts.

• Locally valid regulations must be observed; they may deviatefrom the information in this document.

• Changes remain reserved.

10/2010  Art. No. 12 090 438

Page 2: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 2/100

2

Table of Contents

Table of Contents …………………………………………………....... 2Planning Notes Overview............................................................ 4

Heat Output AQUATOP T at 35°C Flow............ 5Heat Output AQUATOP T at 50Ԩ  Flow............. 6Heat Output AQUATOP T.. HT at 35°C Flow..... 7Heat Output AQUATOP T.. HT at 60°C Flow….. 8Heat Pumps, General Information...................... 9Configuration of Pressure Expansion Vsels....... 11

 AQUATOP TC ConfigurationIntegrated 12-l Expansion Vessel....................... 12Determining Heat Output and Allowances......... 13Basic Principles for ConfiguringGeothermal Probes............................................ 14Basic Principles for ConfiguringGeothermal Tube Collectors…………………….. 15

Basic Principles for ConfiguringGeothermal Probes............................................ 16Brine-Water Heat Pumps................................... 17Borehole Heat Exchanger System,Basic Scheme.................................................... 18Implementation Notes......................................... 18Checklist............................................................. 19Interfaces of Borehole Heat Exchanger Systems 19Borehole Heat Exchanger Supply Trench.......... 20Example of a Borehole Heat Exchanger............ 21Water-Water Heat Pumps.................................. 22Groundwater, Basic Scheme.............................. 23Groundwater System......................................... 24Cooling with Heat Pump Systems...................... 28

Unit Dimensions AQUATOP T..C................................................. 32 AQUATOP T17CH............................................. 33 AQUATOP T..H................................................. 34 AQUATOP T22-T44, THT, TR........................... 35

Technical Data  AQUATOP T05C - T08C.................................... 36 AQUATOP T10C-T14C...................................... 38 AQUATOP T07CHT - T11CHT.......................... 40 AQUATOP T17CH............................................. 42 AQUATOP T22H-T43H...................................... 44 AQUATOP T05CX - T08CX............................... 46 AQUATOP T10CX - T12CX............................... 48 AQUATOP T06CR - T08CR.............................. . 50 AQUATOP T10CR - T14CR.............................. . 52 AQUATOP T05CRX - T08CRX.......................... 54 AQUATOP T10CRX - T12CRX......................... . 56 AQUATOP T17CHR........................................... 58 AQUATOP T22HR - T43HR............................... 60

Integrated PumpsCompact Heat Pumps Reclamation Pump............................................. 62

Heat Pump......................................................... 64Performance Data Brine-Water AQUATOP T..C............................. . 65

Water-Water AQUATOP T..C............................. 66Brine-Water AQUATOP T..H............................. 67Water-Water AQUATOP T..H............................. 68Brine-Water AQUATOP T..HT........................... 69Water-Water AQUATOP T..HT.......................... 70

 AQUATOP T..R.................................................. 71 AQUATOP T..HR............................................... 73Operating range................................................. 75

Page 3: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 3/100

3

Table of Contents

Hydraulic System  Standard Scheme, Overview.......................... 77 AQUATOP TC 1........................................... 78 AQUATOP TC 1-6........................................ 79 AQUATOP TC 1-I......................................... 80 AQUATOP TC 2-I......................................... 81 AQUATOP TC 1-6-I...................................... 82 AQUATOP TC 2-6-I...................................... 83 AQUATOP TC 2-6-H.................................... 84 AQUATOP TC 2-6-7-H................................. 85 AQUATOP TC 1-6-7.................................... 86 AQUATOP T 1-I........................................... 87 AQUATOP T 2-I............................................ 88 AQUATOP T 2-5-B-I..................................... 89 AQUATOP TC Expansion Scheme BL......... 90 AQUATOP T Expansion Scheme BL........... 90

 Addi tional Schemas  AQUATOP TC 2........................................... 91 AQUATOP T 2.............................................. 91

 Addi tional Hydraul ic Suggestions  AQUATOP TC Expansion Scheme M.......... 92 AQUATOP T Expansion Scheme M............. 92 AQUATOP T Cascade withPWH Isolating Circuit................................... 93

 AQUATOP TR with Active Cooling.............. 95Heat Pump Controller LOGON B WP ..................................................................... 97Notes ..................................................................... 98

Page 4: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 4/100

The high quality brine-water andwater-water heat pump AQUATOP Textracts geothermal heat from theenvironment and releases itto the heating system at a higher temperature.

The reversible model of the AQUATOP T heat pump series canalso be used for active cooling.The broad range of AQUATOP T heatpumps is available in the followingversions and models:

 AQUATOP T…CThe compact heat pump with inte-grated circulation pump, expansionvessel and integrated electricalheater element, 3x400VAC

 AQUATOP T..HTIn high temperature version for flowtemperature Up to max. 65 C3x400VAC

 AQUATOP T..HIn high temperature version for flowtemperature Up to max. 60 C3x400VAC

 AQUATOP T..XVersion for 1x230 V(available in F / I / B).

 AEROTOP T..RReversible heat pumps used to heatand cool.

Product Overview 

 AQUATOP T

4

Page 5: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 5/100

5

Planning Notes

Overview

Heating output  AQUATOP T with 35°C Flow

Heat output curves also apply to same models in reversible (R), andmono-phase (M) designs.

 AQUATOP T14C

 AQUATOP T12C

 AQUATOP T10C

 AQUATOP T08C

 AQUATOP T06C

 AQUATOP T05C

   H

  e  a   t   i  n  g  c  a  p  a  c   i   t  y   (   k   W   )

  Heat source temperature (°C)

Page 6: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 6/100

6

Planning Notes

Overview

Heating output  AQUATOP T with 50°C Flow

 AQUATOP T14C

 AQUATOP T12C

 AQUATOP T10C

 AQUATOP T08C

 AQUATOP T06C

 AQUATOP T05C

   H  e  a   t   i  n  g  c  a  p  a  c   i   t  y   (   k   W   )

Heat source temperature (°C)

Heat output curves also apply to same models in reversible (R), andmono-phase (M) designs.

Page 7: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 7/100

7

Planning Notes

Overview

Heating output   AQUATOP T..H and T..CHT with 35°C Flow

   H  e

  a   t   i  n  g  c  a  p  a  c   i   t  y   (   k   W   )

Heat source temperature (°C)

 AQUATOP T43H

 AQUATOP T35H

 AQUATOP T28H

 AQUATOP T22H AQUATOP T17CH

 AQUATOP T11CHT

 AQUATOP T07CHT

Heat output curves also apply to same models in reversible (R) design.

Page 8: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 8/100

8

Planning Notes

Overview

Heating output  AQUATOP T..H and T..CHT wi th 60°C Flow 

   H  e  a   t

   i  n  g  c  a  p  a  c   i   t  y   (   k   W   )

Heat source temperature (°C)

 AQUATOP T43H

 AQUATOP T35H

 AQUATOP T28H

 AQUATOP T22H

 AQUATOP T17CH

 AQUATOP T11CHT

 AQUATOP T07CHT

Heat output curves also apply to same models in reversible (R) design.

Page 9: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 9/100

  9

Planning Notes

Heat Pumps, General Information

Planning and installation must becarried out in compliance with therelevant rules and regulations (SWKI,SIA, AWP, VDI 4640, etc.).

Prior Clarifications / ApprovalsIt is recommended to clarify thefollowing items early on in the planningphase:

With electric company:- Connection permit- Starting current- High/low/special rates- Blocked times

Heat sources:Water extraction from public watersand the positioning/repositioning of ageothermal probe or tube collector must be approved by the respectivelyresponsible local office or authority.This is usually the Office of Energyand Water Management or Environ-mental Protection Agency (indicatecoordinate of house location).

Heat Pump DimensioningCompared with other heat generators,

the heat pump has a smaller applica-tion scope. The heat output and therequired power and with that the utili-zation ratio of the heat pump varydepending on heat source and heatutilization temperatures.

 A basic principles applicable herestates that the smaller the differencebetween heat utilization and heatsource temperature the more efficient(better performance number) thesystem can be operated. This is whythe planner/installer of the heat pumpmust take boundary conditions intoaccount.The system must be configured anddimensioned in such a way that usagelimits are not exceeded.

Water HeatingIn addition to heating rooms, a heatpump can also be used to heat water.This makes sense since the energysavings are considerable comparedwith electrical water heaters.

Depending on the refrigerant used,different max. hot water temperaturesare reached (50°C - 60°C). These arethe result from the operating limits of therefrigerant as well as the structure of the cooling circuit of the heat pump.Water is heated indirectly with thefollowing typical solutions:- Coil storage tank- Combination storage tank (heat

storage with integrated boiler) or Spira storage

- Storage with external plateexchanger (Magro system)

When selecting coil or external platestorage tanks, it is especially importantto make sure the heat exchanger surface is sufficient. This requires takingwater volume, temperature differences,as well as heat pump capacity intoconsideration. A combination with solar collectors is quite possible. using asuitable water heat, e.g. a combinationstorage tank, it is possible to heat water entirely with solar collectors, especiallyduring the summer.

Buffer Storage Always make sure the entire output of the heat pump is always acceptedregardless of the type of storage installa-tion.Integrating a technical storage or heat storage tank is generally recom-mended.It ensures optimal operatingconditions such as the following:

• Output excesses of the heat pumpare absorbed

• Bridging EC off periods

• Enables several heating circuitConnections

Buffer storage tank should be omittedonly in the following cases:

• If the heating water volume isgreater than 25 liters per kWheating output or with a goodstorage capability of the heatemission system (floor heater configured < 40 °C)

• No thermostatic valves

t =V * c * Δt

Qh * 60

V = Tank volume in liters

Qh = Heat demand in watt

t = Bridging time in minutes

c = 4187 W/s

Δt = Temp. difference, heating circuit

Circulating PumpsThe evaporator and condenser flowvolume specified by the heat pump(HP) must be adhered to consistentlyto configure and dimension thecirculating pumps. Speed-controlledcirculating pumps may not used for the thermal emission of the HP.The heat source pumps (brine/groundwater) must be suitable for usewith cold water. The viscosity of theheat carrier medium must be considered when configuring the system.

Overflow ValveIn case of heating systems withvariable or hot water flows that can beshut off (e.g. thermostatic valves) andserially installed storage tank, an over-flow valve must be integratedupstream of the circulating pump.This ensures the min. flow of heatedwater and prevents frequent switching,which may lead to malfunctions.The overflow valve must be set anddimensioned properly.

The size of the buffer storage dependson the max. heat output and the max.permissible activation frequency of theheat pump.

 A general reference value is approx.30 lto 50 liters per kW heat output.For an increased buffering also more.

For the coverage time (withoutconsidering the internal storagecapacity of the heating system) of theheat demand using a buffer storage,e.g. in case of an EC off period or outage, can be calculated as follows:

Page 10: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 10/100

10

Planning Notes

Heat Pumps, General Information

TransportNever tilt the heat pump beyond max.30º (in any direction) when trans-porting it. Avoid exposing the heatpump to any type or degree of mois-ture or humidity.Protect the heat pump from damageduring all construction phases.

SetupThe heat pumps can be set up on asmooth, level, and plane surface with-out the need of a base or pedestal.The installation room must be dry andfrost-free. Rooms with much humidity

such as laundry rooms, etc. are notvery suitable for installing the heatpump. The min. clearances must beadhered with for all equipment toensure access in case of maintenanceand control tasks.

The heat pumps should never be setup on a floating floor.

Heater Room VentilationDue to the low heat emission of theheat pump, the heater room remainspractically unheated. To prevent high

levels of humidity in the room thatmay damage the equipment, install anon-closable vent of at least 100 cm

2.

Noise EmissionsEquipment-borne noise transferredto the heating system, electrical cable,and the building can be avoided byusing flexible connections throughout:

• Tubes/hoses for pipe and ductconnections

• Flexible electr. connections

• With wall openings, avoid direct

contact of pipes and ducts withwalls

•  Anti-vibration fasteners

 AQUATOP T heat pumps runextremely quiet, thanks to the noise—dampening insulation of the claddingas well as the multi-dampened supportof the cooling circuit.

Hydraulic IntegrationWe offer different hydraulic standardschemes for each heat pump. Integra-tion based on these variants ensurestrouble-free and secure operation.Before connecting the heat pump, theentire piping of the system of new andold equipment alike must be thoroughly

flushed. Residues left in the heatingpipes, ducts, or the borehole heatexchangers / geothermal tube collec-tors may cause damage to theheat exchangers and HP malfunctions.We recommend using a dirt trap in theheat return.

The fill-up water of the heat systemmust be treated according to the re-gulations of the professional associa-tions.

 A complete ventilation is important

since Otherwise the correct operationof the heat pump is affected. Accordingly an exhauster must beused. With compact heat pumps anexhauster is installed on the flow.

Electrical ConnectionFuses must be used with the heatpumps in accordance of the enclosedconnection diagram and connected tothe definite house connection line(no disruptions of electrical supply dueto construction work, phase change).Do not carry out a trial run after completing the wiring work.The heat pump is to be protectedelectrically from startup by unaut-horized persons.

Electrical connection work must becarried out by a licenses technicalexpert.

Initial StartupThe initial startup must be carried outby qualified technicians or the warrantywill become void.The installed heat pump should not bestarted until all steps of the installationprocess have been completed.The technician in charge of the initialstartup (commissioning) is not an installer or planner and can only completehis or her job successfully if all systemparts are complete and all planningvalues needed to configure the systemare available.

Initial startups are carried out only onheat pumps that are:

• completely filled on the water sideand vented (heat source, heater)

• equipped with a definite electricalconnection line

• and in the presence of the by anelectrician or heating system installer 

• completely wired (sensors, drivesetc.) according to the designatedsystem scheme.

Since an overload may cause severedamages to the heat pump as well asthe heat source system, operating thepump under the following conditions isprohibited:- Construction drying- System/unit used in unfinished

buildings- Windows or exterior doors not

yet lockable or still uninstalled.In this case a temporary constructionheating should be used.

If the conditions listed above are notmet, the initial startup cannot be carriedout. We reserve the right to invoice the

associated costs.

The warranty for heat pump damagesbecomes null and void in case of noncompliance with these planningnotes or the corresponding operatingand assembly instructions.

Page 11: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 11/100

  11

Planning Notes

Configuration of Pressure Expansion Vessels

VN = VA * F * X

Key:Vn = Expansion volumeVA = System content acc. to

list belowF = Temperature-dependent

Factor  TZ = Average system temperature TZ = (TV + TR)/2 40°C 50°C 60°C 80°C

= F 0,0079 0,0121 0,0171 0,029

X = Safety factor 

up to 30 kW X = 3,0

31 - 150 kW X = 2,0

above 150 kW X = 1,5

Safety factor for boiler output

Important:Water contents of hot water tanks(buffer storage) are not considered inthe table and must be addedseparately.

Type

0,5 bar 0,8 bar 1,0 bar 1,2 bar 1,5 bar 1,8 bar 

PND 18 10,3 8,7 7,7 6,6 5,1 3,5

PND 25 14,3 12,0 10,7 9,1 7,1 4,7

PND 35 20,2 17,0 15,0 13,0 10,0 7,0

PND 50 28,6 24,4 21,4 18,5 14,3 9,8

PND 80 45,7 38,6 34,3 29,7 22,9 16,5

max. height Hp 2 m 5 m 7 m 9 m 12 m 15 m

Initial Pressure in Empty Vessel (= Hp + 0,3 bar)

Boiler Output (kW)

   V   A   S  y  s   t  e  m   V  o   l  u  m  e   (   l   )

1 = Floor heating2 = Radiators3 = Heating panels

Select the expansion vessel based onthe expansion volume and the systemheight Hp. The system height Hp is theheight from the middle of theexpansion vessel up to the upper point of the heating unit.

Page 12: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 12/100

12

Planning Notes

 AQUATOP T..C ConfigurationIntegrated 12-l Expansion Vessel

General Information about theCorrect Configuration

 AQUATOP T..C heat pumps can beinstalled without an additional externalexpansion vessel if all of the followingconditions are complied with:- Direct heating circuit:

Standard 1 or Standard 1-6- H (system height) <= 7 m- Heating capacity at outside

temp. (Ta) of max. 14 kW- Water volume of system VA may

not exceed the values listed inthe table.

Installation Example AQUATOP T14C, Standard 1-6,dimensioning conditions of the system:- TZ 35°C: max. averaged temp.

of the system at heating operation(corresponds with 40°C/30°C)

- H (system height) <= 7 m- Ta (outside temperature

dimensioning): -10°C- AEROTOP T14C max. capacity

at outside temp. of -10°C and40°C flow temperature:14.1 kW (limits)

- Condition: V A <= 290 l; roughverification: 14.1 kW installied

capacity x 20 l/kW with floor heater = 282 l < 290 l: OK!V A must be known for a conclusivedimensioning of the expansionvessels.

Permissible Water Volume V A of theSystemThe following table lists the max.system water volumes in dependenceof TZ (max. averaged temperature of system while in heating operation andthe static system height (H), which canabsorb the expansion of the integrated12-l expansion vessels.

V A [liter]

H (m) p0 (bar) TZ = 30°C TZ = 35°C TZ = 40°C TZ = 45°C TZ = 50°C TZ = 55°C TZ = 60°C

2 0.5 550 390 300 230 190 160 130

3 0.6 520 370 280 220 180 150 130

5 0.8 460 330 250 190 160 130 110

6 0.9 430 310 230 180 150 120 100

7 1 400 290 210 170 140 110 100

9 1.2 340 250 180 140 110 100 -

12 1.5 240 180 130 - - - -

15 1.8 - - - - - - -

H System heightpo (bar) Min. expansion vessel pre-pressureTZ Max. averaged operating temperature of the system (Tvl + Trl)/2 during heating operationPSV Switching on point of the overpressure valve = 3 bar V A  Permissible water volume VA of the system.

Heating system water volume incl. 50 l of the integrated buffer storage tank.

Page 13: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 13/100

  13

Planning Notes

Determining Heat Output and Allowances

Retrofitting an existing oil or gasheater with heat pump:The heating capacity can be calculatedbased on the existing average fuelconsumption.

Example: 

Number of people 4

Hot water demand 50 litersper person and day.

Heat demand allowance:

Q˙WW = 4 x 0,085 kW = 0,34 kW

New construction:The heat demand is calculated in accordance with national and local standards.

24 h

f =24 h - Sperrzeit pro Tag (h)

Hot water demandper person and day (l) 

 Addi tional heating outputper person (kW)

Tw = 45° C

ΔT = 35 K

30 0,05140 0,068

50 0,085

60 0,102

 Allowances to the Heat Pump OutputOff Periods (Blocked Times)

The off periods (blocked times) theo-retically should be considered by the

following formula and the heat demandshould be multiplied with the factor f.

Note:The above made calculations are aRough estimate. Please advise theheating planner for exact calcula-tions. 

With hot water Without hot water 

Mid-levelaltitude

Qh = Oil consumption (Ltr.)300

Qh = Oil consumption (Ltr.) 265

In excess of 800 m abovesea level

Qh = Oil consumption (Ltr.)330

Qh = Oil consumption (Ltr.) 295

Oil heater 

With hot water Without hot water 

Mid-level

altitude

Qh = Gas consumption (m3) x 0.93

300

Qh = Gas consumption (m3) x 0.93

265

In excess of 800 m abovesea level

Qh = Gas consumption (m3) x 0.93330

Qh = Gas consumption (m3) x 0.93 295

Gas Heater  

Qh = Heat demand in kW

Page 14: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 14/100

14

Planning Notes

Basic Principles for Configuring Geothermal Probes

Basic Principles for OperatingGeothermal ProbesThe possible load of a geothermal probedepends primarily on the subsoil/rockand the borehole depth. Some deepborehole heat exchangers yield a better annual performance factor of the heatpump system than some less deepborehole heat exchangers with the sametotal length. The geographic region of the building's location must be consid-ered as well.

If properly configured and implemented,a geothermal probe can have a service

life of up to 100 years.

Output and load of geothermal probesThe following specific dimensioningvalues have proven to be effective for smaller systems up to approx. 4 to 6"not encapsulated" probes:(normal subsoil; cf. VDI 4640)- 100 kWh/m/year max. heat extraction- 50 kWh/m/year max. specific probe

extraction capacity

Larger probe fields must be checkedwith a simulation calculation for correct

dimensioning. 

Effect of Depth and Diameter Borehole heat exchangers positionedlower permit a higher specific outputwhile maintaining the same mediansource temperature or a higher mediansource temperature while maintainingthe same total length.The soil or rock temperature increasesby approx. 1°C every 30 m of depth.Deep borehole heat exchangers,however, have a higher flow resistance.Optimization thus must be achievedbased on the type of system used(number of probes, heat sourcetemperature, performance rate of heatpump, brine pump coefficient).

Basic Principles for Configur ingGeothermal ProbesLocal Norms and regulations mustalways be considered and have prioritylike the for Switzerland valid SIA 384-6

The collector lengths indicated in thedocumentation affect the followingbasic principles:The indicated lengths refer to thefollowing basic principles:- Monovalent operation- Extraction capacity 45W/m- Approx. 1800 hrs/year (max.

2000 operating hours/year)- Annual extraction energy approx.

90 kWh/m/year (max. 100 kWh/ m/year)

- Mid-level altitude up to approx.800 m above sea level

The collector lengths are to be adjustedin case of the following systemconditions:- Bivalent operation (extracted

energy max. 100 kWh/m/year)- Higher operating hours (>2000),

e.g. in mountainous regions- High hot water demand(Sum of extracted energy max.100 kWh/m/year)

- Pool water treatment

Page 15: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 15/100

  15

Planning Notes

Basic Principles for Configuring GeothermalTube Collectors

Description of Geothermal TubeCollectorsContrary to borehole heat exchangers,tube collectors are installed verticallyat a depth of approx. 1.0 – 1.5 m.Continuous pipes with a diameter of 20 to 40 mm are used for the tubecollectors. These pipes are installed inthe soil or rock horizontally and tubular-shaped at a distance of 0.6 to 0.8 m.Polyethylene pipes are a preferredmaterial. This material has the neces-sary elasticity and favorable flowcharacteristics as well as low frictionlosses. For this type of utilization, they

are corrosion-proof and nearlyindestructible. They have a service lifeof approx. 50 years.

Max. Extraction Capacity of Geothermal Tube Collector SystemsThe following soil or rock propertiesare especially important for the proper dimensioning of the installation area:

• k-factor/thermal conductivity(W/mK)

• •Specific heat (kJ/kgK)

• Density (kg/m3)

These three parameters are primarilyaffected by the humidity content of thesoil or rock. Normally, the soil can beexpected to be moist. Practical applica-tion requires only the followingdifferentiation:

Humidity content of soil:

• Wet

• Moist

• DryThe wetter the soil, the better the heattransfer ratios.

Soil consistency:

• Sandy

• Loamy

• Rocky

Global sunlight levels:

• Sunny

• Normal

• ShadyHumidity content, soil consistency, andsunlight levels are to be weightedaccording to their direct effect.

In Central Europe, the followingconstellation usually applies:

Moist/sandy/normalThe following max. extraction capacitiescan be assumed based on this constel-lation and collected experience:15 - 20 W/m2 

If the weighting of the influencing factorsuncovers a constellation with valuesbelow the normal ones, the heat ex-traction per m2 of soil area must bereduced. In case of unfavorable condi-tions, e.g. stony-dry-shady, the following

value is surely all that can be expected:10 - 15 W/m2 

If the soil can be characterized as moistand loamy, the following value can beexpected:20 - 25 W/m2

Basic Principles for Configur ingGeothermal Tube CollectorsThe collector lengths indicated in thedocumentation affect the following basicprinciples:

The indicated lengths refer to thefollowing basic principles:- Monovalent operation only for room

heater - Extraction capacity 20W/m2

- Approx. 1800 hrs/year (max. 2000operating hours/year)

- Annual extraction energy approx.40 kWh/m/year (max. 50 kWh/ m/

year)- Mid-level altitude up to approx.

800 m above sea level

The collector lengths are to be adjustedin case of the following systemconditions:- Bivalent operation (extracted

energy max. 50 kWh/m/year)- Higher operating hours (>2000),

e.g. in mountainous regions- Water heating (sum of extraction

energy max. 50 kWh/m/year)chapter)

Pool water preparation, longer operating hours, bi valent systemsWe recommend not to configure thesetypes of systems with tube collectorssince the soil or rock cannot be deter-mined with certainty, which poses therisk of an overload of the ground.Please consult leaflet No. 43 of theBDH from May 2010 for additionalinformation.

Page 16: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 16/100

16

Planning Notes

Basic Principles for Configuring Geothermal Probes

Thermal Insulation All lines, pumps, and valves must beequipped with cold insulation materialas a protective seal from vapor diffusion (install drip pan, if necessary).

Connection Lines and Distributors- Select the shortest line distance

possible- Dig trench for connection lines

down to frost penetration layer, if possible with a slight inclinetowards the borehole heatexchanger 

- Make sure the brine trench allows

water to penetrate through, fill withsand, dewater if needed

- Embed connection pipes in sandlayer (risk of damage)

- Do not cover until a pressure testhas been conducted

- Fill system according to theTechnical Datasheet AWP

Exterior Installation- Make sure distributor is accessible- Seal wall openings and heat

insulation to protect from water 

Interior Installation- Install drip pans if needed- Avoid equipment-borne noise

Transference

Heat Source Booster PumpBecause the median temperaturedifference, the flow rate, and thematerial properties of the used heatcarrier fluid (water-antifreeze mixture)also play a decisive role, the di-mensioning of the heat source booster pump must also be carried out verycarefully. In addition, the annual per-formance factor of the system can beaffected significantly due to the highperceptual share of the electrical inputof the heat source booster pump,especially with smaller systems.The brine circuit of the borehole heat

exchanger must be calculated carefullyconcerning the flow volume and pres-sure losses.The line installation and dimensioningas well as the probe lengths andnumber must be optimized in referenceto the system.Only then is it possible to determine theright heat source booster pump for thesystem. The large difference of thehydraulic coefficient must also beincluded in the dimensioning processfor the booster pumps available inmany different sizes.

The integrated brine pump of compactheat pumps must be checked to ensureit is suitable for the application at hand. 

Page 17: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 17/100

  17

Planning Notes

Brine-Water Heat Pumps

 Appl ication RangeBrine-water heat pumps are usuallyused as monovalent heaters.If the heat pump and the borehole heatexchanger have been dimensionedcorrectly, geothermal energy providesa relative constant heat source with agood performance rating.

Monovalent OperationIf the heat pump is used in a monova-lent manner (without auxiliary heater),the following basic data must becarefully determined and calculated:

• Determine heat capacity demandacc. to local standards (SIA 384/2,DIN 8900-6, DIN 8901) or deter-mine based on the previousenergy consumption.

• Max. required flow temperature of heating system.

The heat pump must deliver 100% of the required average building capacityat the lowest exterior temperatures andmax. flow temperatures.

Bivalent OperationIf the heat pump is used in a bivalentmanner (with auxiliary heater), thefollowing data must be carefullydetermined and calculated:

• Determine heat capacity demandacc. to local standards (SIA 384/2,DIN 8900-6, DIN 8901) or deter-mine based on the previousenergy consumption.

• Max. required flow temperature of heating system.

• Determine the bivalent point(switchover point).

The auxiliary heater is usuallydimensioned for 100% capacity.

When used in a bivalent-paralleloperating mode, the borehole heatexchangers must be dimensioned byan accredited engineering office.

Permits A permit for the utilization of geothermalenergy must be obtained from thelocally responsible office or authority.Each connection of an electricheat pump requires a permit of theresponsible electric company or utility.The electrical heat pump data must beknown for the application.

Borehole Heat Exchanger The annual performance factor of aheat pump (HP) is affected by theconfiguration and dimensioning of theborehole heat exchanger (BHE).

Dimensioning requires taking intoaccount the cooling capacity of the HPat the configuration point, the serviceduration per year, the geology, theposition, layout, and depth of the BHE.The standard reference points is asfollows: cooling capacity at B0 /W35(brine inlet temp. = 0°C,flow temp. = 35°C) is assumed.The general borehole and installationconditions of the drilling company mustbe observed when positioning geother-mal probes.For further information see chapter 

‘Basic Principles for ConfiguringGeothermal Probes’.

Thermal Recovery Time of the SoilThe annual heat pump operationshould not exceed 1800 hours per year. If the number of operating hoursis higher, the borehole heat exchanger must be dimensioned larger.

If service water is heated year-round,the, borehole heat exchanger lengthmust be increased according to the hotwater demand so that a sufficientamount of energy is replenished fromthe surrounding soil or rock to the BHE.This applies especially with well insu-lated buildings (low energy) wherehot water heating takes up a largeshare of the annual energy demand.

Brine Heat Carrier The brine circuit requires the use of non-polluting antifreeze agents (e.g.

 Antifrogen N).Compliance with the concentration of 20 - 30 vol. % is required and must bechecked periodically. The boreholeheat exchanger must be filled accordingto the operating instructions. If anti-freeze is added to a system subse-quently, it cannot be guaranteed thatantifreeze and water are mixed properly.Flush the pipe system before filling inthe heat carrier fluid. Never use air toblow out the BHE. It must be filled with

fluid at all times. Pollutants may causedecomposition of the heat carrier media.This results in sludge, or the pollutantitself may damage the heat exchanger (malfunctions) and other components.

Connection LinesHeat SourceThe material compatibility of the lineswith the antifreeze agents must bechecked (no galvanized lines).Connection lines must be kept as shortas possible. Condensation forms on

lines and fittings in warm rooms.This must be prevented with vapor proof insulation material or collected with adrip tray. The installation must beprotected from corrosion (materialselection).To be able to detect leaks, a pressurecontroller must be installed in the brinecircuit for monitoring. It must be possibleto shut off each borehole heat exchanger individually from the point of the distri-butor.

Implementation of the Borehole HeatExchanger SystemSee separate basic scheme.

Equipment SetupInstallation location according to thegeneral planning notes, min. distancesand clearances see equipmentdimensions.

Page 18: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 18/100

18

Planning Notes

Borehole Heat Exchanger System,Basic Scheme and Implementation Notes

Borehole Heat Exchanger 

•  Accessibility and available spacefor heavy equipment (pneumaticvehicles) must be clarified.

• Pay attention to existing utilitylines

• Measure and mark drill position.

• Obtain geological expert opinionor assessment as outlined bydrilling permit.

• Establish water and electricalconnection.

• Obtain liability/well insurance.

• Provide sludge trough.

Connection Lines and Distributors

• Select the shortest line distancepossible.

• Dig trench /approx. 80 cm) for connection lines down to frostpenetration layer, if possible witha slight incline towards theborehole heat exchanger.

• Make sure the brine trench allowswater to penetrate through, fill withsand.

• Embed lines in sand layer (risk of injury).

• Do not backfill/cover until a

pressure test has beenperformed.

Exterior Installation

• Make sure distributor is accessible.

• Seal and insulate wall openingsagainst water.

Interior Installation

• Equip all lines, pumps, and valves,use protective vapor diff usioninsulation if needed

• Install drip pans if needed.

•  Avoid solid-borne noise trans-mission.

Thermal Insulation

• Sealed against vapor-diffusion.

• Provide sufficient wall thickness.

On-Site Tasks• Coordination and implementation

of the line trenches, wall openings,and well shafts.

• Filling in of the trench and closingthe wall openings after the install-lation work.

ConnectionsConnection lines and distributors.With more probes adjusting devicesare compulsory on site.

 Additionally the length and the diameter of the single probes must be labelled onthe distributor. With more probe fieldsan additional adjusting device must beavailable per distributor.The adjustment of the probes and theprobe fields must take place on site.

Delivery/installationby ELCO/ installation company

On-siteDitches and openings

Recommendation: 5% of probe depth

Heat pump connectionHeat source booster pump andsafety equipment, connecton lines,insulation, heat transfer mediumcharge

Delivery/installationby ELCO/ installation company

   S  o  n   d  e  n   t   i  e   f  e

Integrated withcompact units

76

1 2

45

63

1 Shut-off slide2 Pressure controller 3 Manometer 4 Expansion vessel5 Safety valve6 Feed and empty faucets7 Manual exhauster 8 Adjusting device (STAD,

Taco-Setter) per probe andprobe field

Borehole Heat Exchanger  Borehole heat exchanger boreholes, installation, and backfill

Delivery/installationby ELCO/ drilling company

On-sitesludge pit

8

Page 19: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 19/100

  19

Planning Notes

ChecklistInterfaces of Borehole Heat Exchanger Systems

Interfaces with other technical partnersmust be ensured when implementing abrine-water heat pump. The enclosedchecklist is to facilitate this task.

Interface Item to be Clarified Result of Clarification

 Author it ies (EnvironmentalProtection Agency, District Admin Offices)

First find out if drilling is possible or asses-sment of permits required. In Switzerland, aphone call to the Environmental Protection

 Agency is sufficient, provide coordinates of the borehole location (from TwixTel). Fill outapplication after receiving the order for 

drilling.

Electric company / utility Determine connection fees.Find out whether installation of heat pump isaccepted.

Energy agencies, organizations Inquire about subsidies.

Drilling company Reserve drilling company time early.Find out about insurance requirements/aspects.

Geologist Geological expert opinion or assessment.

Mason / construction company Excavate trench for connection lines, in caseof retrofitting also core drilling for connectionline if needed.

Electrician Forward electrical scheme, establish con-nection line. Pointing out correct connectionof the revolving field.

Landscaper  Notify contractor of necessary landscapingwork, especially when retrofitting.

Initial startup by ELCO Coordinate appointment with electricalinstaller. Before initial startup, make surethe water flow volumes on brine and heater side meet specifications.

Page 20: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 20/100

20

Planning Notes

Borehole Heat Exchanger Supply TrenchLayout of Several Borehole Heat Exchangers

Borehole Heat Exchanger Supply Line Trench

   D   i   t  c   h   /   t  r  e  n  c   h

S  u  p  p   l  y   l   i  n  e

Detail of Supply Line Trench

incorrect

correct

Sand

Layout of Several Borehole Heat Exchangers (BHE)

correct incorrect

2 BHWs

3 BHEs

4 or more BHEs

7 or more BHEs

The above mentioned values are reference valueswhich must not be gone below.Bigger probe fields must be dimensioned by ageologist or a designated planner.

Page 21: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 21/100

  21

Planning Notes

Example of a Borehole Heat Exchanger 

Injection pipe

Bend radius DN32: 40 cmBend radius DN40: 50-80cm

Layer of sand

Probe pipe specification:

DN 32, type UL 32 4x d32/3.0 mmFill volume 2.2 l/m

DN 40, type UL 40 4x d40/3.7 mmFill volume 3.2 l/m

PE 100 / S5 / PN 16Two separated circuitsThe geothermal probes are con-figured and programmed at thefactory and subjected to multipleinspections and tests.

Bentonite cement suspension

Drilling diameter 110 -133 mm

Drilling method: Rotational washdrilling

Page 22: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 22/100

22

Planning Notes

Water-Water Heat Pumps

 Appl ication RangeWater-water heat pumps are usuallyused as monovalent heaters. The hightemperature level of the water sourcesyields high performance figures.The type of utilization of this heatsource depends on the chemicalcomposition of the groundwater or surface water. the source temperature,as well as the general applicable rulesand regulations.

Direct utilizationWith this type of use, the temperature

level can be fully utilized.Direct utilization of natural bodies of water (e.g. lakes, river water, ground-water) is not permitted since naturalbodies of water may lose their qualityover time and represent a constant riskof corrosion. Direct utilization is re-commended with closed circuits with aconstant water quality that can bemonitored and which corresponds withthe quality found in heating or coolingsystems.The factory warranty becomes null andvoid in case of direct utilization of natural

bodies of water.

Indirect UtilizationThe utilization of surface waters (river,lake, creek water) usually does notpermit monovalent operation withdirect utilization due to the relativelyhigh temperature fluctuations of thesewaters. The heat exchanger in theintermediate circuit required for indirectutilization must be made of corrosion-resistant Please note that the inter-mediate circuit temperature may dropbelow 0ºC depending on the heatsource (frost-protection in intermediatecircuit).

The concentration of the heat carrier inthe intermediate circuit therefore mustbe configured for the lowest possibleevaporation temperature (recom-mendation 25-30% glycol).

Permit Approval or a permit by the localmunicipality or district as well as ahydro-geological expert statement or assessment is required for each utili-zation of the surface water or ground-Water.Connecting an electric heat pumprequires a permit of the responsibleelectric company or utility.

Heat Source Connection LinesTapping lines must be kept as shortas possible. Lines and fittings must be

resistant to groundwater.Condensation forms on lines andfittings in warm rooms. This must beprevented with vapor proof insulationmaterial or collected with a drip tray.The installation must be protected fromcorrosion.To prevent evaporator malfunctions,a flow controller and a frost protectionmust be installed regardless of theapplication case. If an intermediatecircuit is used, the material compatibilityof the lines with the antifreezeagents must be checked (no

galvanized lines).

Heat Source IntakeThe same volume of extracted ground-water must be returned in the directionof the flow (distance > 15 m).The specified min, return temperaturemay not drop below + 4ºC. The size of the well is dimensioned for a specificrate of delivery.Pay attention to local authoritiesregulations.

Only professionally dug wells ensureproper, trouble-free operation.

Heat is usually extracted from surfacewater in three ways:

• Collectors in flowing water 

• Filter well for the indirect use of surface waters

• Filter well for the indirect use of surface waters groundwater intake

The advantage of the filter wellsolution is that the extracted water isvirtually free of dirt and particles.

The groundwater intake has to becarried out in sufficient depth(below the thermocline).

Implementation of Groundwater IntakeSee separate basic scheme.

Equipment SetupInstallation location according to thegeneral planning notes, min. distancesand clearances see equipmentdimensions.

Page 23: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 23/100

  23

Planning Notes

Basic Scheme of Ground Water (Indirect Util ization)Implementation

Heat Source System

•  Accessibility and available spacefor heavy equipment (pneumaticvehicles) must be clarified.

• Pay attention to existing utilitylines.

• Obtain geological expert opinionor assessment as outlined bydrilling permit.

• Establish water and electricalconnection.

• Obtain liability insurance.

• Provide sludge trough.

Lines for Extraction and Return Well

• Select the shortest line distancepossible.

• Dig trench below frost line.

• Dewater sole layer in trench.

• Embed lines in sand layer (risk of injury).

• Do not cover until a pressure testhas been performed.

Exterior Installation

• Ensure well accessibility.

• Seal and insulate wall openingsagainst water.

Interior Installation

•  All lines, pumps, and fittings mustbe protected from corrosion.

• Install drip pans if needed.

•  Avoid solid-borne noisetransmission.

Thermal Insulation

• Seal against vapor-diffusion.

• Provide sufficient insulationthickness to prevent condensationwater.

On-Site Tasks

• Coordination and implementationof the line trenches, wall openings,and well shafts.

• Filling in of the trench and closingthe wall openings after the in-stallation work.

Connections

• Withdrawl and return lines

• Ditches and openings

Delivery/installation by installationcompany or builder 

Intermediate ci rcuit

• Poss. groundwater pump

• Establishing the intermediate circuti incl. heattransfer medium charge (antifreeze mixture)

Delivery/installation by: Installation company Heat pump

Bank Ground

Concrete bed

Sealing theborehole

Heat source system

• Establishing thewithdrawal and returnwells

• Poss. groundwater pump

Delivery/installation byinstallation company /rilling company

Key1 Poss. filter 2 Slide valve3 Intermediate exchanger 4 Manual vent5 Charge and evacuation valves6 Safety valve7 Thermometer 8 Expansion vessel9 Manometer 11 Flow monitor 12 Circulating pump13 Return valve14 Poss. flow rate meter 15 Flow control valve16 Antifrost thermostat

17 7 Submerged pump18 Fine filter, mesh size

= 280 - 350 µm

Integrated into com-pact heat pumps

Page 24: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 24/100

24

Planning Notes

Groundwater System

Groundwater System ShaftImplementationThe extraction and output shafts mustalways be separate to prevent cooling /freezing of the extraction shaft.The shafts must be installed at adistance of at least 15 m. Please seethe enclosed implementation recom-mendation for groundwater shafts.

 A geological expert opinion must beobtained to determine the groundwater capacity.

Calculation of groundwater pumpThe geodesic height (h) is to be addedto the pressure loss to calculate thegroundwater pump since this is anopen system. Please note that thevalue of the geodesic height has adirect relationship with the resultingassociated power input of the wellpump, which is why this parameter must be taken into account whencalculating the efficiency factor of theoverall system. The lower the ground-water table, the more powerful the

groundwater pump, affecting theefficiency factor of the systemaccordingly.

Example

Pressure loss 3 mWS (water column)Geodesic height (h) 15 mWSTotal resistance to calculate groundwater pump 18 mWS

h

Indirect utilization

Page 25: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 25/100

min. Ø 100cm

min. Ø 60cm

Upper edge terrain

Sealed shaft cover labeled"groundwater" and screw-typeor latch lock or projection andpump pit

Possible bankmin. of 30 cm

min. 20 cm

The cement pipe joints andpipe openings in the access

shaft must be sealed

Carefully installed seal

Concrete bed inwell

Possiblepump pit

Clay seal (pug)

Static water level

Pumped water level

Filter gravel (sorted,washed and coordi-nated)

Feed pump

Comp

letepipetobelow

thelo

weredground-

water

table

   F   i   l   t  e  r  p   i  p  e

 

   C  o  m  p   l  e   t  e  p   i  p  e

  a  r  o  u  n   d  p  u  m  p

   C  o  m  p   l  e   t  e  p   i  p  e

  m  u   d  p  o  c   k  e   t

  m   i  n   1  m

   F   i   l   t  e  r  p   i  p  e

Detail of wellhead

Cover on filter pipe.Filtering well inside of building musthave screwed on cover.

Concrete bed in well

Filter pipe

Planning Notes

Groundwater SystemProduction Well

Image source:Swiss Ministry for Environmental Issues(BAFU)

25

Page 26: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 26/100

min. Ø 100cm

min. Ø 60cm

Sealed shaft cover labeled"percolation" and screw-typeor latch lock or projection andpump pit.

Possible bankmin. of 30 cm

min. 20 cm 

Carefully installed seal: Backfill withimpermeable or difficult to permeateexcavation material (>1m) or clay pug(50 cm)

Concrete bedin well

Possiblepump pit

Clay seal (pug)

Min. groundwater table

Immersion depthapprox. 1 m

Filter pipe -Ø: min. 115mm (4½")

Filler 

min. Ø 60cmPossible bankmin. of 

30 cm

Carefully installed seal: Backfill withimpermeable or difficult to permeateexcavation material (>1m) or claypug (50 cm)

Variable (depending onpercolation capacity)

Injection well example

Leach pit example

   V  a  r   i  a   b   l  e

   (   d  e  p  e  n   d   i  n  g  o  n

  p  e  r  c  o   l  a   t   i  o  n

  c  a  p  a  c   i   t  y   )

min.100 cm

Upper edgeterrain

Excavatedmaterial lineScree 30-80 cm

Ground that per-colates

Possiblefoundation

Upper edge terrain

Sealed shaft cover labeled"percolation" and screw-typeor latch lock or projection andpump pit

Planning Notes

Groundwater System

Image source:Swiss Ministry for Environmental Issues(BAFU)

26

Page 27: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 27/100

Planning Notes

Groundwater SystemInfiltration

27

Collection pit

Inflow

Leach pit

Infiltration trench, number, direction, lengthand width depending on percolationcapacity of ground.

Infiltration trenches can be established with drainage pipes or simply with a gravel bed. Infiltration trenches can beestablished as lengthwise trenches, as connection between two or several leach pits, or radially for one leach pit.

Top soil

Excavated mate-rial as imperme-

able as possible

Geotextile

Gravel 30-80 mmMin.0.5 m 

Variable dependingon percolation capacity(≥ 0.6 m)

Top soil

Excavated materialas impermeable as

possible

Geotextile

Drainage pipe inclinemax. 0.5%(≥ DN150)

Gravel 30-80 mm

Variable dependingon percolation capacity(≥ 0.6 m)

Page 28: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 28/100

28

Planning Notes

Cooling with Heat Pump Systems

Definition:

Free Cooling A comfortable room climate regardlessof the season is becoming increasinglyimportant, especially in newly con-structed housing units. This can beachieved or improved with free coolingwhich transfers excess room heat to aheat exchanger and from there directlyto the geothermal probe or the ground-water.The cooling circuit of the heatexchanger is not running for this typeof cooling, hence the term "free cooling."

Cooling is achieved solely with the heatexchanger between heat source anddistributor system, thanks to an addi-tionally installed heat exchanger.The source pump and the cooling circuitpump (=heat circuit pump) are both inoperation. The following points must beobserved or are worth noting:- This type of cooling is cost-efficient

since only the electricity for thecirculating pumps is needed for thesystem to work.(Note: With groundwater, therequired drive energy increases

with the depth of the well.)- However, this cooling capacity hasits limits since the source is unableto absorb and emit energy continu-ously. If the entire coolingdemand cannot be covered rightaway, the achieved cooling effectin conjunction with sufficientshading of the rooms and withclosed windows noticeably lowersthe room temperature.Furthermore the cooling capacity isreduced in summer by warming of the soil around the probes.This system is therefore suitablefor the field of domestic buildingsindustrial cooling.

- Distributor systems: Floor heatershave limited usability (additionalcooling output limits), coolingceilings are optimal, radiators arenot permitted.

- Thermostat valves must be openin summer.

- Rooms with increased heatingdemand in winter (bathrooms, etc.)are somewhat more heavily cooledin summer due to the corre-spondingly dimensioned heatexchanger surface, something thatmay not be desired.This undesired effect can beavoided if Measures are takenon-site to ensure that thethermostat valves for these roomsremains closed in the summer.

The heat input into the geothermal probein the summer also has the positive side

effect of a certain probe regeneration,which slightly raises the probe outputtemperature, which in turn leads to aslight increase of the coefficient,especially of the water heating in thesummer.

Cooling Capacity and Energy of theSoilIn addition to the temperature differencebetween soil and room temperature,the available or utilizable extractioncapacity and cooling energy must beconsidered for the cooling process.

 A dimension of Ø 32 mm is listed for pipes as a reference value; however,the values of the offices for geologicalassessments are to be complied within reality.

 Active Cool ing A defined cooling output, however, isreached through active cooling, usingthe reversible heat pumps AQUATOPTR in combination with a distributor system suitable for heating and cooling(e.g. fan coil). Contrary to free cooling,active cooling runs the compressor of the heat pump (reversing the coolingcircuit). This involves a process reversalwhile in cooling mode. In this case,the heat output side (condenser)becomes the heat absorption side(evaporator).During this phase, the heat pumpfunctions as a refrigerator.

The cooling and heating cycle cannotrun at the same time. The use of a coolstorage is recommended to prevent toomany switching commands being sentto the heat pump (on, off, switching towater heating). Depending on thesystem concept, the heating storagecan also be used as cooling storage.

 Act ive cool ing advantages:- his type of cooling has the advan-

tage that the cold output can beensured for the entire cooling period,which means room temperatures or the temperature of the fluid to be

cooled remains constant at all times.- Operating temperatures below the

dew point are possible as well, whichallows for the use of a fan mono-block or fan coils to dehumidify theair, which is especially desirable incommercial systems.

 Act ive Cooling InsulationWater at a temperature less than 17°Cis considered to be cold water. In thepresence of cold water, the usual heatingsystem insulations cannot be used.Suitable insulation, especially when

using active cooling, is necessary.Insulation suitable for cold water isprimarily used to avoid condensationbut also to prevent cold water absorbingany of the heat, and also to protectagainst external mechanical stresses.Condensation must be avoided witha suitable insulation to prevent surfacecorrosions on the distributor system or mold in moist layers.Insulation for cold water must be vapor-proof and installed to all distributor system elements (pipes, ducts, tanks,pumps, cocks, valves, etc.) in a vapor-proof manner.Special insulating materials arecommercially available in differentdesigns (e.g. Armaflex, Tubolit).Standards SIA 380, DIN 4140 describethe insulation techniques.Please comply with the guidelines of relevant local professional associations(VSI, VDI, FESI).

Extraction capacity Cooling energy/year 

Vertical borehole heatExchangers

ca. 30W/m 20 - 30 kWh/m/a

Horizontal geothermaltube collectors

ca. 15W/m2 10 - 20 kWh/m2/a

Page 29: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 29/100

  29

Planning Notes

Cooling with Heat Pump Systems

Measures to Reduce the BuildingCooling CapacityThe room cooling capacity is calculatedbased on the sum of the individualroom demand. If the cooling demandexceeds the available cooling capacity,the following reduction measures maybe used:1. Direct sunlight through the window

areas can be restricted throughconstructional measures (shutters,window shades, blinds).

2. The amount of sunlight receivedby each room frequently differsdue to the different cardinal points.

This means that not the entirecooling capacity must be availableat the same time. This can reducethe max. simultaneous coolingdemand.

3. Nighttime cooling of constructionalelements can also lower thedaytime cooling demand.

4. With systems that have very highcooling peaks during the day(exhibits, shopping centers, etc.),the peak load can be lowered bycooling the core by cooling downthe heavy construction components

(concrete walls and ceilings)during the normal downtime of thesystem, e.g. at night. 

 AQUATOP TR Source PumpReversible heat pumps require theuse of speed-controlled source pumpsto control the condenser condensationrequired for the correct cooling opera-tion of reversible heat pumps.These are controlled by the heatpump controller using a 0-10 V or aPWM signal (pulse modulation).

Factors

Private residences 20-40 W/m2 

Offices 40-70 W/m2 

Sales rooms 50-100 W/m2 

Glass additions 150-200 W/m2 

Calculating the Cooling CapacityThe cooling demand is calculated inaccordance with national and localstandards such as VDI 2078:Real estate and buildings

DIN 18599:Energetic assessmentof nonresidential buildings (alsoincludes air-conditioning or cooling)

DIN EN ISO 13790:Energetic assessment of buildings(similar to DIN 18599) only across

Europe DIN EN 255SIA382/2: Room temperaturerequirements.

SIA382/3:Determining the cooling requirementof building.

Cooling is differentiated by internalcooling capacity (e.g. thermal dischargeof equipment, persons, lights) andexternal cooling capacity (sun exposure,heat from building components, andventilation gains due to exterior air).

The estimate acc. to HEA can be usedfor approximate calculations. However,the conditions listed below must betaken into account as well.The calculations of the implementationphase must be based on national andlocal standards.

Empirical data for a quick calculation:

Basic Cooling Information1. The cooling cycle always must be

monitored. If the room air is cooledunchecked, condensation water willemerge.This may damage the equipmentor building components. The flowtemperature in conjunction with thehumidity (dew point contacttemperature detector or roomsensor for humidity and tempera-ture) is best for monitoring.

2. A separate cooling circuit shouldbe planned for the cooling mode.This circuit can be combined with

a cooling ceiling or ventilationsystem, for example.Partial cooling via the floor heater or convectors is also possible if theneed for cooling is limited.

3. Water flow must be ensured or cooling is not possible. Whencooling via the heating surfaces,thermostatic individual controlsmust be used that can be switchedto cooling mode.

Page 30: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 30/100

30

Planning Notes

Cooling with Heat Pump Systems

Comfortable Room Temperature

 A room is considered to be thermallycomfortable when the room tempera-ture in the summer is below 28°C.This does not apply to air-conditionedrooms. Other factors are affectingthermal comfort ranges as well.Thermal comfort requirements aredefined in standard DIN EN 15251,which provides a general guidelinewhen implementing constructionprojects.

 A comfortable room temperaturedepends significantly on the outside

temperature. When cooling, insidetemperatures should not be more thanapprox. 3-6°C below the outsidetemperature to prevent cold shock.The comfort range is depicted in thegraphic.

Recommendations for SurfaceTemperatures of Cooled FloorsWhen using a floor area for cooling,the comfort requirements and theweather data can be used to estimatethe condensation risk so that the

surface temperatures should generallybe in a range of 20°C to 29°C.Special attention must be paid to floor surfaces that are used when barefoot,for example, in bathrooms, since thesurface temperatures perceives asbeing comfortable may be significantlyhigher depending on the floor covering.Rooms with high humidity loads,especially bathrooms and kitchens,should not be cooled or only byconsidering the dew point threshold.

Comfortabletemperature range

20 21 22 23 24 25 26 27 28 29 30 31 32

Outside temperature in °C

28

27

26

25

24

23

22

21

   R  o  o  m    t  e

  m  p  e  r  a   t  u  r  e   i  n   °   C

 

Comfortable floor surface temperatures

min. max.

Wearing shoes 19° C 29° C

Barefoot Carpet 21° C 28° C

Pine wood 23° C 28° C

Oak 24° C 28° C

Linoleum 24° C 28° C

Concrete/screed 26° C 28° C

Page 31: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 31/100

  31

Planning Notes

Cooling with Heat Pump Systems

Monitoring Function to PreventCondensate Precipitation

To avoid condensation, the integratedLOGON B WP controller featuresdifferent monitor functions.

1. Flow Temperature MonitoringThe temperature is set at the factory to18°C. This temperature value ensuresin almost all cases that condensationdoes not occur. A dew point monitor should always be used in addition.

2. Dew Point Moni tor This device is attached to critical pointssuch as the floor heating distributionbox. As soon as the connected dewpoint monitor detects condensation, itcloses the contact and thereby switchescooling off.

3. Hygros tatTo prevent condensate due to a toohigh room humidity, a hygrostat can beconnected, which then realizes a fixedflow temperature increase. As soon asthe value set at the hygrostat is

exceeded, the hygrostat closes thecontact and this triggers the flowtemperature set point increase set here.

Distributor box floo r heating

TP = Dew point temp. monitor 

High-end Solutions:

4. HumidistatTo prevent condensate due to a toohigh room humidity, a humidistat canbe connected, which then realizes acontinuous flow set point increase.If the relative room humidity exceedsan adjustable value, the flow set pointis increased steadily.

5. Room Sensor for Humidity andTemperatureThe dew point temperature is deter-mined based on the relative roomhumidity and the associated room air temperature. To prevent water condensation on surfaces, the flowtemperature is min. limited by an ad-

 justable value that is above the dewpoint temperature.

Dehumidifier  An external dehumidification can beused in combination with the last twomonitoring functions (item 4 and 5).

 An external dehumidifier can beswitched on to reduce rising humidityin the air.

Return flow

Flow

Page 32: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 32/100

32

Unit Dimensions

 AQUATOP T..C..

1 Heating water Outlet Internal thread 1"

2 Heating water Inlet Internal thread 1"

3 Heat source Outlet Internal thread 1"

4 Heat source Inlet Internal thread 1"

5 Electrical feed (cable entry openings) PG 13,5 + PG 29

6 Sensor cable 

7 Safety valve Outlet Brine and heater ø 15/21 mm

8 Controller 

9 Controller cover 

10 Front panel holding plate

11 Vibration dampening rubber pads Diameter Heightø Screws

70 mm45 mmM10x23mm

 AQUATOP T..C..

DimensionalDrawing Front view Right view Rear view(control side)

Control panel

Floor plan with min. clearances

Page 33: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 33/100

  33

Unit Dimensions

 AQUATOP T17CH

1 Heating water Outlet Internal thread 1"

2 Heating water Inlet Internal thread 1"

3 Heat source Outlet Internal thread 1"

4 Heat source Inlet Internal thread 1"

5 Electrical feed (cable entry openings) PG 13,5 + PG 29

6 Sensor cable 

7 Safety valve Outlet Brine and heater ø 15/21 mm

8 Controller 

9 Controller cover 

10 Front panel holding plate

11 Vibration dampening rubber pads Diameter Heightø Screws

70 mm45 mmM10x23mm

 AQUATOP T17CH

DimensionalDrawing Front view Right view Rear view(control side)

Control panel

Floor plan with min. clearances

Page 34: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 34/100

34

Unit Dimensions

 AQUATOP T..H..

 AQUATOP T..H..

T22-43H

1 Heating water Outlet Internal thread 1¼"

2 Heating water Inlet Internal thread 1¼"

3 Heat source Outlet Internal thread 1½"

4 Heat source Inlet Internal thread 1½"

5 Electrical feed (cable entry openings) PG 13,5 + PG 29

6 Sensor cable 

7 Controller 

8 Controller cover 

9 Front panel holding plate

10 Vibration dampening rubber pads Diameter Heightø Screws

70 mm45 mmM10x23mm

Front view Right view Rear view(control side)

DimensionalDrawing

Floor plan with min. clearances

Control panel

Page 35: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 35/100

  35

Unit Dimensions

Cascade Setup AQUATOP T..H

Dimensional Drawing

Front view (control side) Right view Rear view

Control panel

Floor plan with min. clearances

Page 36: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 36/100

36

Technical Data

 AQUATOP T05C-T08C

Heat Pump Type AQUATOP T T05C T06C T08C

Model Type/Design Compact Design

Standard Data Heat Pumps Brine 1)

  W35 W50 W35 W50 W35 W50

Heating capacity B0 Qh kW 5.4 5.0 6.5 6.1 8.2 7.7

Cooling capacity B0 Qo kW 4.2 3.3 5.0 4.0 6.3 5.0

El. power consumption B02)

Pel kW 1.2 1.8 1.5 2.1 1.9 2.7

Performance rating B0 COP (-) 4.5 2.8 4.3 2.7 4.4 2.8

Standard Data Heat Pumps Water 1) 

Heating capacity W10 Qh kW 7.1 6.7 8.7 8.1 11.0 10.2

Cooling capacity W10 Qo kW 5.9 4.9 7.2 6.0 9.1 7.5

El. power consumption W10 2) Pel kW 1.2 1.8 1.5 2.1 1.9 2.7

Performance rating W10 COP (-) 5.9 3.8 5.8 3.7 5.9 3.8

Refrigerant R 407 c

Oil Ester oil

Oil charge l 1 1 1.1

Refrigerant fill volume kg 1.4 1.7 1.85

Probe length 3) DN 32 m 93 111 2x70

Evaporator, Brine Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (3.0 K  Δt at B0/W35) l/h 1350 1600 2000Pressure loss at B0/W35 incl. connection tubes kPa 11 6 15

Residual pressure at B0/W354)

kPa 29 30 48

Volume flow intermediate circuit(3.0 K  Δt at W 10/W35)

l/h 1900 2300 2900

Pressure loss at B0/W35 incl. connection tubes kPa 22 12 31

Residual pressure at W10/W354)

kPa 9 13 26

Capacity incl. connection tubes l 2.3 3.1 3.1

Medium water/ethylene glycol % 70/30

Condenser Heating Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (7.0 K  Δt at B0/W35) 6) l/h 650 800 1000

Pressure loss B0/W35 incl. connection tubes kPa 2 5 6

Residual pressure at B0/W35 4) kPa 48 43 40

Volume flow (7.0 K  Δt at W10/W35) 6) l/h 850 1050 1350

Pressure loss W10/W35 incl. connection tubes kPa 5 6 9

Residual pressure at W10/W35 4) kPa 43 40 33

Capacity incl. connection tubes l 2.3 2.6 2.6

Medium water %

 Appl ication Range

Heat source brine outlet T min °C -5 -5 -5

Heat source water outlet T min °C 3 3 3

Heating flow temperature min/max °C 20/55 20/55 20/55

100

Page 37: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 37/100

  37

Technical Data

 AQUATOP T05C-T08C

Heat Pump Type AQUATOP T T05C T06C T08CElectrical Data

Operating voltage, feed 3 x 400 V / 50 Hz

Rated input at B0/W35 PNT kW 1.2 1.5 1.9

Ext. fuse with electr. heating element  AT 16 16 20

Ext. fuse without electr. heating element  AT 10 10 13

Electrical heating element rated current l max. A 9 9 9

Compressor rated current I max. A 4.2 5.1 6.3

Current with blocked rotor  LRA A 24 32 40

Starting current with soft starter  VSA A 10.5 12.8 15.8

Power consumption el. heating element Pmax. kW 6/4/2

Power consumption circulating pumps Pmax. kW 0.13 0.13 0.25

Starts per hour  max. (-) 3 3 3

Start delay after power outage sec 60-120

Dimensions / Connections / Misc.

Operating weight kg 185 190 196

Dimensions  WxDxH mm 670x950x1050

Heating circuit connection IG inch 1" 1" 1"

Brine circuit connection IG inch 1" 1" 1"

Sound power level Lwa dB(A) 41 41 41

Expansion vessel heater  V l 12 12 12

Set default pressure heating circuit p bar  1 1 1

Expansion vessel brine circuit V l 12 12 12

Set default pressure brine circuit p bar  1 1 1

Safety valve (brine/heater) p bar  3 3 3

LP pressure control – switch OFF p bar 1.5 1.5 1.5

LP pressure control – switch ON p bar 2.9 2.9 2.9

HP pressure control – switch OFF p bar 29 29 29

HP pressure control – switch ON p bar 24 24 24

Switching point brine pressure monitor  p bar Off 0,65 / On 0,80

1) According to EN2252) Incl. circulating pump3) Required length of geothermal probes for normal geological conditions (45 W/m), without warm water heating4) Residual delivery pressure is indicated at highest level5) Water / ethylene glycol: cp=~3.6 [KJ/kg*K], ρ=~1.05 [kg/dm3] (ASHRAE)6)  Δt max= 10 K, at PHW-preparation  Δtmax = 5 K. (V' [l/h]= Qh[kW]/(4.18* Δt[K]*ρ[kg/l])*3600)

Page 38: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 38/100

38

Technical Data

 AQUATOP T10C-T14C

Heat Pump Type AQUATOP T T10C T12C T14C

Model Type/Design Compact Design

Standard Data Heat Pumps Brine 1)

  W35 W50 W35 W50 W35 W50

Heating capacity B0 Qh kW 9.6 9.0 12.0 11.3 14.4 13.5

Cooling capacity B0 Qo kW 7.4 5.9 9.2 7.6 11.1 9.0

El. power consumption B02)

Pel kW 2.2 3.1 2.8 3.8 3.3 4.5

Performance rating B0 COP (-) 4.5 2.9 4.3 3.0 4.3 3.0

Standard Data Heat Pumps Water 1) 

Heating capacity W10 Qh kW 12.9 12.0 15.9 14.7 19.1 17.5

Cooling capacity W10 Qo kW 10.8 8.9 13.3 11.0 15.6 12.7

El. power consumption W10 2) Pel kW 2.2 3.1 2.6 3.7 3.5 4.8

Performance rating W10 COP (-) 6.0 3.8 6.0 4.0 5.5 3.7

Refrigerant R 407 c

Oil Ester oil

Oil charge l 1.1 1.4 1.4

Refrigerant fill volume kg 2 2.2 2.9

Probe length 3) DN 32 m 2x82 2x102 3x82

Evaporator, Brine Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (3.0 K  Δt at B0/W35) l/h 2350 2950 3500Pressure loss at B0/W35 incl. connection tubes kPa 10 15 14

Residual pressure at B0/W35 4) kPa 50 73 72

Volume flow intermediate circuit(3.0 K  Δt at W 10/W35)

l/h 3450 4250 4950

Pressure loss at W10/W35 incl. connection tubes kPa 21 31 28

Residual pressure at W10/W35 4) kPa 32 53 51

Capacity incl. connection tubes l 3.6 3.6 4.1

Medium water/ethylene glycol5) % 70/30

Condenser Heating Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (7.0 K  Δt at B0/W35) 6) l/h 1200 1500 1750

Pressure loss B0/W35 incl. connection tubes kPa 6 9 10

Residual pressure at B0/W35 4) kPa 38 31 27

Volume flow (7.0 K  Δt at W10/W35)6)

l/h 1600 1950 2350

Pressure loss W10/W35 incl. connection tubes kPa 8 10 5

Residual pressure at W10/W354)

kPa 31 24 25

Capacity incl. connection tubes l 3.1 3.6 3.6

Medium water %

 Appl ication Range

Heat source brine outlet T min °C -5 -5 -5

Heat source water outlet T min °C 3 3 3

Heating flow temperature min/max °C 20/55 20/55 20/55

100

Page 39: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 39/100

  39

Technical Data

 AQUATOP T10C-T14C

1) According to EN2252) Incl. circulating pump3) Required length of geothermal probes for normal geological conditions (45 W/m), without warm water heating4) Residual delivery pressure is indicated at highest level5) Water / ethylene glycol: cp=~3.6 [KJ/kg*K], ρ=~1.05 [kg/dm3] (ASHRAE)6)  Δt max= 10 K, at PHW-preparation  Δtmax = 5 K. (V' [l/h]= Qh[kW]/(4.18* Δt[K]*ρ[kg/l])*3600)

Heat Pump Type AQUATOP T T10C T12C T14C

Electrical Data

Operating voltage, feed 3 x 400 V / 50 Hz

Rated input at B0/W35 PNT kW 2.2 2.8 3.3

Ext. fuse with electr. heating element  AT 20 20 25

Ext. fuse without electr. heating element  AT 13 16 20

Electrical heating element rated current l max. A 9 9 9

Compressor rated current I max. A 7 10 11

Current with blocked rotor  LRA A 46 50 66

Starting current with soft starter  VSA A 17.5 25 27.5

Power consumption el. heating element Pmax. kW 6/4/2

Power consumption circulating pumps Pmax. kW 0.25 0.45 0.46

Starts per hour  max. (-) 3 3 3

Start delay after power outage sec 60-120

Dimensions / Connections / Misc.

Operating weight kg 204 203 218

Dimensions  WxDxH mm 670x950x1050

Heating circuit connection IG inch 1" 1" 1"

Brine circuit connection IG inch 1" 1" 1"

Sound power level Lwa dB(A) 43 45 48

Expansion vessel heater  V l 12 12 12

Set default pressure heating circuit p bar  1 1 1

Expansion vessel brine circuit V l 12 12 12

Set default pressure brine circuit p bar  1 1 1

Safety valve (brine/heater) p bar  3 3 3

Switching point brine pressure monitor  p bar Off 0,65 / On 0,80

LP pressure control – switch OFF p bar 1.5 1.5 1.5

LP pressure control – switch ON p bar 2.9 2.9 2.9

HP pressure control – switch OFF p bar 29 29 29

HP pressure control – switch ON p bar 24 24 24

Page 40: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 40/100

40

Technical Data

 AQUATOP T07CHT - T11CHT

Heat Pump Type AQUATOP T T07CHT T11CHT

Model Type/Design Compact Design High Temperature

Standard Data Heat Pumps Brine 1)

  W35 W50 W35 W50

Heating capacity B0 Qh kW 7.0 6.6 10.2 9.3

Cooling capacity B0 Qo kW 5.4 4.2 7.9 6.3

El. power consumption B02)

Pel kW 1.6 2.4 2.3 3.3

Performance rating B0 according to EN14511 COP (-) 4.2 2.8 4.4 2.9

Performance rating B0 according to EN255 COP (-) 4.4 4.5

Standard Data Heat Pumps Water 1) 

Heating capacity W10 Qh kW 9.8 9.2 14.3 13.2

Cooling capacity W10 Qo kW 8.0 6.4 11.8 9.7

El. power consumption W10 2) Pel kW 1.8 2.6 2.5 3.5

Performance rating W10 accordinh to EN14511 COP (-) 5.5 3.5 5.7 3.8

Refrigerant R 134a

Oil Ester oil

Oil charge l 1.4 1.7

Refrigerant fill volume kg 2.1 2.7

Probe length 3) DN 32 m 2x60 2x88

Evaporator, Brine Side

Volume flow (3.0 K  Δt at B0/W35) l/h 1700 2500Pressure loss at B0/W35 incl. connection tubes kPa 10 20

Residual pressure at B0/W354)

kPa 42 39

Volume flow intermediate circuit(3.0 K  Δt at W 10/W35)

l/h 2500 3750

Pressure loss at W10/W35 incl. connection tubes kPa 20 30

Residual pressure at W10/W354)

kPa 18 20

Capacity incl. connection tubes l 3.6 4.1

Medium water/ethylene glycol5)

% 75/30

Condenser Heating Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow nominal (5.0 K  Δt at B0/W35) 6) l/h 1200 1750

Pressure loss B0/W35 incl. connection tubes 7) l/h 9 7

Residual pressure at W10/W35 4) kPa 35 50

Volume flow nominal (5.0 K  Δt at W10/W35)6) l/h  1700 2450

Pressure loss W10/W35 incl. connection tubes7) kPa  12 21

Residual pressure at W10/W35 4) kPa 26 26

Capacity incl. connection tubes l 3.1 3.6

Medium water % 100

 Appl ication RangeHeat source brine outlet T min °C -5 -5

Heat source water outlet T min °C 3 3

Heating flow temperature min/max °C 20/65 20/65

Page 41: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 41/100

  41

Technical Data

 AQUATOP T07CHT - T11CHT

Heat Pump Type AQUATOP T T07CHT T11CHTElectrical Data

Operating voltage, feed 3 x 400 V / 50 Hz

Rated input at B0/W35 PNT kW 1.6 2.3

Ext. fuse with electr. heating element  AT 20 25

Ext. fuse without electr. heating element  AT 16 20

Electrical heating element rated current l max. A 9 9

Compressor rated current I max. A 10 13

Current with blocked rotor  LRA A 50 74

Starting current with soft starter VSA A 25 32.5

Power consumption el. heating element Pmax. kW 6/4/2

Power consumption circulating pumps Pmax. kW 0.22 0.23

Starts per hour max. (-) 3 3

Start delay after power outage sec 60-120

Dimensions / Connections / Misc.

Operating weight kg 203 221

Dimensions  WxDxH mm 670x950x1050

Heating circuit connection IG inch 1" 1"

Brine circuit connection IG inch 1" 1"

Sound power level Lwa dB(A) 45 49

Expansion vessel heater V l 12 12

Set default pressure heating circuit p bar 1 1

Expansion vessel brine circuit V l 12 2 x 12

Set default pressure brine circuit p bar 1 1

Safety valve (brine/heater) p bar 3 3

Switching point brine pressure monitor p bar  Off 0,65 / On 0,80

LP pressure control – switch OFF p bar 0.9 0.9

LP pressure control – switch ON p bar 2 2

HP pressure control – switch OFF p bar 20 20

HP pressure control – switch ON p bar 16 16

1) According to EN14511 (*measured at heat pump test centre WPZ)2) Incl. circulating pump3) Required length of geothermal probes for normal geological conditions (45 W/m), without warm water heating4) Residual delivery pressure is indicated at highest level5) Water / ethylene glycol: cp=~3.6 [KJ/kg*K], ρ=~1.05 [kg/dm3] (ASHRAE)6)  Δt max= 10 K, at PHW-preparation  Δtmax = 5 K. (V' [l/h]= Qh[kW]/(4.18* Δt[K]*ρ[kg/l])*3600)7) At nominal volume flow

Page 42: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 42/100

42

Technical Data

 AQUATOP T17CH 

Heat Pump Type AQUATOP T T17CH* 

Model Type/Design Compact Design

Standard Data Heat Pumps Brine 1)  W35

Heating capacity B0 Qh kW 17.7 16.6

Cooling capacity B0 Qo kW 13.7 10.5

El. power consumption B0 2) Pel kW 4.0 6.1

Performance rating B0 according to EN14511 COP (-) 4.5 2.7

Standard Data Heat Pumps Water 1) 

Heating capacity W10 Qh kW 22.9 21.1

Cooling capacity W10 Qo kW 18.9 14.9

El. power consumption W10 2) Pel kW 4.0 6.2

Performance rating W10 accordinh to EN14511 COP (-) 5.7 3.4

Refrigerant R 407c

Oil Ester oil

Oil charge l 1.57

Refrigerant fill volume kg 3.3

Probe length 3) DN 32 m 3x102

Evaporator, Brine Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (3.0 K  Δt at B0/W35) l/h 4350

Pressure loss at B0/W35 incl. connection tubes kPa 13

Residual pressure at B0/W354)

kPa 70

Volume flow intermediate circuit(3.0 K  Δt at W 10/W35)

l/h 6000

Pressure loss at W10/W35 incl. connection tubes kPa 55

Residual pressure at W10/W354)

kPa 17

Capacity incl. connection tubes l 5.3

Medium water/ethylene glycol 5) % 70/30

Condenser Heating Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow nominal (5.0 K  Δt at B0/W35) 6) l/h 3050

Pressure loss B0/W35 incl. connection tubes7)

l/h 7

Residual pressure at B0/W354)

kPa 29

Volume flow nominal (5.0 K  Δt at W10/W35)6)

l/h 3950

Pressure loss W10/W35 incl. connection tubes7)

kPa 8

Residual pressure at W10/W35 4) kPa 9

Capacity incl. connection tubes l 6.2

Medium water % 100

 Appl ication Range

Heat source brine outlet T min °C -5

Heat source water outlet T min °C 3

Heating flow temperature min/max °C 20/60

W55

Performance rating B0 according to EN255 COP (-) 4.8

Page 43: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 43/100

  43

Technical Data

 AQUATOP T17CH 

Heat Pump Type AQUATOP TT17CH* 

Electrical Data

Operating voltage, feed 3 x 400 V / 50 Hz

Rated input at B0/W35 PNT kW 4

Ext. fuse with electr. heating element  AT 25

Ext. fuse without electr. heating element  AT 20

Electrical heating element rated current l max. A 9

Compressor rated current I max. A 15

Current with blocked rotor  LRA A 87

Starting current with soft starter VSA A 37.5

Power consumption el. heating element Pmax. kW 6/4/2

Power consumption circulating pumps Pmax. kW 0.48

Starts per hour max. (-) 3

Start delay after power outage sec 60-120

Dimensions / Connections / Misc.

Operating weight kg 245 

Dimensions  WxDxH mm 670x950x1050

Heating circuit connection IG inch 1"

Brine circuit connection IG inch 1"

Sound power level Lwa dB(A) 48

LP pressure control – switch OFF p bar 1.5

LP pressure control – switch ON p bar 2.9

HP pressure control – switch OFF p bar 29

HP pressure control – switch ON p bar 24

Switching point brine pressure monitor p bar  Off 0,65 / On 0,80

Expansion vessel heater  V l 12

Set default pressure heating circuit p bar  1

Expansion vessel brine circuit V l 2x12

Set default pressure brine circuit p bar  1

Safety valve (brine/heater) p bar  3

 Available from October 2010

1) According to EN14511 (*measured at heat pump test centre WPZ)2) Incl. circulating pump3) Required length of geothermal probes for normal geological conditions (45 W/m), without warm water heating4) Residual delivery pressure is indicated at highest level5) Water / ethylene glycol: cp=~3.6 [KJ/kg*K], ρ=~1.05 [kg/dm3] (ASHRAE)

6)  Δt max= 10 K, at PHW-preparation  Δtmax = 5 K. (V' [l/h]= Qh[kW]/(4.18* Δt[K]*ρ[kg/l])*3600)7) At nominal volume flow

Page 44: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 44/100

44

Technical Data

 AQUATOP T22H-T43H 

Heat Pump Type AQUATOP TH T22H  T28H  T35H  T43H 

Model Type/Design Normal Design high temperature

Standard Data Heat Pumps Brine 1)

  W35 W55 W35 W55 W35 W55 W35 W55

Heating capacity B0 Qh kW 21.0 20.4 28.7* 24.8* 36.7 34.7 44.4 41.3

Cooling capacity B0 Qo kW 16.4 13.4 22.2* 15.6* 28.4 23.3 34.4 27.8

El. power consumption B0 Pel kW 4.6 7.0 6.5* 9.2* 8.3 11.4 10.0 13.5

Performance rating B0 according to EN14511 COP (-) 4.6 2.9 4.4* 2.7* 4.4 3.0 4.4 3.1

Performance rating B0 according to EN255 COP (-) 4.8 4.6* 4.6 4.6

Standard Data Heat Pumps Water 1) 

Heating capacity W10 Qh kW 25.9 25.6 35.5* 34.2* 48.9 46.0 58.6 54.5

Cooling capacity W10 Qo kW 21.2 18.3 28.5* 24.5* 39.7 33.4 47.3 39.2

El. power consumption W10 Pel kW 4.7 7.3 7.0* 9.7* 9.2 12.6 11.3 15.3

Performance rating W10 accordinh toEN14511

COP (-) 5.5 3.9 5.1* 3.5* 5.3 3.7 5.2 3.6

Refrigerant R 407 c

Oil Ester oil

Oil charge l 2.7 4 4.1 4.1

Refrigerant fill volume kg 4.1 5.7 6.2 7.4

Probe length3)

DN 32 m 4x92 5x99 6x106 7x109

Evaporator, Brine Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (3.0 K  Δt at B0/W35) l/h 5250 7100 9050 10950

Pressure loss at B0/W35 incl. connection tubes kPa 9 11 14 19

Volume flow intermediate circuit(3.0 K  Δt at W 10/W35)

l/h 6700 9000 12550 14950

Pressure loss at W10/W35 ^incl. connection tubes

kPa 11 17 22 25

Capacity incl. connection tubes l 10.8 14.2 16.5 18.8

Medium water/ethylene glycol 3) % 70/30

Condenser Heating Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow nominal (5.0 K  Δt at B0/W35) 4) l/h 3600 4950 6350 7650

Pressure loss B0/W35 incl. connection tubes 5) kPa 3 5 5 6

Volume flow nominal (5.0 K  Δt at W10/W35) 4) l/h 4450 6150 8400 10100

Pressure loss W10/W35 incl. connectiontubes

5) 

kPa 4 7.5 9 6

Capacity incl. connection tubes l 7.3 9.6 10.7 13

Medium water %

 Appl ication Range

Heat source brine outlet T min °C -5 -5 -5 -5

Heat source water outlet T min °C 3 3 3 3

Heating flow temperature min/max °C 20/60 20/60 20/60 20/60

100

Page 45: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 45/100

  45

Technical Data

 AQUATOP T22H-T43H 

Heat Pump Type AQUATOP T T22H  T28H  T35H 

Electrical Data

Operating voltage, feed 3 x 400 V / 50 Hz

Rated input at B0/W35 PNT kW 4.52 6.30 8.21 9.8

Ext. fuse  AT 3 x 25 3 x 32 3 x 40 3 x 40

Rated current l max. A 21 21 25 32

Current with blocked rotor  LRA A 84 127 167 198

Starting current with soft starter  VSA A 52.5 52.5 62.5 80

Starts per hour  max. (-) 3 3 3 3

Start delay after power outage sec 60-120

Dimensions / Connections / Misc.

Operating weight kg 245 315 330 360

Dimensions  WxDxH mm 670x950x1050

Heating circuit connection IG inch 1¼ 1¼ 1¼ 1¼

Brine circuit connection IG inch 1½ 1½ 1½ 1½

Sound power level Lwa dB(A) 57 59* 59 61

LP pressure control – switch OFF p bar 1.5 1.5 1.5 1.5

LP pressure control – switch ON p bar 2.9 2.9 2.9 2.9

HP pressure control – switch OFF p bar 29 29 29 29

HP pressure control – switch ON p bar 24 24 24 24

Switching point brine pressure monitor  p bar Off 0,65 / On 0,80

T43H 

1) According to EN14511 (*measured at heat pump test centre WPZ)2) Required length of geothermal probes for normal geological conditions (45 W/m), without warm water heating3) Water / ethylene glycol: cp=~3.6 [KJ/kg*K], ρ=~1.05 [kg/dm3] (ASHRAE)4)  Δt max= 10 K, at PHW-preparation  Δtmax = 5 K. (V' [l/h]= Qh[kW]/(4.18* Δt[K]*ρ[kg/l])*3600)5) At nominal volume flow

Page 46: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 46/100

46

Technical Data

 AQUATOP T05CX - T08CX (available F/I/B)

Heat Pump Type AQUATOP T...CX T05CX T06CX T08CX

Model Type/Design Compact Design monophase

Standard Data Heat Pumps Brine 1)

  W35 W50 W35 W50 W35 W50

Heating capacity B0 Qh kW 5.4 5.0 6.5 6.1 8.2 7.7

Cooling capacity B0 Qo kW 4.2 3.3 5.0 4.0 6.3 5.0

El. power consumption B02)

Pel kW 1.2 1.8 1.5 2.1 1.9 2.7

Performance rating B0 COP (-) 4.5 2.8 4.3 2.7 4.4 2.8

Standard Data Heat Pumps Water 1) 

Heating capacity W10 Qh kW 7.1 6.7 8.7 8.1 11.0 10.2

Cooling capacity W10 Qo kW 5.9 4.9 7.2 6.0 9.1 7.5

El. power consumption W10 2) Pel kW 1.2 1.8 1.5 2.1 1.9 2.7

Performance rating W10 COP (-) 5.9 3.8 5.8 3.7 5.9 3.8

Refrigerant R 407 c

Oil Ester oil

Oil charge l 1 1.1 1.1

Refrigerant fill volume kg 1.4 1.7 1.85

Probe length 3) DN 32 m 93 111 2x70

Evaporator, Brine Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (3.0 K  Δt at B0/W35) l/h 1350 1600 2000Pressure loss at B0/W35 incl. connection tubes kPa 11 6 15

Residual pressure at B0/W354)

kPa 29 30 48

Volume flow intermediate circuit(3.0 K  Δt at W 10/W35)

l/h 1850 2300 2900

Pressure loss at W10/W35 incl. connection tubes kPa 22 12 31

Residual pressure at W10/W354)

kPa 9 13 26

Capacity incl. connection tubes l 2.3 3.1 3.1

Medium water/ethylene glycol 5) % 70/30

Condenser Heating Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (7.0 K  Δt at B0/W35)6)

l/h 650 800 1000

Pressure loss B0/W35 incl. connection tubes kPa 2 5 6

Residual pressure at B0/W35 4) kPa 48 43 40

Volume flow (7.0 K  Δt at W10/W35) 6) l/h 850 1050 1350

Pressure loss W10/W35 incl. connection tubes kPa 5 6 9

Residual pressure at W10/W35 4) kPa 43 40 33

Capacity incl. connection tubes l 2.3 2.6 2.6

Medium water %

 Appl ication RangeHeat source brine outlet T min °C -5 -5 -5

Heat source water outlet T min °C 3 3 3

Heating flow temperature min/max °C 20/55 20/55 20/55

100

Page 47: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 47/100

  47

Technical Data

 AQUATOP T05CX - T08CX (available F/I/B)

Heat Pump Type AQUATOP T...CXT05CX T06CX T08CX

Electrical Data

Operating voltage, feed 1 x 230 V / 50 Hz

Rated input at B0/W35 PNT kW 1.2 1.5 1.9

Ext. fuse with electr. heating element  AT 32 32 32

Ext. fuse without electr. heating element  AT 16 20 25

Electrical heating element rated current I max A 9 9 9

Compressor rated current I max. A 11.4 14.8 17.3

Current with blocked rotor  LRA A 47 61 76

Starting current with soft starter  VSA A 45 45 45

Power consumption el. heating element max. kW 6/4/2

Power consumption circulating pumps max. kW 0.13 0.13 0.25

Starts per hour  max. (-) 3 3 3

Start delay after power outage sec 60-120

Dimensions / Connections / Misc.

Operating weight kg 185 190 196

Dimensions  WxDxH mm 670x950x1050

Heating circuit connection IG inch 1" 1" 1"

Brine circuit connection IG inch 1" 1" 1"

Sound power level Lwa dB(A) 41 41 41

Expansion vessel heater  V l 12 12 12

Set default pressure heating circuit p bar 1 1 1

Expansion vessel brine circuit V l 12 12 12

Set default pressure brine circuit p bar 1 1 1

Safety valve (brine/heater) p bar  3 3 3

Switching point brine pressure monitor  p bar Off 0,65 / On 0,80

LP pressure control – switch OFF p bar 1.5 1.5 1.5

LP pressure control – switch ON p bar 2.9 2.9 2.9

HP pressure control – switch OFF p bar 29 29 29

HP pressure control – switch ON p bar 24 24 24

1) According to EN2252) Incl. circulating pump3) Required length of geothermal probes for normal geological conditions (45 W/m), without warm water heating4) Residual delivery pressure is indicated at highest level5) Water / ethylene glycol: cp=~3.6 [KJ/kg*K], ρ=~1.05 [kg/dm3] (ASHRAE)6)  Δt max= 10 K, at PHW-preparation  Δtmax = 5 K. (V' [l/h]= Qh[kW]/(4.18* Δt[K]*ρ[kg/l])*3600)

Page 48: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 48/100

48

Technical Data

 AQUATOP T10CX - T12CX (available F/I/B)

Heat Pump Type AQUATOP T...CX T10CX T12CX

Model Type/Design Compact Design monophase

Standard Data Heat Pumps Brine 1)  W35 W50 W35 W50

Heating capacity B0 Qh kW 9.6 9.0 12.0 11.3

Cooling capacity B0 Qo kW 7.4 5.9 9.2 7.6

El. power consumption B0 2) Pel kW 2.2 3.1 2.8 3.8

Performance rating B0 COP (-) 4.5 2.9 4.3 3.0

Standard Data Heat Pumps Water 1) 

Heating capacity W10 Qh kW 12.9 12.0 15.9 14.7

Cooling capacity W10 Qo kW 10.8 8.9 13.3 11.0

El. power consumption W102)

Pel kW 2.2 3.1 2.6 3.7

Performance rating W10 COP (-) 6.0 3.8 6.0 4.0

Refrigerant R 407c

Oil Ester oil

Oil charge l 1.1 1.4

Refrigerant fill volume kg 2 2.2

Probe length 3) DN 32 m 2x82 2x102

Evaporator, Brine Side

Finish

Volume flow (3.0 K  Δt at B0/W35) l/h 2350 2950

Pressure loss at B0/W35 incl. connection tubes kPa 10 15

Residual pressure at B0/W354)

kPa 50 73

Volume flow intermediate circuit(3.0 K  Δt at W 10/W35)

l/h 3450 4250

Pressure loss at W10/W35 incl. connection tubes kPa 21 31

Residual pressure at W10/W35 4) kPa 32 53

Capacity incl. connection tubes l 3.6 3.6

Medium water/ethylene glycol5)

% 70/30

Condenser Heating Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (3.0 K  Δt at B0/W35) l/h 1200 1500

Pressure loss B0/W35 incl. connection tubes kPa 6.0 9.0

Residual pressure at B0/W35 4) kPa 38 31

Volume flow intermediate circuit(3.0 K  Δt at W10/W35)

l/h 1600 1950

Pressure loss W10/W35 incl. connection tubes kPa 8 10

Residual pressure at W10/W354)

kPa 31 24

Capacity incl. connection tubes l 3.1 3.6

Medium water / ethylene glycol 5) % 100

 Appl ication Range

Heat source brine outlet T min °C -5 -5

Heat source water outlet T min °C 3 3

Heating flow temperature min/max °C 20/55 20/55

Panel heat exchanger Inox AISI 316L, soldered

Page 49: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 49/100

  49

Technical Data

 AQUATOP T10CX - T12CX (available F/I/B)

1) According to EN2252) Incl. circulating pump3) Required length of geothermal probes for normal geological conditions (45 W/m), without warm water heating4) Residual delivery pressure is indicated at highest level5) Water / ethylene glycol: cp=~3.6 [KJ/kg*K], ρ=~1.05 [kg/dm3] (ASHRAE)6)  Δt max= 10 K, at PHW-preparation  Δtmax = 5 K. (V' [l/h]= Qh[kW]/(4.18* Δt[K]*ρ[kg/l])*3600)

Heat Pump Type AQUATOP T...CX T10CX T12CX

Electrical Data

Operating voltage, feed 1 x 230V / 50Hz

Rated input at B0/W35 PNT kW 2.2 2.8

Ext. fuse with electr. heating element  AT 32 32

Ext. fuse without electr. heating element  AT 32 32

Electrical heating element rated current l max. A 9 9

Compressor rated current I max. A 23.1 23.5

Current with blocked rotor  LRA A 100 114

Starting current with soft starter VSA A 45 45

Power consumption el. heating element Pmax. kW 6/4/2

Power consumption circulating pumps Pmax. kW 0.25 0.45

Starts per hour max. (-) 3 3

Start delay after power outage sec 60-120

Dimensions / Connections / Misc.

Operating weight kg 204 203

Dimensions  WxDxH mm 670x950x1050

Heating circuit connection IG inch 1" 1"

Brine circuit connection IG inch 1" 1"

Sound power level Lwa dB(A) 43 45

Expansion vessel heater V l 12 12

Set default pressure heating circuit p bar 1 1

Expansion vessel brine circuit V l 12 12

Set default pressure brine circuit p bar 1 1

Safety valve (brine/heater) p bar 3 3

Switching point brine pressure monitor p bar  Off 0,65 / On 0,80

LP pressure control – switch OFF p bar 1.5 1.5

LP pressure control – switch ON p bar 2.9 2.9

HP pressure control – switch OFF p bar 29 29

HP pressure control – switch ON p bar 24 24

Sound level at 5-m distance6)

Lpa dB(A) 25 27

Page 50: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 50/100

Technical Data

 AQUATOP T06CR - T08CR

Heat Pump Type AQUATOP T...CR T06CR T08CR

Model Type/Design Compact Design reversible

Heating operation

Standard Data Heat Pumps Brine 1)

  W35 W35

Heating capacity B0 Qh kW 6.5 8.2

Cooling capacity B0 Qo kW 5.0 6.3

El. power consumption B0 2) Pel kW 1.5 1.9

Performance rating B0 COP (-) 4.3 4.4

Cooling operation

Standard Data Heat Pumps Water 1) W7 W7

Cooling capacity B35 Qc kW 6.8 8

El. power consumption B35 2) Pel kW 1.5 1.8

Performance rating B35 COP (-) 4.4 4.4

Refrigerant R 407 c

Oil Ester oil

Oil charge l 1 1.1

Refrigerant fill volume kg 1.9 2

Probe length 3) DN 32 m 111 2x70

Evaporator, Brine Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (3.0 K  Δt at B0/W35) l/h 1600 2000

Pressure loss at B0/W35 incl. connection tubes kPa 6 15

Residual pressure at B0/W35 4) kPa 30 48

Volume flow intermediate circuit(3.0 K  Δt at W 10/W35)

l/h 2300 2900

Cooling operation

Heat emission kW 7.9 9.4

Volume flow (5.0 K  Δt at B35/W7) l/h 1500 1800

Pressure loss at B35/W7 incl. connection tubes kPa 5 7

Residual pressure at B35/W7 4) 30 48

Capacity incl. connection tubes l 3.1 3.1

Medium water/ethylene glycol 5) % 70/30

Condenser Heating Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (7.0 K  Δt at B0/W35)6)

l/h 800 1000

Pressure loss B0/W35 incl. connection tubes kPa 5 6

Residual pressure at B0/W35 4) kPa 43 40

Cooling operation

Volume flow (5.0 K  Δt at B35/W7) l/h 1150 1400

Pressure loss B35/W7 incl. connection tubes kPa 6 8Residual pressure at B35/W7 4) kPa 38 33

Capacity incl. connection tubes l 2.6 2.6

Medium water % 100

50

Page 51: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 51/100

51

Technical Data

 AQUATOP T06CR - T08CR

Heat Pump Type AQUATOP T...CR T06CR T08CR Appl ication Range

Heat source brine outlet Tmin °C -5 -5

Heat source water outlet Tmin °C 3 3

Heating flow temperature min/max °C 20-55 20-55

Electrical Data

Operating voltage, feed 3 x 400 V / 50 Hz

Rated input at B0/W35 PNT kW 1.5 1.9

Ext. fuse with electr. heating element  AT 16 20

Ext. fuse without electr. heating element  AT 10 13

Electrical heating element rated current I max. A 9 9

Compressor rated current I max. A 5.1 6.3

Current with blocked rotor  LRA A 32 40

Starting current with soft starter  VSA A 12.75 15.75

Power consumption el. heating element Pmax. kW 6/4/2

Power consumption circulating pumps Pmax. kW 0.13 0.25

Starts per hour  max. (-) 3 3

Start delay after power outage sec 60-120

Dimensions / Connections / Misc.

Operating weight kg 190 196

Dimensions  WxDxH mm 670x950x1050

Heating circuit connection IG inch 1" 1"

Brine circuit connection IG inch 1" 1"

Sound power level Lwa dB(A) 41 41

Expansion vessel heater  V l 12 12

Set default pressure heating circuit p bar 1 1

Expansion vessel brine circuit V l 12 12

Set default pressure brine circuit p bar 1 1

Safety valve (brine/heater) p bar  3 3

Switching point brine pressure monitor  p bar Off 0,65 / On 0,80

LP pressure control – switch OFF p bar 1.5 1.5

LP pressure control – switch ON p bar 2.9 2.9

HP pressure control – switch OFF p bar 29 29

HP pressure control – switch ON p bar 24 24

1) According to EN2252) Incl. circulating pump3) Required length of geothermal probes for normal geological conditions (45 W/m), without warm water heating4) Residual delivery pressure is indicated at highest level5) Water / ethylene glycol: cp=~3.6 [KJ/kg*K], ρ=~1.05 [kg/dm3] (ASHRAE)6)  Δt max= 10 K, at PHW-preparation  Δtmax = 5 K. (V' [l/h]= Qh[kW]/(4.18* Δt[K]*ρ[kg/l])*3600)

Page 52: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 52/100

 

Technical Data

 AQUATOP T10CR-T14CR

Heat Pump Type AQUATOP T...CR T10CR T12CR T14CR

Model Type/Design Compact Design reversible

Heating operation

Standard Data Heat Pumps Brine 1)

  W35 W35 W35

Heating capacity B0 Qh kW 9.6 12.0 14.4

Cooling capacity B0 Qo kW 7.4 9.2 11.1

El. power consumption B0 2) Pel kW 2.2 2.8 3.3

Performance rating B0 COP (-) 4.5 4.3 4.3

Cooling operation

Standard Data Heat Pumps Water 1) W7 W7 W7

Cooling capacity B35 Qc kW 9.4 11.6 14.2

El. power consumption B35 2) Pel kW 2.1 2.6 3.2

Performance rating B35 COP (-) 4.4 4.5 4.4

Refrigerant R 407 c

Oil Ester oil

Oil charge l 1.1 1.4 1.4

Refrigerant fill volume kg 2.1 2.3 2.7

Probe length 3) DN 32 m 2x82 2x102 3x82

Evaporator, Brine Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (3.0 K  Δt at B0/W35) l/h 2350 2950 3500

Pressure loss at B0/W35 incl. connection tubes kPa 10 15 14

Residual pressure at B0/W35 4) kPa 50 73 72

Volume flow intermediate circuit(3.0 K  Δt at W 10/W35)

l/h 3450 4250 4950

Cooling operation

Heat emission kW 11.0 13.6 16.6

Volume flow (5.0 K  Δt at B35/W7) l/h 2100 2550 3200

Pressure loss at B35/W7 incl. connection tubes kPa 7 10 10

Residual pressure at B35/W7 4) 55 80 78

Capacity incl. connection tubes l 3.6 3.6 4.1

Medium water/ethylene glycol 5) % 70/30

Condenser Heating Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (7.0 K  Δt at B0/W35) 6) l/h 1200 1500 1750

Pressure loss B0/W35 incl. connection tubes kPa 6 9 10

Residual pressure at B0/W35 4) kPa 38 31 27

Cooling operation

Volume flow (5.0 K  Δt at B35/W7) l/h 1600 2000 2450

Pressure loss B35/W7 incl. connection tubes kPa 6 12 9Residual pressure at B35/W7 4) kPa 33 22 20

Capacity incl. connection tubes l 3.1 3.6 3.6

Medium water % 100

52

Page 53: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 53/100

Technical Data

 AQUATOP T10CR-T14CR

Heat Pump Type AQUATOP T...CR T10CR T12CR T14CR

 Appl ication Range

Heat source brine outlet Tmin °C -5 -5 -5

Heat source water outlet Tmin °C 3 3 3

Heating flow temperature min/max °C 20/55 20/55 20/55

Electrical Data

Operating voltage, feed 3 x 400 V / 50 Hz

Rated input at B0/W35 PNT kW 2.2 2.8 3.3

Ext. fuse with electr. heating element  AT 20 20 25

Ext. fuse without electr. heating element  AT 13 16 20

Electrical heating element rated current I max. A 9 9 9

Compressor rated current I max. A 7 10 11

Current with blocked rotor  LRA A 46 50 66

Starting current with soft starter  VSA A 17.5 25 27.5

Power consumption el. heating element Pmax. kW 6/4/2

Power consumption circulating pumps Pmax. kW 0.25 0.45 0.45

Starts per hour  max. (-) 3 3 3

Start delay after power outage sec 60-120

Dimensions / Connections / Misc.

Operating weight kg 204 203 218

Dimensions  WxDxH mm 670x950x1050

Heating circuit connection IG inch 1" 1" 1"

Brine circuit connection IG inch 1" 1" 1"

Sound power level Lwa dB(A) 43 45 48

Expansion vessel heater  V l 12 12 12

Set default pressure heating circuit p bar 1 1 1

Expansion vessel brine circuit V l 12 12 12

Set default pressure brine circuit p bar 1 1 1

Safety valve (brine/heater) p bar  3 3 3

Switching point brine pressure monitor  p bar Off 0,65 / On 0,80

LP pressure control – switch OFF p bar 1.5 1.5 1.5

LP pressure control – switch ON p bar 2.9 2.9 2.9

HP pressure control – switch OFF p bar 29 29 29

HP pressure control – switch ON p bar 24 24 24

53

1) According to EN2252) Incl. circulating pump

3) Required length of geothermal probes for normal geological conditions (45 W/m), without warm water heating4) Residual delivery pressure is indicated at highest level5) Water / ethylene glycol: cp=~3.6 [KJ/kg*K], ρ=~1.05 [kg/dm3] (ASHRAE)6)  Δt max= 10 K, at PHW-preparation  Δtmax = 5 K. (V' [l/h]= Qh[kW]/(4.18* Δt[K]*ρ[kg/l])*3600)

Page 54: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 54/100

Technical Data

 AQUATOP T05CRX-T08CRX

Heat Pump Type AQUATOP T...CR T05CRX  T06CRX  T08CRX

Model Type/Design Compact Design reversible monophase

Heating operation

Standard Data Heat Pumps Brine 1)

  W35 W35 W35

Heating capacity B0 Qh kW 5.4 6.5 8.2

Cooling capacity B0 Qo kW 4.2 5.0 6.3

El. power consumption B0 2) Pel kW 1.2 1.5 1.9

Performance rating B0 COP (-) 4.5 4.3 4.4

Cooling operation

Standard Data Heat Pumps Water 1) W7 W7 W7

Cooling capacity B35 Qc kW 5.2 6.8 8

El. power consumption B35 2) Pel kW 1.2 1.5 1.8

Performance rating B35 COP (-) 4.4 4.4 4.4

Refrigerant R 407 c

Oil Ester oil

Oil charge l 1 1

Refrigerant fill volume kg 1.4 1.6 1.7

Probe length 3) DN 32 m 93 111 2x70

Evaporator, Brine Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (3.0 K  Δt at B0/W35) l/h 1350 1600 2000

Pressure loss at B0/W35 incl. connection tubes kPa 11 6 15

Residual pressure at B0/W35 4) kPa 29 30 48

Volume flow intermediate circuit(3.0 K  Δt at W 10/W35)

l/h 1850 2300 2900

Cooling operation

Heat emission kW 6.1 7.9 9.4

Volume flow (5.0 K  Δt at B35/W7) l/h 1150 1500 1800

Pressure loss at B35/W7 incl. connection tubes kPa 5 5 7

Residual pressure at B35/W7 4) 37 32 57

Capacity incl. connection tubes l 2.3 3.1 3.1

Medium water/ethylene glycol 5) % 70/30

Condenser Heating Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (7.0 K  Δt at B0/W35) 6) l/h 650 800 1000

Pressure loss B0/W35 incl. connection tubes kPa 2 5 6

Residual pressure at B0/W35 4) kPa 48 43 40

Cooling operation

Volume flow (5.0 K  Δt at B35/W7) l/h 900 1150 1400

Pressure loss B35/W7 incl. connection tubes kPa 7 6 8Residual pressure at B35/W7 4) kPa 40 38 33

Capacity incl. connection tubes l 2.3 2.6 2.6

Medium water % 100

1.1

54

Page 55: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 55/100

Technical Data

 AQUATOP T05CRX-T08CRX

55

Heat Pump Type AQUATOP T T05CRX  T06CRX  T08CRX

 Appl ication Range

Heat source brine outlet Tmin °C -5 -5 -5

Heat source water outlet Tmin °C 3 3 3

Heating flow temperature min/max °C 20/55 20/55 20/55

Electrical Data

Operating voltage, feed 1 x 230 V / 50 Hz

Rated input at B0/W35 PNT kW 1.2 1.5 1.9

Ext. fuse with electr. heating element AT 32 32 32

Ext. fuse without electr. heating element AT 16 20 25

Electrical heating element rated current l max A 9 9 9

Compressor rated current I max. A 11.4 14.8 17.3

Current with blocked rotor LRA A 47 61 76

Starting current with soft starter VSA A 45 45 45

Power consumption el. heating element Pmax. kW 6/4/2

Power consumption circulating pumps Pmax. kW 0.13 0.13 0.25

Starts per hour max. (-) 3 3 3

Start delay after power outage sec 60-120

Dimensions / Connections / Misc.

Operating weight kg 185 190 196Dimensions  WxDxH mm 670x950x1050

Heating circuit connection IG inch 1" 1" 1"

Brine circuit connection IG inch 1" 1" 1"

Sound power level Lwa dB(A) 41 41 41

Sound level at 5-m distance 2) Lpa dB(A) 25 25 25

Expansion vessel heater V l 12 12 12

Set default pressure heating circuit p bar 1 1 1

Expansion vessel brine circuit V l 12 12 12

Set default pressure brine circuit p bar 1 1 1

Safety valve (brine/heater) p bar 3 3 3

LP pressure control – switch OFF p bar 1.5 1.5 1.5

LP pressure control – switch ON p bar 2.9 2.9 2.9

HP pressure control – switch OFF p bar 29 29 29

HP pressure control – switch ON p bar 24 24 24

Switching point brine pressure monitor p bar Aus 0,65 / Ein 0,80

1) According to EN2252) Incl. circulating pump3) Required length of geothermal probes for normal geological conditions (45 W/m), without warm water heating4) Residual delivery pressure is indicated at highest level5) Water / ethylene glycol: cp=~3.6 [KJ/kg*K], ρ=~1.05 [kg/dm3] (ASHRAE)6)  Δt max= 10 K, at PHW-preparation  Δtmax = 5 K. (V' [l/h]= Qh[kW]/(4.18* Δt[K]*ρ[kg/l])*3600)

Page 56: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 56/100

Technical Data

 AQUATOP T10CRX-T12CRX

Heat Pump Type AQUATOP T...CR T10CRX  T12CRX 

Model Type/Design Compact Design reversible monophase

Heating operation

Standard Data Heat Pumps Brine 1)

  W35 W35

Heating capacity B0 Qh kW 9.6 12.0

Cooling capacity B0 Qo kW 7.4 9.2

El. power consumption B0 2) Pel kW 2.2 2.8

Performance rating B0 COP (-) 4.5 4.3

Cooling operation

Standard Data Heat Pumps Water 1)

W7 W7

Cooling capacity B35 Qc kW 9.4 11.6El. power consumption B35 2) Pel kW 2.1 2.6

Performance rating B35 COP (-) 4.4 4.5

Refrigerant R 407 c

Oil Ester oil

Oil charge l 1.1 1.4

Refrigerant fill volume kg 2.3 2.6

Probe length 3) DN 32 m 2x82 2x102

Evaporator, Brine Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (3.0 K  Δt at B0/W35) l/h 2350 2950

Pressure loss at B0/W35 incl. connection tubes kPa 10 15

Residual pressure at B0/W35 4) kPa 50 73

Volume flow intermediate circuit(3.0 K  Δt at W 10/W35)

l/h 3450 4250

Cooling operation

Heat emission kW 11 13.6

Volume flow (5.0 K  Δt at B35/W7) l/h 2100 2600

Pressure loss at B35/W7 incl. connection tubes kPa 7 10

Residual pressure at B35/W74)

55 80

Capacity incl. connection tubes l 3.6 3.6

Medium water/ethylene glycol 5) % 70/30

Condenser Heating Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (7.0 K  Δt at B0/W35) 6) l/h 1200 1500

Pressure loss B0/W35 incl. connection tubes kPa 6 9

Residual pressure at B0/W35 4) kPa 38 31

Cooling operation

Volume flow (5.0 K  Δt at B35/W7) l/h 1600 2000

Pressure loss B35/W7 incl. connection tubes kPa 6 12Residual pressure at B35/W7

4)kPa 33 22

Capacity incl. connection tubes l 3.1 3.6

Medium water % 100

56

Page 57: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 57/100

Technical Data

 AQUATOP T10CRX-T12CRX

Heat Pump Type AQUATOP T...CR T10CRX  T12CRX 

 Appl ication Range

Heat source brine outlet Tmin °C -5 -5

Heat source water outlet Tmin °C 3 3

Heating flow temperature min/max °C 20/55 20/55

Electrical Data

Operating voltage, feed 1 x 230 V / 50 Hz

Rated input at B0/W35 PNT kW 2.2 2.8

Ext. fuse with electr. heating element AT 32 32

Ext. fuse without electr. heating element AT 32 32

Electrical heating element rated current l max A 9 9

Compressor rated current I max. A 23.1 23.5

Current with blocked rotor LRA A 100 114

Starting current with soft starter VSA A 45 45

Power consumption el. heating element Pmax. kW 6/4/2

Power consumption circulating pumps Pmax. kW 0.25 0.45

Starts per hour max. (-) 3 3

Start delay after power outage sec 60-120

Dimensions / Connections / Misc.

Operating weight kg 204 203Dimensions  WxDxH mm 670x950x1050

Heating circuit connection IG inch 1" 1"

Brine circuit connection IG inch 1" 1"

Sound power level Lwa dB(A) 43 45

Sound level at 5-m distance 2) Lpa dB(A) 25 27

Expansion vessel heater V l 12 12

Set default pressure heating circuit p bar 1 1

Expansion vessel brine circuit V l 12 12

Set default pressure brine circuit p bar 1 1

Safety valve (brine/heater) p bar 3 3

LP pressure control – switch OFF p bar 1.5 1.5

LP pressure control – switch ON p bar 2.9 2.9

HP pressure control – switch OFF p bar 29 29

HP pressure control – switch ON p bar 24 24

Switching point brine pressure monitor p bar Aus 0,65 / Ein 0,80

1) According to EN2252) Incl. circulating pump3) Required length of geothermal probes for normal geological conditions (45 W/m), without warm water heating4) Residual delivery pressure is indicated at highest level5) Water / ethylene glycol: cp=~3.6 [KJ/kg*K], ρ=~1.05 [kg/dm3] (ASHRAE)6)  Δt max= 10 K, at PHW-preparation  Δtmax = 5 K. (V' [l/h]= Qh[kW]/(4.18* Δt[K]*ρ[kg/l])*3600)

57

Page 58: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 58/100

Technical Data

 AQUATOP T17CHR 

1) Ohne Umwälzpumpe2) Messwert um die Wärmepumpe gemittelt (Freifeld)3) Restförderdruck ist angegeben bei grösster Stufe

1) Ohne Umwälzpumpe2) Messwert um die Wärmepumpe gemittelt (Freifeld)3) Restförderdruck ist angegeben bei grösster Stufe

1) Ohne Umwälzpumpe2) Messwert um die Wärmepumpe gemittelt (Freifeld)3) Restförderdruck ist angegeben bei grösster Stufe

1) Ohne Umwälzpumpe2) Messwert um die Wärmepumpe gemittelt (Freifeld)3) Restförderdruck ist angegeben bei grösster Stufe

Weitere Technische Daten siehe T30-T44

Heat Pump Type AQUATOP TCHR T17CHR 

Model Type/Design Compact Design reversible

Heating operation

Standard Data Heat Pumps Brine 1)

  W35

Heating capacity B0 Qh kW 17.7

El. power consumption B0 Pel kW 4.0

Performance rating B0 COP (-) 4.5

Cooling operation

Standard Data Heat Pumps Water   W7

Cooling capacity B35 Qc kW 16.6

El. power consumption B35 2) Pel kW 3.7

Performance rating B35 COP (-) 4.5

Refrigerant R 407 c

Oil Ester oil

Refrigerant fill volume kg 3.7

Evaporator, Brine Side

Volume flow (3.0 K  Δt at B0/W35) l/h 4350

Pressure loss at B0/W35 incl. connection tubes kPa 13

Residual pressure at B0/W35 4) kPa 70

Cooling operation

Heat emission kW 20.3

Volume flow (5.0 K  Δt at B35/W7) l/h 3800

Pressure loss at B35/W7 incl. connection tubes kPa 8

Residual pressure at B35/W7 4) kPa 77

Capacity incl. connection tubes l 5.3

Condenser Heating Side

Volume flow (5.0 K  Δt at B0/W35) 6) l/h 3050

Pressure loss B0/W35 incl. connection tubes7)

kPa 7

Cooling operation

Volume flow (5.0 K  Δt at B35/W7) l/h 2850

Pressure loss B35/W7 incl. connection tubes kPa 6Residual pressure at B35/W7 4) kPa 34

Capacity incl. connection tubes l 6.2

Cooling capacity B0 Qo kW 13.7

Oil charge l 1.57

Probe length 3) DN 32 m 3x102

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow intermediate circuit(3.0 K  Δt at W 10/W35)

l/h 6000

Medium water/ethylene glycol 5) % 70/30

Finish Panel heat exchanger Inox AISI 316L, soldered

Residual pressure at B0/W35 4) kPa 29

Medium water % 100

58

Page 59: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 59/100

  59

Technical Data

 AQUATOP T17CHR 

1) Ohne Umwälzpumpe2) Messwert um die Wärmepumpe gemittelt (Freifeld)3) Restförderdruck ist angegeben bei grösster Stufe

1) Ohne Umwälzpumpe2) Messwert um die Wärmepumpe gemittelt (Freifeld)3) Restförderdruck ist angegeben bei grösster Stufe

Heat Pump Type AQUATOP T T17CHR 

 Appl ication Range

Heat source brine outlet Tmin °C -5

Heat source water outlet Tmin °C 3

Heating flow temperature min/max °C 20/60

Electrical Data

Operating voltage, feed 3 x 400 V / 50 Hz

Rated input at B0/W35 PNT kW 4.0

Ext. fuse with electr. heating element AT 25

Ext. fuse without electr. heating element AT 20

Electrical heating element rated current l max A 9

Compressor rated current I max A 15

Current with blocked rotor LRA A 87

Starting current with soft starter VSA A 37.5

Power consumption el. heating element Pmax kW 6/4/2

Power consumption circulating pumps Pmax kW 0.48

Starts per hour max (-) 3

Start delay after power outage sec 60-120

Dimensions / Connections / Misc.

Operating weight kg 250

Dimensions  WxDxH mm 670x950x1050

Heating circuit connection IG inch 1"

Brine circuit connection IG inch 1"

Sound power level Lwa dB(A) 48

Switching point brine pressure monitor p bar Off 0,65 / On 0,80

LP pressure control – switch OFF p bar 2

LP pressure control – switch ON p bar 3

HP pressure control – switch OFF p bar 29

HP pressure control – switch ON p bar 24

Expansion vessel heater V l 12

Set default pressure heating circuit p bar 1

Expansion vessel brine circuit V l 2x12

Set default pressure brine circuit p bar 1

Safety valve (brine/heater) p bar 3

 Available from December 2010

1) According to EN14511 (*measured at heat pump test centre WPZ)2) Incl. circulating pump

3) Required length of geothermal probes for normal geological conditions (45 W/m), without warm water heating4) Residual delivery pressure is indicated at highest level5) Water / ethylene glycol: cp=~3.6 [KJ/kg*K], ρ=~1.05 [kg/dm3] (ASHRAE)6)  Δt max= 10 K, at PHW-preparation  Δtmax = 5 K. (V' [l/h]= Qh[kW]/(4.18* Δt[K]*ρ[kg/l])*3600)7) At nominal volume flow

Page 60: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 60/100

 

Technical Data

 AQUATOP T22HR-T43HR 

1) Ohne Umwälzpumpe2) Messwert um die Wärmepumpe gemittelt (Freifeld)3) Restförderdruck ist angegeben bei grösster Stufe

1) Ohne Umwälzpumpe2) Messwert um die Wärmepumpe gemittelt (Freifeld)3) Restförderdruck ist angegeben bei grösster Stufe

1) Ohne Umwälzpumpe

2) Messwert um die Wärmepumpe gemittelt (Freifeld)3) Restförderdruck ist angegeben bei grösster Stufe

Heat Pump Type AQUATOP T...HR T22HR  T28HR  T35HR  T43HR 

Model Type/Design Normal Design high temperature reversible

Standard Data Heat Pumps Brine 1)  W35 W35 W35 W35

Heating capacity B0 Qh kW 21.0 28.7 36.7 44.4

Cooling capacity B0 Qo kW 16.4 22.2 28.4 34.4

El. power consumption B0 Pel kW 4.6 6.5 8.3 10.0

Performance rating B0 COP (-) 4.6 4.4 4.4 4.4

Cooling operation

Standard Data Heat Pumps Water 1) W7 W7 W7 W7

Cooling capacity B35 Qc kW 21.4 30.5 38.6 46.5

El. power consumption B35 2) Pel kW 4.8 6.7 8.6 10.5

Performance rating B35 COP (-) 4.5 4.6 4.5 4.4

Refrigerant R 407 c

Oil Ester oil

Oil charge l 2.7 4 4.1 4.1

Refrigerant fill volume kg 4.7 6.3 6.8 8.7

Probe length 2) DN 32 m 4x92 5x99 6x106 7x109

Evaporator, Brine Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (3.0 K  Δt at B0/W35) l/h 5250 7100 9050 10950

Pressure loss at B0/W35 incl. connection tubes kPa 9 11 14 19

Volume flow intermediate circuit(3.0 K  Δt at W 10/W35)

l/h 6700 9000 12550 14950

Cooling operation

Heat emission kW 26.1 37.2 47.2 57.0

Volume flow (5.0 K  Δt at B35/W7) l/h 4900 7000 8850 10700

Pressure loss at B35/W7 incl. connection tubes kPa 8 9 11 11

Capacity incl. connection tubes l 10.8 14.2 16.5 18.8

Medium water/ethylene glycol 3) % 70/30

Condenser Heating Side

Finish Panel heat exchanger Inox AISI 316L, soldered

Volume flow (5.0 K  Δt at B0/W35) 4) l/h 3600 4950 6350 7650

Pressure loss B0/W35 incl. connection tubes5)

kPa 3 5 5 6

Volume flow (5.0 K  Δt at B35/W7) l/h 3700 5250 6650 8000

Pressure loss B35/W7 incl. connection tubes kPa 18 19 18 21

Capacity incl. connection tubes l 7.3 9.6 10.7 13

Medium water % 100

 Appl ication Range

Heat source brine outlet T min °C -5 -5 -5 -5

Heat source water outlet T min °C 3 3 3 3

Heating flow temperature min/max °C 20/60 20/60 20/60 20/60

Cooling operation

60

Page 61: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 61/100

  61

Technical Data

 AQUATOP T22HR-T43HR 

Heat Pump Type AQUATOP T...HR T22HR  T28HR  T35HR 

Electrical Data

Operating voltage, feed 3 x 400 V / 50 Hz

Rated input at B0/W35 PNT kW 4.6 6.5 8.3 10.0

Ext. fuse  AT 3 x 25 3 x 32 3 x 40 3 x 40

Rated current l max. A 21 21.0 25 32

Current with blocked rotor  LRA A 84 127.0 167 198

Starting current with soft starter  VSA A 52.5 52.5 62.5 80

Starts per hour  max. (-) 3 3 3 3

Start delay after power outage sec 60-120

Dimensions / Connections / Misc.

Operating weight kg 255 325 340 370

Dimensions  WxDxH mm 670x950x1050

Heating circuit connection IG inch 1¼ 1¼ 1¼ 1¼

Brine circuit connection IG inch 1½ 1½ 1½ 1½

Sound power level Lwa dB(A) 57 59 59 61

LP pressure control – switch OFF p bar 1 1 1 1

LP pressure control – switch ON p bar 3 3 3 3

HP pressure control – switch OFF p bar 29 29 29 29

HP pressure control – switch ON p bar 24 24 24 24

Switching point brine pressure monitor  p bar Off 0,65 / On 0,80

T43HR 

 Available from December 2010

1) According to EN14511 (*measured at heat pump test centre WPZ)2) Required length of geothermal probes for normal geological conditions (45 W/m), without warm water heating3) Water / ethylene glycol: cp=~3.6 [KJ/kg*K], ρ=~1.05 [kg/dm3] (ASHRAE)4)  Δt max = 10 K, at PHW-preparation  Δtmax = 5 K. (V' [l/h]= Qh[kW]/(4.18* Δt[K]*ρ[kg/l])*3600)5) At nominal volume flow

Page 62: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 62/100

 

Integrated Pumps Compact Heat Pump

Heat source or recovery pump

62

 AQUATOP T05C.. AQUATOP T06C..

Pump type: UPS 25-60k

KeyH Delivery height [m]

Q Flow rate [m

3

/h]

 AQUATOP T07C-HT

Pump type: UPS 25-70k

KeyH Delivery height [m]Q Flow rate [m3/h]

Pumping medium = Ethylene glycolConcentration = 30 %Medium temperature = 0 °CViscosity = 3.95 mm2/sDensity = 1052 kg/m3 

Pumping medium = Ethylene glycolConcentration = 30 %Medium temperature = 0 °CViscosity = 3.95 mm2/sDensity = 1052 kg/m3 

- - - - H Water  —— H Brine mixture (water/ethylene glycol 70/30%)

- - - - H Water  —— H Brine mixture (water/ethylene glycol 70/30%)

Page 63: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 63/100

63

Integrated Pumps Compact Heat Pump

Heat source or recovery pump

 AQUATOP T08C.. AQUATOP T10C.. AQUATOP T11CHT..

Pump type: UPS 25-80

KeyH Delivery height [m]Q Flow rate [m3/h]

 AQUATOP T12C AQUATOP T14C AQUATOP T17CH

Pump type: UPS 25-100

KeyH Delivery height [m]Q Flow rate [m3/h]

UPS 25-80 180

Pumping medium = Ethylene glycolConcentration = 30 %Medium temperature = 0 °CViscosity = 3.95 mm2/sDensity = 1052 kg/m3 

Pumping medium = Ethylene glycolConcentration = 30 %Medium temperature = 0 °CViscosity = 3.95 mm2/sDensity = 1052 kg/m3 

8

7

6

5

4

3

2

1

0

   H   (  m   )

 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Q (m3/h)

- - - - H Water  —— H Brine mixture (water/ethylene glycol 70/30%)

- - - - H Water  —— H Brine mixture (water/ethylene glycol 70/30%)

Page 64: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 64/100

64

Integrated Pumps Compact Heat Pump

Heat -, resp. condenser pump

 AQUATOP T05C.. AQUATOP T06C.. AQUATOP T08C.. AQUATOP T10C.. AQUATOP T12C.. AQUATOP T07CHT..

Pump type: UPS 25-60

KeyH Delivery height [m]

Q Flow rate [m

3

/h]

 AQUATOP T17CH.. AQUATOP T11CHT..

Pump type: UPS 25-70

KeyH Delivery height [m]Q Flow rate [m

3/h]

Pumping medium = Water Medium temperature = 35 °CDensity = 994 kg/m3 

Pumping medium = Water Medium temperature = 30 °CDensity = 995.6 kg/m3 

Page 65: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 65/100

  65

Performance Data

Brine-Water AQUATOP T..C (Information according to EN 255)

 AQUA TOP T

R 407c

Brine Inlet Temperature** [°C]

-5 0 5

Model TVL °C

WLkW

KLkW

 ALkW

COP-

WLkW

KLkW

 ALkW

COP-

WLkW

KLkW

 ALkW

COP-

T05C

35 4,7 3,4 1,3 3,7 5,4 4,2 1,2 4,5 6,1 4,9 1,2 5,1

40 4,6 3,1 1,5 3,3 5,3 3,9 1,4 3,9 6 4,6 1,4 4,5

45 4,5 2,9 1,6 2,9 5,2 3,6 1,6 3,4 5,9 4,3 1,5 4

50 4,5 2,6 1,8 2,4 5 3,3 1,8 2,8 5,7 4 1,7 3,4

55 4,4 2,4 2 2 4,9 2,9 2 2,3 5,6 3,7 1,9 2,8

T06C

35 5,7 4,1 1,5 3,6 6,5 5 1,5 4,3 7,5 6 1,4 5

40 5,6 3,8 1,7 3,2 6,3 4,7 1,7 3,8 7,3 5,6 1,7 4,4

45 5,5 3,5 2 2,8 6,3 4,3 1,9 3,3 7,1 5,2 1,9 3,9

50 5,5 3,2 2,2 2,3 6,1 4 2,1 2,7 7 4,9 2,1 3,3

55 5,4 2,9 2,4 2 5,9 3,7 2,4 2,2 6,8 4,5 2,3 2,7

T08C

35* 7,2 5,2 1,9 3,7 8,2 6,3 1,9 4,4 9,4 7,6 1,8 5,1

40 7,1 4,8 2,2 3,3 8 5,9 2,1 3,9 9,2 7,1 2,1 4,5

45 7 4,4 2,5 2,9 7,9 5,4 2,4 3,4 9 6,6 2,4 4

50* 6,9 4 2,8 2,4 7,7 5 2,7 2,8 8,8 6,2 2,6 3,4

55 6,8 3,6 3,1 2 7,5 4,6 3 2,3 8,6 5,7 2,9 2,8

T10C

35 8,4 6,2 2,2 3,7 9,6 7,4 2,2 4,5 11 8,9 2,1 5,2

40 8,3 5,7 2,6 3,3 9,4 6,9 2,5 3,9 10,8 8,4 2,4 4,6

45 8,2 5,3 2,9 2,9 9,2 6,4 2,8 3,4 10,6 7,8 2,7 4

50 8 4,8 3,3 2,5 9 5,9 3,1 2,9 10,3 7,3 3 3,4

55 7,9 4,3 3,6 2 8,8 5,4 3,5 2,4 10,1 6,8 3,3 2,8

T12C

35 10,8 7,9 2,8 3,8 12 9,2 2,8 4,3 13,6 11 2,7 5,1

40 10,6 7,4 3,1 3,4 11,8 8,7 3,1 3,9 13,3 10,3 3 4,6

45 10,4 6,9 3,5 3,1 11,6 8,1 3,4 3,5 13 9,7 3,4 4

50 10,2 6,4 3,8 2,7 11,3 7,6 3,8 3 12,8 9 3,8 3,4

55 10 5,9 4,1 2,3 11,1 7 4,1 2,6 12,5 8,3 4,1 2,8

T14C

35* 12,7 9,3 3,4 3,8 14,4 11,1 3,3 4,3 16,5 13,1 3,4 4,9

40 12,5 8,7 3,8 3,4 14,1 10,4 3,7 3,9 16,1 12,3 3,8 4,4

45 12,2 8,1 4,1 3 13,8 9,7 4,1 3,4 15,7 11,5 4,2 3,9

50* 12 7,5 4,5 2,7 13,5 9 4,5 3 15,3 10,7 4,6 3,3

55 11,7 6,9 4,9 2,3 13,2 8,3 4,9 2,5 14,9 9,9 5 2,8

TF: (Flow) Outlet temperature, heating water HC: Heating capacityCC: Cooling capacityUC: Uptake capacity

**) Brine solution = water / ethylene glycol 75/25%

Page 66: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 66/100

66

Performance Data

Water-Water AQUATOP T..C (Information according to EN 255)

 AQUA TOP T

R 407c

Water Inlet Temperature [°C]

10 15

Model TVL °C

WLkW

KLkW

 ALkW

COP-

WLkW

KLkW

 ALkW

COP-

T05C

35 7,1 5,9 1,2 5,9 8,1 7 1,2 6,9

40 7 5,6 1,4 5,2 7,9 6,6 1,4 6

45 6,8 5,2 1,6 4,5 7,7 6,2 1,5 5,2

50 6,7 4,9 1,8 3,8 7,5 5,8 1,7 4,3

55 6,5 4,6 1,9 3,1 7,3 5,4 1,9 3,5

T06C

35 8,7 7,2 1,5 5,8 9,9 8,5 1,4 6,7

40 8,5 6,8 1,7 5,1 9,7 8 1,7 5,9

45 8,3 6,4 1,9 4,4 9,4 7,5 1,9 5,1

50 8,1 6 2,1 3,7 9,2 7,1 2,1 4,2

55 7,9 5,6 2,4 3 8,9 6,6 2,4 3,4

T08C

35* 11 9,1 1,9 5,9 12,5 10,7 1,8 6,9

40 10,7 8,6 2,1 5,2 12,2 10,1 2,1 6

45 10,5 8,1 2,4 4,5 11,9 9,5 2,4 5,2

50* 10,2 7,5 2,7 3,8 11,6 8,9 2,7 4,3

55 10 7 3 3,1 11,2 8,3 3 3,5

T10C

35 12,9 10,8 2,2 6 14,7 12,6 2,1 7

40 12,6 10,1 2,5 5,3 14,3 11,9 2,4 6,1

45 12,3 9,5 2,8 4,6 13,9 11,2 2,8 5,3

50 12 8,9 3,1 3,8 13,5 10,4 3,1 4,4

55 11,7 8,3 3,4 3,1 13,1 9,7 3,4 3,5

T12C

35 15,9 13,3 2,6 6 18 15,5 2,5 7,1

40 15,5 12,5 3 5,3 17,5 14,6 2,9 6,2

45 15,1 11,7 3,4 4,6 17 13,7 3,3 5,3

50 14,7 11 3,7 4 16,6 12,9 3,7 4,5

55 14,3 10,2 4,1 3,3 16,1 12 4,1 3,6

T14C

35* 19,1 15,6 3,5 5,5 21,7 18,2 3,5 6,2

40 18,6 14,6 3,9 4,9 21 17,1 3,9 5,5

45 18 13,7 4,3 4,3 20,4 16 4,4 4,8

50* 17,5 12,7 4,8 3,7 19,7 15 4,8 4,1

55 16,9 11,7 5,2 3,1 19,1 13,9 5,2 3,4

TF: (Flow) Outlet temperature, heating water HC: Heating capacityCC: Cooling capacityUC: Uptake capacity

Page 67: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 67/100

  67

Performance Data

Brine-Water AQUATOP T..H (Information according to EN 14511)

 AQUA TOP T..H

R 407cBrine Inlet Temperature [°C]

-5 0 5

Model TVL °C

WLkW

KLkW

 ALkW

COP-

WLkW

KLkW

 ALkW

COP-

WLkW

KLkW

 ALkW

COP-

T17CH

35 15.5 11.7 3.8 4.0 17.7 13.7 4.0 4.5 20.0 16.1 3.9 5.1

40 15.2 10.8 4.4 3.5 17.4 13.0 4.4 3.9 19.7 15.3 4.4 4.5

45 14.9 10.1 4.9 3.1 17.1 12.2 4.9 3.5 19.3 14.5 4.9 4.0

50 14.6 9.2 5.4 2.7 16.8 11.4 5.5 3.1 19.0 13.5 5.4 3.5

60 13.7 7.0 6.7 2.1 16.3 9.7 6.7 2.4 18.3 11.7 6.6 2.8

T22H

35 18.0 13.5 4.6 4.0 21.0 16.4 4.6 4.6 23.7 19.1 4.7 5.1

4017.8 12.6 5.1 3.5 20.8 15.7 5.2 4.0 23.5 18.3 5.3 4.5

45 17.6 11.8 5.7 3.1 20.7 14.9 5.8 3.6 23.3 17.5 5.9 4.0

50 17.3 11.0 6.3 2.7 20.5 14.1 6.4 3.2 23.1 16.7 6.5 3.6

60 16.4 8.7 7.7 2.1 19.5 11.7 7.8 2.5 22.0 14.1 7.9 2.8

T28H

35 27.0 20.9 6.1 4.4 28.7 22.2 6.5 4.4 32.6 25.9 6.7 4.9

40 25.7 18.9 6.8 3.8 27.4 20.3 7.1 3.9 32.0 24.7 7.3 4.4

45 24.4 17.0 7.4 3.3 26.1 18.4 7.8 3.4 31.4 23.5 7.9 4.0

50 23.1 15.1 8.0 2.9 25.5 17.0 8.5 3.0 30.4 21.7 8.7 3.5

60 20.9 11.2 9.7 2.2 24.1 14.2 9.9 2.4 28.4 18.3 10.1 2.7

T35H

35 31.7 23.6 8.1 3.9 36.7 28.4 8.3 4.4 41.7 33.1 8.6 4.9

40 31.4 22.6 8.8 3.6 36.2 27.1 9.1 4.0 41.1 31.7 9.4 4.4

45 31.2 21.7 9.5 3.3 35.7 25.9 9.9 3.6 40.5 30.2 10.3 3.9

50 30.9 20.7 10.2 3.0 35.2 24.6 10.6 3.3 39.8 28.8 11.1 3.6

60 29.3 17.1 12.3 2.4 34.5 22.1 12.3 2.8 38.9 26.0 12.9 3.0

T43H

35 38.1 28.5 9.6 4.0 44.4 34.4 10.0 4.4 49.5 39.1 10.4 4.8

40 37.7 27.3 10.4 3.6 43.6 32.8 10.9 4.0 48.8 37.4 11.3 4.3

45 37.3 26.0 11.2 3.3 42.9 31.1 11.8 3.6 48.0 35.8 12.2 3.9

50 36.8 24.8 12.1 3.1 42.1 29.5 12.6 3.3 47.3 34.1 13.2 3.6

60 34.8 20.4 14.4 2.4 40.4 25.7 14.7 2.7 45.5 30.1 15.4 3.0

55 14.3 8.3 6.0 2.4 16.6 10.5 6.1 2.7 18.6 12.6 6.0 3.1

55 17.1 10.2 6.9 2.5 20.4 13.4 7.0 2.9 22.9 15.9 7.1 3.3

55 21.8 13.2 8.7 2.5 24.8 15.6 9.2 2.7 29.4 20.0 9.4 3.1

55 30.6 19.7 11.0 2.8 34.7 23.3 11.4 3.0 39.2 27.3 11.9 3.3

55 36.4 23.5 12.9 2.8 41.3 27.8 13.5 3.1 46.5 32.4 14.1 3.3

TF: (Flow) Outlet temperature, heating water HC: Heating capacityCC: Cooling capacityUC: Uptake capacity

Page 68: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 68/100

68

Performance Data

Water-Water AQUATOP T..H (Information according to EN 14511)

 AQUA TOP T..H

R 407c

Water Inlet Temperature [°C]

10 15

Model TVL °C

WLkW

KLkW

 ALkW

COP-

WLkW

KLkW

 ALkW

COP-

T17CH

35 22.9 18.9 4.0 5.7 25.5 21.9 3.7 6.9

40 22.4 18.0 4.5 5.0 25.1 20.8 4.3 5.8

45 22.0 17.0 5.0 4.4 24.7 19.7 4.9 5.0

50 21.5 16.0 5.6 3.9 24.2 18.7 5.5 4.4

60 20.8 14.0 6.8 3.1 23.4 16.7 6.7 3.5

T22H

35 25.9 21.2 4.7 5.5 27.1 22.4 4.7 5.8

4025.8 20.5 5.3 4.9 27.1 21.7 5.3 5.1

45 25.7 19.8 6.0 4.3 27.0 21.0 6.0 4.5

50 25.6 19.0 6.6 3.9 27.0 20.3 6.6 4.1

60 24.5 16.3 8.1 3.0 25.8 17.6 8.2 3.2

T28H

35 35.5 28.5 7.0 5.1 42.3 35.2 7.1 6.0

40 35.5 27.9 7.6 4.7 41.1 33.3 7.8 5.3

45 35.5 27.3 8.3 4.3 40.0 31.5 8.5 4.7

50 34.9 25.9 9.0 3.9 38.9 29.7 9.2 4.3

60 33.6 23.1 10.4 3.1 36.6 26.0 10.6 3.4

T35H

35 48.9 39.7 9.2 5.3 52.7 43.2 9.5 5.6

40 48.1 38.1 10.1 4.8 52.3 42.0 10.3 5.1

45 47.4 36.5 10.9 4.4 52.0 40.8 11.2 4.6

50 46.7 35.0 11.8 4.0 51.6 39.5 12.1 4.3

60 45.7 32.0 13.6 3.4 50.9 36.8 14.1 3.6

T43H

35 58.6 47.3 11.3 5.2 63.4 51.7 11.7 5.4

40 57.6 45.3 12.3 4.7 62.4 49.7 12.7 4.9

45 56.6 43.3 13.3 4.3 61.4 47.7 13.7 4.5

50 55.5 41.2 14.3 3.9 60.3 45.7 14.6 4.1

60 53.3 36.7 16.7 3.2 58.0 41.0 17.0 3.4

55 21.1 14.9 6.2 3.4 23.8 17.6 6.1 3.9

55 25.6 18.3 7.3 3.5 26.9 19.6 7.3 3.7

55 34.2 24.5 9.7 3.5 37.7 27.8 9.9 3.8

55 46.0 33.4 12.6 3.7 51.3 38.3 13.0 3.9

55 54.5 39.2 15.3 3.6 59.3 43.7 15.6 3.8

TF: (Flow) Outlet temperature, heating water HC: Heating capacityCC: Cooling capacityUC: Uptake capacity

Page 69: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 69/100

  69

Performance Data

Brine-Water AQUATOP T..HT (Information according to EN 14511)

 AQUA TOP T

R 134a

Brine Inlet Temperature [°C]

-5 0 5

Model TVL °C

WLkW

KLkW

 ALkW

COP-

WLkW

KLkW

 ALkW

COP-

WLkW

KLkW

 ALkW

COP-

T07C-HT

35 6,1 4,4 1,6 3,8 7,0 5,3 1,6 4,2 8,1 6,5 1,6 5,0

40 6,0 4,1 1,9 3,2 6,9 5,0 1,9 3,6 8,0 6,1 1,9 4,2

45 5,9 3,8 2,1 2,8 6,8 4,6 2,1 3,1 7,8 5,7 2,1 3,7

50 5,8 3,5 2,4 2,5 6,6 4,2 2,4 2,8 7,6 5,2 2,4 3,2

55 5,7 3,2 2,6 2,2 6,5 3,9 2,6 2,5 7,4 4,8 2,6 2,8

60 5,6 2,9 2,8 2,0 6,4 3,5 2,9 2,2 7,3 4,4 2,9 2,5

65 --- --- --- --- 6,3 3,1 3,1 2,0 7,1 4,0 3,1 2,3

T11C-HT

35 8,9 6,5 2,3 3,9 10,2 7,9 2,3 4,4 11,9 9,6 2 ,3 5,2

40 8,7 6,1 2,6 3,4 10,0 7,4 2,6 3,8 11,6 9,0 2 ,6 4,4

45 8,5 5,6 2,9 2,9 9 ,8 6,8 3,0 3,3 11,3 8,3 3,0 3,8

50 8,3 5,1 3,2 2,6 9 ,5 6,3 3,3 2,9 10,9 7,7 3,3 3,3

55 8,1 4,7 3,5 2,3 9 ,3 5,7 3,6 2,6 10,6 7,0 3,6 2,9

60 7,9 4,2 3,9 2,1 9 ,1 5,2 3,9 2,3 10,3 6,4 3,9 2,6

65 --- --- --- --- 8,9 4,6 4,3 2,1 10,0 5,7 4,3 2,3

TF: (Flow) Outlet temperature, heating water HC: Heating capacityCC: Cooling capacityUC: Uptake capacity

Page 70: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 70/100

 

Performance Data

Water-Water AQUATOP T..HT (Information according to EN 14511)

 AQUA TOP T

R 134a

Water Inlet Temperature [°C]

10 15

Model TVL °C

WLkW

KLkW

 ALkW

COP-

WLkW

KLkW

 ALkW

COP-

T07CHT

35 9,8 8,0 1,8 5,5 11,3 9,5 1,7 6,4

40 9,6 7,5 2,0 4,7 11,0 8,9 2,0 5,5

45 9,4 7,0 2,3 4,0 10,8 8,3 2,3 4,7

50 9,2 6,4 2,6 3,5 10,5 7,6 2,5 4,1

55 8,9 5,9 2,9 3,1 10,3 7,0 2,8 3,7

60 8,7 5,4 3,1 2,8 10,1 6,4 3,1 3,3

65 8,5 4,9 3,4 2,5 9,8 5,8 3,3 2,9

T11CHT

35 14,3 11,8 2,5 5,7 16,5 14,0 2,5 6,7

40 13,9 11,1 2,8 4,9 16,0 13,3 2,8 5,8

45 13,6 10,4 3,2 4,3 15,6 12,5 3,1 5,0

50 13,2 9,7 3,5 3,8 15,2 11,7 3,4 4,4

55 12,8 9,0 3,8 3,4 14,6 10,8 3,8 3,8

60 12,4 8,3 4,1 3,0 14,3 10,2 4,1 3,5

65 12,1 7,6 4,5 2,7 13,9 9,5 4,4 3,2

TF: (Flow) Outlet temperature, heating water HC: Heating capacityCC: Cooling capacityUC: Uptake capacity

70

Page 71: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 71/100

  71

Performance Data

 AQUATOP T..R (Information according to EN 255)

 AQUA TOP T

R 407c

Water Inlet Temperature Heat Output Circuit [°C]

25 30 35

Model TVL °C

KLkW

WLkW

 ALkW

COP-

KLkW

WLkW

 ALkW

COP-

KLkW

WLkW

 ALkW

COP-

06CR

7 7,4 8,2 1,2 6,2 7,1 8,1 1,4 5,2 6,8 7,9 1,5 4,4

9 7,7 8,5 1,2 6,5 7,4 8,4 1,3 5,5 7,1 8,2 1,5 4,6

11 8 8,8 1,2 6,8 7,7 8,7 1,3 5,8 7,4 8,5 1,5 4,9

13 8,4 9,2 1,2 7,1 8 9 1,3 6 7,7 8,8 1,5 5,1

15 8,7 9,5 1,2 7,4 8,4 9,3 1,3 6,3 8 9,1 1,5 5,3

08CR

7 8,8 9,7 1,4 6,3 8,4 9,6 1,6 5,3 8 9,4 1,8 4,4

9 9,1 10,1 1,4 6,6 8,8 9,9 1,6 5,6 8,4 9,7 1,8 4,7

11 9,5 10,5 1,4 6,9 9,2 10,3 1,6 5,8 8,7 10,1 1,8 4,9

13 9,9 10,8 1,4 7,2 9,5 10,6 1,6 6,1 9,1 10,4 1,8 5,1

15 10,3 11,2 1,4 7,5 9,9 11 1,6 6,4 9,5 10,8 1,8 5,4

10CR

7 10,3 11,5 1,6 6,3 9,9 11,2 1,9 5,3 9,4 11 2,1 4,4

9 10,8 11,9 1,6 6,6 10,3 11,6 1,9 5,6 9,8 11,4 2,1 4,7

11 11,2 12,3 1,6 6,9 10,8 12,1 1,8 5,8 10,3 11,8 2,1 4,9

13 11,7 12,8 1,6 7,2 11,2 12,5 1,8 6,1 10,7 12,2 2,1 5,1

15 12,2 13,2 1,6 7,5 11,7 12,9 1,8 6,4 11,1 12,6 2,1 5,3

12CR

7 12,7 14,1 2 6,3 12,2 13,9 2,3 5,3 11,6 13,6 2,6 4,5

9 13,2 14,6 2 6,6 12,7 14,4 2,3 5,6 12,1 14,1 2,6 4,7

11 13,8 15,1 2 7 13,3 14,9 2,3 5,9 12,7 14,6 2,6 4,9

13 14,3 15,6 2 7,3 13,8 15,4 2,3 6,1 13,2 15,1 2,6 5,2

15 14,9 16,1 1,9 7,7 14,4 15,9 2,2 6,4 13,7 15,6 2,5 5,4

14CR

7 15,7 17,5 2,6 6,1 15 17,1 2,9 5,2 14,2 16,6 3,2 4,4

9 16,4 18,2 2,6 6,4 15,7 17,8 2,9 5,5 14,9 17,3 3,2 4,6

11 17,2 19 2,6 6,6 16,4 18,5 2,9 5,7 15,6 17,9 3,2 4,8

13 17,9 19,7 2,6 6,8 17,1 19,2 2,9 5,9 16,3 18,6 3,2 5

15 18,6 20,4 2,6 7 17,8 19,9 2,9 6,1 17 19,3 3,2 5,2

TF: (Flow) Outlet temperature, heating water HC: Heating capacityCC: Cooling capacityUC: Uptake capacity

Page 72: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 72/100

72

Performance Data

 AQUATOP T..R (Information according to EN 255)

TF: (Flow) Outlet temperature, heating water HC: Heating capacityCC: Cooling capacityUC: Uptake capacity

 AQUA TOP T

R 407c

Water Inlet Temperature Heat Output Circuit [°C]

40 45

Model TVL °C

KLkW

WLkW

 ALkW

COP-

KLkW

WLkW

 ALkW

COP-

06CR

7 6,4 7,7 1,7 3,6 6 7,5 2 3

9 6,7 8 1,7 3,8 6,2 7,8 2 3,2

11 7 8,3 1,7 4 6,5 8 2 3,3

13 7,3 8,5 1,7 4,2 6,8 8,3 1,9 3,5

15 7,6 8,8 1,7 4,4 7,1 8,6 1,9 3,7

08CR

7 7,6 9,2 2,1 3,7 7,1 8,9 2,3 3

9 7,9 9,5 2 3,9 7,4 9,2 2,3 3,2

11 8,3 9,8 2 4,1 7,7 9,5 2,3 3,4

13 8,6 10,2 2 4,3 8,1 9,9 2,3 3,5

15 9 10,5 2 4,5 8,4 10,2 2,3 3,7

10CR

7 8,9 10,7 2,4 3,7 8,3 10,5 2,7 3,1

9 9,3 11,1 2,4 3,9 8,7 10,8 2,7 3,2

11 9,7 11,5 2,4 4,1 9,1 11,2 2,7 3,4

13 10,1 11,9 2,4 4,3 9,5 11,6 2,7 3,5

15 10,6 12,3 2,4 4,5 9,9 11,9 2,7 3,7

12CR

7 11 13,2 2,9 3,8 10,3 12,9 3,3 3,1

9 11,5 13,7 2,9 4 10,8 13,3 3,3 3,3

11 12 14,1 2,9 4,1 11,3 13,7 3,3 3,5

13 12,5 14,6 2,9 4,3 11,7 14,2 3,2 3,6

15 13 15,1 2,9 4,5 12,2 14,6 3,2 3,8

14CR

7 13,4 16,2 3,6 3,7 12,6 15,7 4 3,1

9 14,1 16,8 3,6 3,9 13,2 16,3 4 3,3

11 14,7 17,5 3,6 4,1 13,8 16,9 4 3,4

13 15,4 18,1 3,6 4,3 14,4 17,5 4 3,6

15 16 18,7 3,6 4,4 15,1 18,1 4 3,7

Page 73: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 73/100

  73

Performance Data

 AQUATOP T..HR (Information according to EN 14511)

 AQUATOP T...R

R 407c

Water Inlet Temperature Heat Output Circuit [°C]

25 30 35

Model TVL °C

KLkW

WLkW

 ALkW

COP-

KLkW

WLkW

 ALkW

COP-

KLkW

WLkW

 ALkW

COP-

T17CHR 

7 18.5 21.6 3.1 6.1 17.6 20.9 3.3 5.3 16.6 20.3 3.7 4.5

9 20.0 23.1 3.1 6.5 19.0 22.3 3.4 5.6 18.0 21.7 3.7 4.9

11 21.4 24.6 3.1 6.8 20.4 23.8 3.4 6.0 19.3 23.0 3.7 5.2

13 23.1 26.3 3.2 7.2 21.9 25.4 3.4 6.4 20.8 24.5 3.7 5.5

15 24.7 27.9 3.2 7.6 23.5 27.0 3.5 6.7 22.3 26.0 3.8 5.9

T22HR 

7 23.8 27.6 3.8 6.3 22.6 26.9 4.3 5.3 21.4 26.1 4.8 4.5

9 25.7 29.5 3.8 6.8 24.4 28.6 4.2 5.8 23.1 27.8 4.7 4.9

1127.6 31.3 3.7 7.4 26.2 30.4 4.2 6.3 24.8 29.5 4.7 5.3

13 29.7 33.3 3.7 8.1 28.2 32.3 4.1 6.8 26.7 31.4 4.6 5.8

15 31.8 35.4 3.6 8.8 30.2 34.3 4.1 7.4 28.6 33.2 4.6 6.3

T28HR 

7 33.5 39.1 5.6 5.9 32.1 38.2 6.1 5.3 30.5 37.2 6.7 4.6

9 36.0 41.8 5.8 6.2 34.7 40.9 6.2 5.6 33.0 39.7 6.7 4.9

11 38.4 44.4 6.0 6.4 37.2 43.5 6.3 5.9 35.4 42.2 6.8 5.2

13 40.7 46.9 6.2 6.5 40.1 46.5 6.4 6.2 37.9 44.8 6.9 5.5

15 43.1 49.6 6.5 6.6 42.9 49.4 6.5 6.6 40.4 47.5 7.1 5.7

T35HR 

7 42.5 49.9 7.4 5.8 40.6 48.5 7.9 5.1 38.6 47.2 8.6 4.5

9 45.5 53.1 7.6 6.0 43.8 51.9 8.1 5.4 41.7 50.4 8.8 4.8

11 48.4 56.3 7.9 6.1 46.9 55.2 8.3 5.7 44.7 53.6 8.9 5.0

13 51.3 59.6 8.3 6.2 50.5 59.0 8.5 5.9 48.1 57.2 9.1 5.3

15 54.2 62.9 8.7 6.3 54.0 62.7 8.7 6.2 51.4 60.7 9.3 5.5

T43HR 

7 49.5 59.0 9.5 5.2 48.9 58.8 9.9 5.0 46.5 57.0 10.5 4.4

9 54.8 64.6 9.8 5.6 52.8 62.9 10.2 5.2 50.2 60.9 10.7 4.7

11 58.4 68.7 10.3 5.7 56.6 67.1 10.5 5.4 53.9 64.9 11.0 4.9

13 61.8 72.6 10.8 5.7 60.9 71.8 10.9 5.6 58.0 69.4 11.4 5.1

15 65.4 76.8 11.4 5.8 65.1 76.5 11.4 5.7 62.1 73.9 11.8 5.3

TF: (Flow) Outlet temperature, heating water HC: Heating capacityCC: Cooling capacityUC: Uptake capacity

Page 74: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 74/100

74

Performance Data

 AQUATOP T..HR (Information according to EN 14511)

 AQUATOP T...R

R 407c

Water Inlet Temperature Heat Output Circuit [°C]

40 45

Model TVL °C

KLkW

WLkW

 ALkW

COP-

KLkW

WLkW

 ALkW

COP-

T17CHR 

7 15.7 19.7 4.1 3.8 14.7 19.2 4.5 3.2

9 16.9 21.0 4.1 4.1 15.9 20.4 4.5 3.5

11 18.2 22.3 4.1 4.4 17.1 21.6 4.5 3.8

13 19.6 23.7 4.1 4.8 18.4 22.9 4.5 4.1

15 21.0 25.1 4.1 5.1 19.7 24.3 4.5 4.3

T22HR 

7 20.1 25.4 5.3 3.8 18.8 24.7 5.9 3.2

9 21.8 27.0 5.3 4.1 20.4 26.2 5.9 3.5

11 23.4 28.6 5.2 4.5 21.9 27.8 5.8 3.8

13 25.2 30.4 5.2 4.9 23.7 29.4 5.8 4.1

15 27.0 32.2 5.1 5.3 25.4 31.1 5.7 4.4

T28HR 

7 28.9 36.2 7.3 4.0 27.1 35.1 8.0 3.4

9 31.3 38.6 7.4 4.2 29.4 37.4 8.1 3.6

11 33.6 41.1 7.5 4.5 31.6 39.8 8.2 3.9

13 36.2 43.8 7.6 4.8 34.1 42.3 8.3 4.1

15 38.8 46.5 7.7 5.1 36.5 44.9 8.4 4.4

T35HR 

7 36.6 45.9 9.3 3.9 34.5 44.6 10.1 3.4

9 39.5 49.0 9.5 4.2 37.3 47.6 10.3 3.6

11 42.4 52.1 9.7 4.4 40.0 50.5 10.5 3.8

13 45.6 55.5 9.9 4.6 43.1 53.8 10.7 4.0

15 48.8 58.9 10.1 4.9 46.1 57.0 10.9 4.2

T43HR 

7 44.1 55.3 11.2 3.9 41.6 53.7 12.1 3.4

9 47.6 59.1 11.5 4.2 45.0 57.3 12.3 3.6

11 51.1 62.8 11.7 4.4 48.3 60.9 12.6 3.8

13 55.1 67.1 12.0 4.6 52.1 64.9 12.9 4.1

15 59.0 71.4 12.4 4.8 55.8 69.0 13.2 4.2

TF: (Flow) Outlet temperature, heating water HC: Heating capacityCC: Cooling capacityUC: Uptake capacity

Page 75: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 75/100

Performance Data

Limits of Use 

75

Einsatzgrenze AQUATOP T..C

   F   l  o  w   t  e  m

  p  e  r  a   t  u  r  e   [   °   C   ]

Source inlet temperature [°C]

Einsatzgrenze AQUATOP T..H

   F   l  o  w   t  e  m  p  e  r  a   t  u  r  e   [   °

   C   ]

Source inlet temperature [°C]

Limit of Use AQUATOP T..C

Limit of Use AQUATOP T..H

Page 76: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 76/100

Performance Data

Limits of Use 

76

Einsatzgrenze AQUATOP T07CHT-T11CHT

   F   l  o  w   t  e  m

  p  e  r  a   t  u  r  e   [   °   C   ]

Source inlet temperature [°C]

Limit of Use AQUATOP T07CHT – T11CHT

Page 77: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 77/100

Page 78: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 78/100

Hydraulic System

 AQUATOP TC 1 

Key:

B9 Exterior sensor E15 Pressure monitor (installed)RX6 Electrical heating element

(installed)N1 Heat pump controller (installed)Q8 Brine pump (installed)Q9 Circulating pump (installed)

S3 Dirt trap

Optional:

 A6 Remote control

Use / Description:Heat pump directly on heater withoutbuffer storage. Optimal with floor heating with min. 60% constant hotwater flow.

Function Description:

Heating CycleThe heat pump is activated via theInternal return sensor and exterior sensor B9 when requesting heat.The circulating pump Q9 is activeduring the heating season.

Hot Water Hot water heating can be carried outby the Multiaqua service water heatpump if necessary.

78

Compact Heat Pump

OptionalMulti-Aqua for heating service water 

Page 79: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 79/100

Hydraulic System

 AQUATOP TC 1-6

Key:

B3 Hot water sensor ONB9 Exterior sensor B31 Hot water sensor OFFE15 Pressure monitor (installed)RX6 Electrical heating element

(installed)N1 Heat pump controller 

(installed)

Optional:

 A6 Remote controlQ3 Switching valveQ8 Brine pump (installed)Q9 Circulating pump (installed)S3 Dirt trapK6 Electrical heating element

Use / Description:Heat pump directly on heater withoutbuffer storage. Hot water is heated by acoil water heater. Optimal with floor heating with a heating water flowconstant for at least 60%.

Function Description:Heating CycleThe heat pump is activated via theinternal return sensor and exterior sensor B9 when requesting heat.The circulating pump Q9 is activeduring the heating season.The switching valve Q3 is atposition B.

Hot Water Hot water heating is activated viasensor B3. The switching valve Q3 isreset to position A.Charging continues until the set pointat sensor B31 has been reached.Protection from Legionella pneumo-phila bacteria and auxiliary heating to ahigher temperature levels is carried outvia an electrical heating element K6.

79

Heat pump Water heater 

The register (coil) area of the service water storage must be adjusted to the heat pumpcapacity.

Page 80: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 80/100

Hydraulic System

 AQUATOP TC 1-I 

Key:

B9 Exterior sensor B4 Upper storage sensor E15 Pressure monitor (installed)RX6 Electrical heater elementN1 Heat pump controller 

(installed)

Optional:

 A6 Remote controlQ2 Heating circuit pumpQ8 Brine pump (installed)Q9 Circulating pump (installed)EG External expansion vessel

Use / Description:Heat pump uncoupled with buffer storage and adjustable heating circuit.Optimal with floor heating or radiator heating with variable flow.

Function Description:

Heating CycleThe heat pump is activated via sensor B4 and exterior sensor B9 whenrequesting heat. The storage chargepump Q9 starts running simultaneously.Storage is charged. Charging continuesuntil the set point has been reached atsensor B4.

Hot Water Hot water heating can be carried outby the Multiaqua service water heatpump if necessary.

80

Heat pump Buffer storage

OptionalMulti-Aqua for heating service

Page 81: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 81/100

  81

Hydraulic System

 AQUATOP TC 2-I

Key:

B1 Flow sensor B9 Exterior sensor B4 Upper storage sensor B41 Lower storage sensor E15 Pressure monitor (installed)RX6 Electrical heater element

(installed)

N1 Heat pump controller (installed)

Optional:

 A6 Remote controlQ2 Heating circuit pumpQ8 Brine pump (installed)Q9 Circulating pump (installed)Y1 Mixing valveEG External expansion vessel

Function Description:

Heating CycleThe heat pump is activated via sensor B4 and exterior sensor B9 whenrequesting heat. The storage chargepump Q9 starts running simultaneously.Storage is charged. Charging continuesuntil the set point has been reached atlower sensor B41. The heating circuitmixing valve Y1 is controlled via theflow sensor B1.

Hot Water Optionally, hot water heating can becarried out by the Multiaqua servicewater heat pump.

Use / Description:Heat pump uncoupled with buffer storage and mixed heating circuit.Optimal with floor heating or radiator heating with variable flow to optimizecycle times.

Heat pump Buffer storage

Optional

Multi-Aqua for heating service

Page 82: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 82/100

Hydraulic System

 AQUATOP TC 1-6-I 

Key:

B9 Exterior sensor B4 Upper storage sensor B3 Hot water sensor B31 Lower hot water sensor E15 Pressure monitor (installed)RX6 Electrical heater element

(installed)

N1 Heat pump controller (installed)

Optional:

 A6 Remote controlQ2 Heating circuit pumpQ3 Switching valveQ8 Brine pump (installed)Q9 Circulating pump (installed)K6 Electrical heater element

hot water EG External expansion vessel

Use / Description:Heat pump uncoupled with buffer storage and adjustable heating circuit.Hot water heating with coil water heater. Optimal with floor heating or radiator heating with variable flow.

Function Description:

Heating CycleThe heat pump is activated via sensor B4 and exterior sensor B9 whenrequesting heat. The storage chargepump Q9 starts running simultaneously.Storage is charged.The switching valve is at position B.Charging continues until the set pointhas been reached at sensor B4.

Hot Water Hot water heating is activated viasensor B3. The switching valve Q3 isreset to position A.Charging continues until the set pointat sensor B31 has been reached.Protection from Legionella pneumo-phila bacteria and auxiliary heating to ahigher temperature levels is carried outvia an electrical heating element K6.

82

Heat pump Water heater Buffer storage

The register (coil) areaof the service water storage must be adjustedto the heat pumpcapacity.

Page 83: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 83/100

Hydraulic System

 AQUATOP TC 2-6-I

Key:

B1 Flow sensor B9 Exterior sensor B4 Upper storage sensor B3 Hot water sensor B31 Lower hot water sensor E15 Pressure monitor (installed)RX6 Electrical heater element

(installed)N1 Heat pump controller 

(installed)

Optional:

 A6 Remote controlQ2 Heating circuit pumpQ3 Switching valveQ8 Brine pump (installed)Q9 Circulating pump (installed)Y1 Mixing valveK6 Electrical heater element,

hot water 

EG External expansion vessel

Use / Description:Heat pump uncoupled with buffer storage and mixed heating circuit.Hot water heating with coil hot water heater. Optimal with floor heating or radiator heating with variable flow tooptimize cycle times.

Function Description:

Heating CycleThe heat pump is activated via sensor B4 and exterior sensor B9 whenrequesting heat. The storage chargepump Q9 starts running simultaneously.The switching valve is at positionB. Storage is charged. Chargingcontinues until the set point has beenreached at lower sensor B41.The heating circuit mixing valve Y1 iscontrolled via the flow sensor B1.

Hot Water Hot water heating is activated viasensor B3. The switching valve Q3 isswitched to position A. Chargingcontinues until the set point at sensor B31 has been reached.Protection from Legionella pneumo-phila bacteria and auxiliary heatingto a higher temperature levels iscarried out via an electrical heatingelement K6.

83

Heat pump Water heater Buffer storage

The register (coil) areaof the service water storage must beadjusted to the heatpump capacity.

Page 84: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 84/100

Hydraulic System

 AQUATOP TC 2-6-H 

Key:

B1 Flow sensor B3 Hot water sensor B4 Storage sensor B9 Exterior sensor E15 Pressure monitor (installed)RX6 Electrical heater element

(installed)

N1 Heat pump controller (installed)

TS Temperature controllers

The lower switching valve can beomitted for combination storagetanks with >1000 liters.

Note:To prevent damage to the internalstorage, the PWH storage tank must bepressurized before the heating circuitcharge (i.e. charge PHW tank first).

Q2 Heating circuit pumpQ3 Switching valveQ8 Brine pump (installed)Q9 Circulating pump (installed)Y1 Mixing valveK6 Electrical heater element,

hot water 

EG External expansion vessel

Optional:

 A6 Remote control

Use / Description:Heat pump uncoupled with combinationstorage and mixed heating circuit.Hot water heating is integrated.Optimal with floor heating or radiator heating with variable flow and limitedhot water demand.

Function Description:

Heating CycleThe heat pump is activated via sensor B4 and exterior sensor B9 whenrequesting heat. The storage chargepump Q9 starts running simultaneously.Both switching valves are at position B.Storage is charged. Charging continuesuntil the set point has been reached atlower sensor B41. The heating circuitmixing valve Y1 is controlled via theflow sensor B1.

Hot Water Hot water heating is activated viasensor B3. Both switching valves Q3are switched to position A. Chargingcontinues until the set point at sensor B31 has been reached. Protection fromLegionella pneumophila bacteria andauxiliary heating to a higher tempera-ture levels is carried out via anelectrical heating element K6.

Heat pump Combination storage

With out solar integration

84

Page 85: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 85/100

Hydraulic System

 AQUATOP TC 2-6-7-H 

Key:

B1 Flow sensor B3 Hot water sensor B4 Storage sensor B6 Collector sensor B9 Exterior sensor B41 Solar storage sensor E15 Pressure monitor (installed)

K26 Electrical heater element(installed)

N1 Heat Pump Controller (installed)

Optional:

 A6 Remote control

Note:To avoid damage to the internal storagetank, the PWH storage tank must bepressurized before charging the heating

circuit (i.e. charge PWH tank first).

Q2 Heating circuit pumpQ3 Switching valveQ8 Brine pump (installed)Q9 Circulating pump (installed)Q15 Heating circuit pumpY1 Mixing valveK6 Electrical heating element

EG External expansion vessel

 Appl ication:Heat pump uncoupled with combinationand solar integration, heatingcircuit with mixing valve control.Optimal with floor heating or radiator heating with variable flow and limitedhot water demand.

Function Description:

Heating CycleThe heat pump is activated via sensor B4 and exterior sensor B9 whenrequesting heat.

The storage charge pump Q9 startsrunning simultaneously. The switchingvalve Q3 is at position B. The lower storage section is charged. Chargingcontinues until the set point has beenreached. The heating circuit mixingvalve Y1 is controlled via the flowsensor B1.

Hot Water Water heating is activated via sensor B3. The switching valve Q3 is switchedto position A.Charging continues until the set pointat sensor B3 has been reached.

Solar If a difference exists between collector sensor B6 and storage sensor B42, thesolar pump Q5 is activated and storageis charged. In case of excessive storagetemperatures, the collectors are cooledat nighttime.

85

Heat pump Combination storage

Page 86: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 86/100

Hydraulic System

 AQUATOP TC 1-6-7

Key:

B1 Flow sensor B3 Hot water sensor B6 Collector sensor B9 Exterior sensor B31 Solar storage sensor E15 Pressure monitor (installed)RX6 Electrical heater element

(installed)N1 Heat pump controller 

(installed)

Optional:

 A6 Remote controlQ2 Heating circuit pumpQ3 Switching valveQ8 Brine pump (installed)Q9 Circulating pump (installed)Y1 Mixing valveK6 Electrical heater element

hot Water 

Use / Description:Heat pump directly on heater withoutbuffer storage. Optimal with floor heat-ingwith min. 60% constant hot water flow.Hot water heating with coil hot water heater and solar integration.

Function Description:

Heating CycleThe heat pump is activated via theinternal return sensor and exterior sensor B9 when requesting heat.

The circulating pump Q9 is active duringthe heating season. The switching valveQ3 is at position B.

Hot Water Water heating is activated via sensor B3. The switching valve Q3 is switchedto position A. Charging continues untilthe set point at sensor B3 has beenreached. Protection from Legionellapneumophila bacteria and auxiliaryheating to a higher temperature levelsis carried out via electrical heater element K6.

Solar If a difference exists between collector sensor B6 and storage sensor B42, thesolar pump Q5 is activated and storageis charged. In case of excessivestorage temperatures, the collectorsare cooled at nighttime.

86

Heat pump Water heater 

The register (coil) areaof the service water storage must be adjustedto the heat pumpcapacity.

Page 87: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 87/100

Hydraulic System

 AQUATOP T 1-I

87

Use / Description:Heat pump uncoupled with buffer storage and adjustable heating circuit.Optimal with floor heating or radiator heating with variable flow.

Function Description:

Heating CycleThe heat pump is activated via sensor B4 and exterior sensor B9 when re-questingheat. The storage charge pumpQ9 starts running simultaneously.Storage is charged. Charging continuesuntil the set point has been reached atsensor B4.

Hot Water Optionally, hot water heating can becarried out by the Multiaqua servicewater heat pump.

Key:

B4 Upper storage sensor B9 Exterior sensor E15 Pressure monitor (installed)RX6 Electrical heater element

(installed)N1 Heat pump controller 

(installed)

Optional:

 A6 Remote controlQ2 Heating circuit pumpQ8 Brine pumpQ9 Storage tank charge pump 

Heat pump Buffer storage

Optional

Multi-Aqua for heating servicewater 

Page 88: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 88/100

Hydraulic System

 AQUATOP T 2-I

88

Function Description:

Heating CycleThe heat pump is activated via sensor B4 and exterior sensor B9 whenrequesting heat. The storage chargepump Q9 starts running simultaneously.Storage is charged. Charging continuesuntil the set point has been reached atlower sensor B41. The heating circuitmixing valve Y1 is controlled via theflow sensor B1.

Hot Water Hot water heating can be carried outby the Multiaqua service water heatpump if necessary.

Use / Description:Heat pump uncoupled with buffer storage and mixed heating circuit.Optimal with floor heating or radiator heating with variable flow to optimizecycle times.

Key:

B1 Flow sensor B4 Upper storage sensor B9 Exterior sensor B41 Lower storage sensor E15 Pressure monitor (installed)N1 Heat pump controller 

(installed)

Optional:

 A6 Remote controlQ2 Heating circuit pumpQ8 Brine pumpQ9 Storage tank charge pumpY1 Mixing valve

Optional

Multi-Aqua for heating servicewater 

Heat pump Buffer storage

Page 89: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 89/100

Hydraulic System

 AQUATOP T 2-5-B-I 

89

Use / Description:Heat pump uncoupled with buffer storage and mixed heating circuit.Water heating with external exchanger (Magro charge).Optimal with floor heating or radiator heating with variable flow to optimizecycle times and higher service water demand.

Function Description:

Heating CycleThe heat pump is activated via sensor B4 and exterior sensor B9 whenrequesting heat. The storage chargepump Q9 starts running simultaneously.The switching valve is positioned at B.Storage is charged. Charging continuesuntil the set point has been reached atlower sensor B41.The heating circuit mixing valve Y1 iscontrolled via the flow sensor B1.

Hot Water  Hot water heating is activated viasensor B3. Both charge pumps Q3 areactivated. The thermal mixing valveensures that the charge is not releasedfor the storage tank until a min. Chargetemperature has been reached.Charging continues until the set pointat sensor B31 has been reached.Protection from Legionella pneumophilabacteria and auxiliary heating to ahigher temperature levels is carried outvia an electrical heating element K6.

Key:

B1 Flow sensor B3 Hot water sensor B4 Upper storage sensor B9 Exterior sensor B31 Solar storage sensor B41 Lower storage sensor E15 Pressure monitor (installed)

N1 Heat pump controller (installed)

Optional:

 A6 Remote controlQ2 Heating circuit pumpQ3 Service water charge pumpsQ8 Brine pumpQ9 Storage tank charge pumpQ33 PWH intermed. circuit pumpY1 Mixing valveK6 Electrical heater element

hot water  

Heat pump Water heater Buffer storage

Q33

Page 90: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 90/100

Hydraulic System

 AQUATOP TC Expansion Scheme BL 

 AQUATOP T Expansion Scheme BL 

90

Use / Description:Source is groundwater instead of geothermal probes. Can be combinedwith all standard applications.

Function Description:

Heating CycleThe groundwater pump M8 isactivated when a heating demand ispending. It runs for a certainpre-heating time until the intermediatecircuit pump M8 and the heat pumpare activated.

Key:

E15 Flow monitor N1 Heat pump controller 

(installed)P Intermediate exchanger Q8 Groundwater and intermediate

circuit pumpR Return valve

S2 Fine filter, mesh size280-350 μm

 AQUATOP TC 

 AQUATOP T 

Heat pump

Heat pump

Page 91: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 91/100

 Additional Schemas  

 AQUATOP TC 2 AQUATOP T 2

91

Use / Description: A second mixed circuit can becontrolled with an expansion moduleof the heat pump controller.The second mixed circuit can becombined with the following schemas:2-I , 2-6-I, 2-6-H, 2-5-B-I, 2-6-7-H.

Key:

BX21 Flow sensor N21 Additional moduleQX21 Mixing valve gear QX23 Mixed circuit pump

Optional:

TS Safety thermostat for floor heater, only with standard 7and 17

X30 Remote control

Second mixedheater circuit

Page 92: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 92/100

Expansion Scheme

 AQUATOP TC Expansion Scheme M 

 AQUATOP T Expansion Scheme M 

92

Use / Description:Cooling using free cooling. The entirecooling capacity can be delivered withfree cooling in most cases.Can be combined with the followingschemas: Standard 1 + additionalcooling mixing valve (only possiblewith standard design, 2-I, 2-6-I, 2-6-H,2-5-B-I, 2-6-7-H.

Function Description:

Cooling CycleThe cooling cycle is activated basedon exterior temperature, room tempera-ture, or manually. The probe pump Q8is activated and the heating circuitpump Q2 runs as long as cooling isactivated or is stopped via the safetydevices (preventing condensate).The heating and cooling mixing valveY1 controls the flow temperature duringthe cooling cycle.

Key:

B1 Flow sensor B9 Exterior sensor E15 Pressure monitor (installed)N1 Heat pump controller 

(installed)TP Dew point monitor 

Heating/cooling

Optional:

 A6 Remote controlHeating/Cooling 

Q2 Heating circuit pumpQ8 Brine pumpY1 Mixing valve 

 AQUATOP TC 

 AQUATOP T 

Freecooling

Heat pump

Freecooling

Heat pump

Page 93: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 93/100

 Additional Hydraul ic Suggestions

 AQUATOP T Cascade with PWH Isolating Circuit

93

Cascade:Thanks to the new heat pump controller LOGON WP61, it is possible to operateseveral heat generators of a system ina cascade arrangement. Cascades withup to max. 6 heat pumps, equipped withthe LOGON B WP61 controller, arefeasible without problems.When usinga cascade formation, the heat genera-tors switch on or off depending on thecurrent energy demand: If the currentlyrunning heat pump cannot satisfy theenergy demand within a specific time,an additional heat pump/heat generator switches on.

 Appl ication / Descr ip tion:Several heat pumps, uncoupled withbuffer storage and mixed heating circuit.One heat pump specifically for heatingpotable water (AUQATOP T VersionHigh Temperature) is recommended.Water heating using the water heater with external exchanger (Magro charge).Optimal with floor or radiator heatingwith variable flow to optimize run timesand higher service water requirements.

Function Description:Heating CycleThe first heat pump is activated withsensor B4 and exterior sensor B9 whenheating is required. The storage chargepump Q9 is activated simultaneously.If the currently running heat pumpcannot satisfy the energy demandwithin a specific time, an additionalheat pump/heat generator switcheson (additional activation controlled bysensor B10 and assigned set point).Charging continues until the set point atthe lower sensor B41 has been reached.The heating circuit mixing valve Y1 is

controlled based on the flow sensor B1.

Hot Water Sensor B3 activates the water heating.Both charge pumps Q3 and Q33 areactivated. The thermal mixing valveensures that the charge is not releasedto the storage tank until the min. chargetemperature has been reached.Charging continues until the set pointat sensor B31 has been reached.Protection from Legionella pneumophilabacteria and auxiliary heating to ahigher temperature levels is carried out

via electrical heater element K6.Thanks to the PWH isolating circuit, aHP can be dimensioned and selectedspecifically for producing potable water.

For example, a standard model AQUATOP T can be combined with ahigh temperature AQUATOP THT.This makes it possible to heat potablewater more efficiently and allows to runthe system more efficiently as well sincethe heat pump is only specificallyassigned to heat potable water in thesummer. While in heating mode, theoutputs of the two heat pumps are addedto cover the required energy demand.

Page 94: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 94/100

 Additional Hydraul ic Suggestions

 AQUATOP T Cascade with PWH Isolating Circuit

94

Key:

B1 Flow sensor B3 Hot water sensor B4 Storage sensor B9 Exterior sensor B10 Rail flow temp. sensor B31 Lower hot water sensor B41 Lower storage sensor N1 Heat pump controller 

(installed)

Optional:

 A6 Remote controlQ2 Heating circuit pumpQ3 PWH charge pumpQ8 Source pumpQ9 Circulating pumpQ33 PWH intermed. circuit pumpY1 Mixing valve gear  

Heat pump Heat pump Service water- Buffer storagehot storage

Heat pump

Heat pump

Service water- Buffer storagehot storage

Page 95: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 95/100

 Additional Hydraul ic Suggestions

 AQUATOP TR with Active Cooling

95

Function Description:

Heating CycleThe heat pump is activated via sensor B4 and exterior sensor B9 whenrequesting heat. The storage chargepump Q9 starts running simultaneously.Valves K28 remain in position AB-B.Storage is charged. Charging continuesuntil the set point has been reached atlower sensor B41. The heating circuitmixing valve Y1 is controlled via theflow sensor B1.

Cooling Cycle

The heat pump is activated via sensor B4 and exterior sensor B9 whenrequesting cooling. The four-way valveY22 of the heat pump is also actuated,which results in a process reversal of theheat pump: The heat out side(condenser) becomes the heat absorp-tion side (evaporator), i.e. theheating system is now cooled and thesource is heated. Valves K28 areactivated simultaneously (position AB-A)and the buffer storage is reversed or discharged. The reversal of the buffer storage ensures an optimal separation

in the buffer even while cooling. Thestorage charge pump Q9 starts runningsimultaneously. Storage is charged.Charging continues until the set point inthe buffer has been reached.The cooling circuit mixing valve Y1 iscontrolled via the flow sensor B1.

Hot Water Hot water heating can be carried outby the Multiaqua service water heatpump if necessary.

Important:- When used in applications with

active cooling, a vapor-diffusioncold insulation is mandatory for all system components (line,pumps, cocks, storage tanks, etc.)!

- In case of floor heaters, only apartial cooling is possible withflow temperatures above 18°C!

 A condensate monitoring systemmust be provided!

- Use only in combination with adistribution system suitable for heating and cooling (e.g. fan coil).

- Process reversal valves K28 are

recommended with active coolingusing a system temperature of 7/12°C and large buffer storagevolumes.In case of partial cooling applications(system temperature > 18°C, floor heating) can be omitted.The source pump Q8 must bespeed-controlled for all reversible

 AQUATOP TR models!

Use / Description:Reversible heat pump (AQUATOP TR)uncoupled with buffer storage and mixedheating circuit, in combination with adistribution system suitable for heatingand cooling (e.g. fan coil).

Page 96: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 96/100

 Additional Hydraul ic Suggestions

 AQUATOP TR with Active Cooling

96

Key:

B1 Flow sensor B4 Upper storage sensor B9 Exterior sensor B41 Lower storage sensor N1 Heat pump controller 

(installed)

Q2 Heating circuit pumpQ8 Speed-controlled source

pumpQ9 Circulating pumpE15 Pressure monitor (installed)Y1 Mixing valve gear K28 Cooling demand

Optional:

 A6 Remote controlK6 Electrical heater element SWH

The coil area of the service water storage must be adjusted to the heatpump capacity. 

Heat pump Buffer storage

Heat pump Buffer storage

Page 97: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 97/100

  97

Heat Pump Controller LOGON B WP

Unit DescriptionThe heat pump controller LOGON BWP is suitable for all brine-water heatpumps of the model series.

The heat pump controller monitors andcontrols a complete heating system andis specifically designed for controllingthe AQUATOP T series of heat pumpsso that all AQUATOP T standardsdescribed in this documentation canbe realized.

Functions

- Heating operation mode dependenton outside temperature

- Heat management with priorityswitching (hot water before heatingselectable )

- Control of a second heat generator with detection of the respectivelyoptimal operating mode and largestpossible heat pump share

- Monitoring the heat source andcontrolling the brine or groundwater pump

- Self-adapting heating curve withroom sensor operation

- Compressor management toevenly load the compressor for heat pumps equipped with twocompressors

- Diagnostic function to determineoperating temperatures, inputs,outputs, and system requirements

 Additional LOGON B WP61Functions- LPB system bus with up to 15heating circuits per segment- Bivalent operation with additionalheat generator (oil/gas)- Cascade up to max. 6 heat pumps- Improved cooling functions (for 

active and passive cooling)- Cooling function across all (zones)

heating circuits- Dew point monitoring with active

humidity sensor or hygrostat- Cooling function across all (zones)

heating circuits

- Improved solar function (heatingboost, pool, PWH)

- Pool function- Speed-controlled for pumps- Low tariff release for PWH or buffer 

charge- Multiphase differentiable electrical

heater elements (1, 2, or 3 phases):HP flow (3-phase), buffer, PWHstorage.

Meeting Electrical CompanyConditions- The compressors of the heat pump

or water heater are switched amax. of three times per hour.- Switching off of the heat pump

based on signals by the electriccompany/utilities with the option of activating and adding the secondheat generator.

Benefit for User/Operation: -Easy to operate- Easy selection- of hotter/colder - Menu navigation with dialogs- Large display with time, date,

outside temp. indication- Displays operating, diagnostic,

and service states- Operating modes button for 

automatic, party, vacation, secondheat generator, summer, and off 

- Time-controlled lowering of theheating curve possible

- Timer functions for water heating(water heating can be carried outalways at night)

Options- Connectable room controllers- Additional module to control a

second heating circuit

Benefit for Heat Pump System:- Selectable operating modes

(monovalent, monoenergetic,bivalent parallel, or alternate)

- Controlling an electrical heater element (immersible heater)installed in the flow line or for thewater heating (second heatgenerator)

- Operating hours counter for each

compressor and electrical heater element

- Priority switching (hot water beforeheating)

- Detailed malfunction detection of the heat pump, heat source, andheating

Page 98: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 98/100

98

Notes

Page 99: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 99/100

  99

Notes

Page 100: Aqua Top Planning Document

7/28/2019 Aqua Top Planning Document

http://slidepdf.com/reader/full/aqua-top-planning-document 100/100