arc magmatism

38
Arc Magmatism Arc Magmatism Reading: Winter, Chapter 16

Upload: odakota-ledesma

Post on 31-Dec-2015

58 views

Category:

Documents


2 download

DESCRIPTION

Arc Magmatism. Reading: Winter, Chapter 16. Island Arc Magmatism. Activity along arcuate volcanic island chains along subduction zones Distinctly different from the mainly basaltic provinces Composition more diverse and silicic Basalt generally occurs in subordinate quantities - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Arc Magmatism

Arc MagmatismArc Magmatism

Reading:

Winter, Chapter 16

Page 2: Arc Magmatism

Island Arc MagmatismIsland Arc Magmatism• Activity along arcuate volcanic island chains

along subduction zones

• Distinctly different from the mainly basaltic provinces

– Composition more diverse and silicic– Basalt generally occurs in subordinate

quantities– More explosive than the quiescent basalts – Strato-volcanoes are the most common

volcanic landform

Page 3: Arc Magmatism

• Igneous activity is related to convergent plate situations that result in the subduction of one plate beneath another

• The initial petrologic model:

– Oceanic crust is partially melted

– Melts rise through the overriding plate to form volcanoes just behind the leading plate edge

– Unlimited supply of oceanic crust to melt

Page 4: Arc Magmatism

Ocean-ocean Island Arc (IA)Ocean-continent Continental Arc or

Active Continental Margin (ACM)

Figure 16-1. Principal subduction zones associated with orogenic volcanism and plutonism. Triangles are on the overriding plate. PBS = Papuan-Bismarck-Solomon-New Hebrides arc. SAfter Wilson (1989) Igneous Petrogenesis, Allen Unwin/Kluwer.

Page 5: Arc Magmatism

Subduction ProductsSubduction Products

• Characteristic igneous associations

• Distinctive patterns of metamorphism

• Orogeny and mountain belts

Page 6: Arc Magmatism

Structure of an Island ArcStructure of an Island Arc

Figure 16-2. Schematic cross section through a typical island arc after Gill (1981), Orogenic Andesites and Plate Tectonics. Springer-Verlag. HFU= heat flow unit (4.2 x 10-6

joules/cm2/sec)

Page 7: Arc Magmatism

Volcanic Rocks of Island ArcsVolcanic Rocks of Island Arcs

• Complex tectonic situation and broad spectrum

• High proportion of basaltic andesite and andesite

– Most andesites occur in subduction zone settings

Page 8: Arc Magmatism

Major Elements and Magma Major Elements and Magma SeriesSeries

• Tholeiitic (MORB, OIT)

• Alkaline (OIA)

• Calc-Alkaline (~ restricted to SZ)

Page 9: Arc Magmatism

Major Elements and Major Elements and Magma SeriesMagma Series

Figure 16-3. Data compiled by Terry Plank (Plank and Langmuir, 1988) Earth Planet. Sci. Lett., 90, 349-370.

a. Alkali vs. silicab. AFM c. FeO*/MgO vs. silica

diagrams for 1946 analyses from ~ 30 island and continental arcs with emphasis on the more primitive volcanics

Page 10: Arc Magmatism

Sub-series of Calc-AlkalineSub-series of Calc-Alkaline• K2O is an important discriminator 3 sub-series

The three andesite series of Gill (1981) Orogenic Andesites and Plate Tectonics. Springer-Verlag. Contours represent the concentration of 2500 analyses of andesites stored in the large data file RKOC76 (Carnegie Institute of Washington).

Page 11: Arc Magmatism

K2O-SiO2 diagram distinguishing high-K, medium-K and low-K series. Large squares = high-K, stars = med.-K,

diamonds = low-K series from Table 16-2. Smaller symbols are identified in the caption. Differentiation within a series (presumably dominated by fractional crystallization) is indicated by the arrow. Different primary magmas (to the left) are distinguished by vertical variations in K2O at low SiO2. After Gill, 1981, Orogenic Andesites and

Plate Tectonics. Springer-Verlag.

Page 12: Arc Magmatism

AFM diagram distinguishing tholeiitic and calc-alkaline series. Arrows represent differentiation trends within a series.

Page 13: Arc Magmatism

FeO*/MgO vs. SiO2 diagram distinguishing tholeiitic and calc-alkaline series.

Page 14: Arc Magmatism

From Winter (2001)

Page 15: Arc Magmatism

FeO*/MgO vs. SiO2 diagram distinguishing tholeiitic and calc-alkaline series.

Page 16: Arc Magmatism

FeO*/MgO vs. SiO2 diagram distinguishing tholeiitic and calc-alkaline series.

Page 17: Arc Magmatism

Tholeiitic vs. Calc-alkalineTholeiitic vs. Calc-alkaline

From Winter (2001)

Page 18: Arc Magmatism

Tholeiitic vs. Calc-alkalineTholeiitic vs. Calc-alkalineC-A shows continually increasing SiO2 and lacks

dramatic Fe enrichment

Tholeiitic silica in the Skaergård Intrusion

No

chan

geN

o ch

ange

Page 19: Arc Magmatism

Calc-alkaline differentiationCalc-alkaline differentiation

– Early crystallization of an Fe-Ti oxide phase Probably related to the high water content of

calc-alkaline magmas in arcs, dissolves high fO2

– High water pressure also depresses the plagioclase liquidus and more An-rich

– As hydrous magma rises, P plagioclase liquidus moves to higher T crystallization of considerable An-rich-SiO2-poor plagioclase

– The crystallization of anorthitic plagioclase and low-silica, high-Fe hornblende is an alternative mechanism for the observed calc-alkaline differentiation trend

Page 20: Arc Magmatism

– E

K2O-SiO2 diagram of nearly 700 analyses for Quaternary island arc volcanics from the

Sunda-Banda arc. From Wheller et al. (1987) J. Volcan. Geotherm. Res., 32, 137-160.

Page 21: Arc Magmatism

Trace ElementsTrace Elements• REEs

– Slope within series is similar, but height varies with FX due to removal of Ol, Plag, and Pyx

– (+) slope of low-K DM• Some even more depleted than

MORB

– Others have more normal slopes

– Thus heterogeneous mantle sources

– HREE flat, so no deep garnetREE diagrams for some representative Low-K (tholeiitic), Medium-K (calc-alkaline), and High-K basaltic andesites and andesites. An N-MORB is included for reference (from Sun and McDonough, 1989). After Gill (1981) Orogenic Andesites and Plate Tectonics. Springer-Verlag.

Page 22: Arc Magmatism

• MORB-normalized Spider diagrams

– Intraplate OIB has typical hump

Winter (2001) Data from Sun and McDonough (1989) In A. D. Saunders and M. J. Norry (eds.), Magmatism in the Ocean Basins. Geol. Soc. London Spec. Publ., 42. pp. 313-345.

Page 23: Arc Magmatism

Figure 16-11a. MORB-normalized spider diagrams for selected island arc basalts. Using the normalization and ordering scheme of Pearce (1983) with LIL on the left and HFS on the right and compatibility increasing outward from Ba-Th. Data from BVTP. Composite OIB from Fig 14-3 in yellow.

• MORB-normalized Spider diagrams– IA: decoupled HFS - LIL (LIL are hydrophilic)

What is it about subduction zone setting that causes fluid-assisted enrichment?

Figure 14-3. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. Data from Sun and McDonough (1989) In A. D. Saunders and M. J. Norry (eds.), Magmatism in the Ocean Basins. Geol. Soc. London Spec. Publ., 42. pp. 313-345.

Page 24: Arc Magmatism

Petrogenesis of Island Arc Magmas

• Why is subduction zone magmatism a paradox?

Page 25: Arc Magmatism

Of the many variables that can affect the isotherms in subduction zone systems, the main ones are:

1) the rate of subduction

2) the age of the subduction zone

3) the age of the subducting slab

4) the extent to which the subducting slab induces flow in the mantle wedge

Other factors, such as:– dip of the slab– frictional heating– endothermic metamorphic reactions– metamorphic fluid flow

are now thought to play only a minor role

Page 26: Arc Magmatism

• Typical thermal model for a subduction zone

• Isotherms will be higher (i.e. the system will be hotter) if

a) the convergence rate is slower

b) the subducted slab is young and near the ridge (warmer)

c) the arc is young (<50-100 Ma according to Peacock, 1991)

yellow curves yellow curves = mantle flow= mantle flow

Cross section of a subduction zone showing isotherms (red-after Furukawa, 1993, J. Geophys. Res., 98, 8309-8319) and mantle flow lines (yellow- after Tatsumi and Eggins, 1995, Subduction Zone Magmatism. Blackwell. Oxford).

Page 27: Arc Magmatism

Cross section of a subduction zone showing isotherms (red-after Furukawa, 1993, J. Geophys. Res., 98, 8309-8319) and mantle flow lines (yellow- after Tatsumi and Eggins, 1995, Subduction Zone Magmatism. Blackwell. Oxford).

The principal source components IA magmas1. The crustal portion of the subducted slab

1a Altered oceanic crust (hydrated by circulating seawater, and metamorphosed in large part to greenschist facies)

1b Subducted oceanic and forearc sediments

1c Seawater trapped in pore spaces

Page 28: Arc Magmatism

2. The mantle wedge between the slab and the arc crust

3. The arc crust

4. The lithospheric mantle of the subducting plate

5. The asthenosphere beneath the slab

The principal source components IA magmas

Cross section of a subduction zone showing isotherms (red-after Furukawa, 1993, J. Geophys. Res., 98, 8309-8319) and mantle flow lines (yellow- after Tatsumi and Eggins, 1995, Subduction Zone Magmatism. Blackwell. Oxford).

Page 29: Arc Magmatism

• Left with the subducted crust and mantle wedge • The trace element and isotopic data suggest that both

contribute to arc magmatism. How, and to what extent?– Dry peridotite solidus too high for melting of

anhydrous mantle to occur anywhere in the thermal regime shown

– LIL/HFS ratios of arc magmas water plays a significant role in arc magmatism

Page 30: Arc Magmatism

• The sequence of pressures and temperatures that a rock is subjected to during an interval such as burial, subduction, metamorphism, uplift, etc. is called a pressure-temperature-time or P-T-t path

Page 31: Arc Magmatism

• The LIL/HFS trace element data underscore the importance of slab-derived water and a MORB-like mantle wedge source

• The flat HREE pattern argues against a garnet-bearing (eclogite) source

• Thus modern opinion has swung toward the non-melted slab for most cases

Page 32: Arc Magmatism

Mantle Wedge P-T-t PathsMantle Wedge P-T-t Paths

Page 33: Arc Magmatism

• Amphibole-bearing hydrated peridotite should melt at ~ 120 km

• Phlogopite-bearing hydrated peridotite should melt at ~ 200 km

second arc behind first?

Crust and Mantle Wedge

Some calculated P-T-t paths for peridotite in the mantle wedge as it follows a path similar to the flow lines in Figure 16-15. Included are some P-T-t path range for the subducted crust in a mature arc, and the wet and dry solidi for peridotite from Figures 10-5 and 10-6. The subducted crust dehydrates, and water is transferred to the wedge (arrow). After Peacock (1991), Tatsumi and Eggins (1995). Winter (2001).

Page 34: Arc Magmatism

Island Arc PetrogenesisIsland Arc Petrogenesis

A proposed model for subduction zone magmatism with particular reference to island arcs. Dehydration of slab crust causes hydration of the mantle (violet), which undergoes partial melting as amphibole (A) and phlogopite (B) dehydrate. From Tatsumi (1989), J. Geophys. Res., 94, 4697-4707 and Tatsumi and Eggins (1995). Subduction Zone Magmatism. Blackwell. Oxford.

Page 35: Arc Magmatism

Multi-stage, Multi-source Multi-stage, Multi-source ProcessProcess

• Dehydration of the slab provides the LIL enrichments + enriched Nd, Sr, and Pb isotopic signatures

– These components, plus other dissolved silicate materials, are transferred to the wedge in a fluid phase (or melt?)

• The mantle wedge provides the HFS and other depleted and compatible element characteristics

Page 36: Arc Magmatism

• Phlogopite is stable in ultramafic rocks beyond the conditions at which amphibole breaks down

• P-T-t paths for the wedge reach the phlogopite-2-pyroxene dehydration reaction at about 200 km depth

A proposed model for subduction zone magmatism with particular reference to island arcs. Dehydration of slab crust causes hydration of the mantle (violet), which undergoes partial melting as amphibole (A) and phlogopite (B) dehydrate. From Tatsumi (1989), J. Geophys. Res., 94, 4697-4707 and Tatsumi and Eggins (1995). Subduction Zone Magmatism. Blackwell. Oxford.

Page 37: Arc Magmatism

• The parent magma for the calc-alkaline series is a high alumina basalt, a type of basalt that is largely restricted to the subduction zone environment, and the origin of which is controversial

• Some high-Mg (>8wt% MgO) high alumina basalts may be primary, as may some andesites, but most surface lavas have compositions too evolved to be primary

• Perhaps the more common low-Mg (< 6 wt. % MgO), high-Al (>17wt% Al2O3) types are the result of somewhat deeper fractionation of the primary tholeiitic magma which ponds at a density equilibrium position at the base of the arc crust in more mature arcs

Page 38: Arc Magmatism

Fractional crystallization occurs at various Fractional crystallization occurs at various levelslevels

A proposed model for subduction zone magmatism with particular reference to island arcs. Dehydration of slab crust causes hydration of the mantle (violet), which undergoes partial melting as amphibole (A) and phlogopite (B) dehydrate. From Tatsumi (1989), J. Geophys. Res., 94, 4697-4707 and Tatsumi and Eggins (1995). Subduction Zone Magmatism. Blackwell. Oxford.