are advanced wind flow models more accurate brower … · 2016. 10. 18. · albany, new york |...

17
Albany, New York | Barcelona, Spain | Bangalore, India | awstruepower.com | +1 8778993463 ©2012 AWS Truepower, LLC Philippe Beaucage, PhD Senior Research Scientist Michael C. Brower, PhD Chief Technical Officer Brazil Wind Power Conference 2012 Are Advanced Wind Flow Models More Accurate? A Test of Four Models

Upload: others

Post on 26-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    Philippe Beaucage, PhDSenior Research Scientist

    Michael C. Brower, PhDChief Technical Officer 

    Brazil Wind Power Conference 2012

    Are Advanced Wind Flow Models More Accurate?A Test of Four Models

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    AlbanyNew York, USA

    BarcelonaSpain

    BangaloreIndia

    • Established in 1983• 105 staff in three main offices• Project roles in over 80 countries• Opening office in Curitiba (Fall 2012)

    • Partners: Camargo‐Schubert (Curitiba), Aires Renovables (Buenos Aires)

    • Partnering with industry and government to advance renewable energy worldwide

    • Consulting in atmospheric science, meteorology, environment, and engineering

    • Involved in design and assessment of >60,000 MW of wind projects

    AWS Truepower in Brief

    CuritibaBrazil

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    Why Do Wind Flow Modeling?

    • Extrapolates from a few wind resource measurements to an entire wind farm

    • Allows optimization of the plant layout• Doing it well is essential for accurate 

    energy production estimates

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    Physics‐Based Numerical Models

    • Solve some subset of the primitive equations governing atmospheric conditions

    • Typically use finite‐element methods, sometimes in combination with spectral methods

    • A wide variety of models have been developed reflecting – Available computer power– The developer’s understanding of the physical processes most relevant to wind energy

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    Mass conservation:

    Momentumconservation (Navier-Stokes):

    Energy conservation:

    Equation of state:

    0 udtd

    dPdQdTcp

    RTP

    1 2 3 4

    N‐S Terms

    1: Advection

    2: Gravity force

    3: Coriolis force

    4: Pressure force

    5: Viscous stress 

    6: Friction force

    5

    fFPuguutu

    112

    6

    The Primitive Equations

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    Key Challenges in Numerical Modeling

    • Spatial resolution must be ~50 m or better over a domain ~25 km or larger

    • Must simulate a wide range of wind conditions for accurate energy production estimation

    • Should simulate all relevant physical processes –but which are relevant?

    • More advanced models require much more computer time than simpler models. But are they worth the cost?

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    Jackson‐Hunt*

    • Fast, linearized, steady‐state N‐S solver (e.g., WASP)

    • Assumes terrain is a small perturbation on a constant background wind field

    • Infers the regional wind climate based on point measurements

    • Reverses process to extrapolate to other points

    • Includes obstacle, surface roughness modules*Jackson, P.S. and  J.C.R. Hunt (1975). "Turbulent Wind Flow over Low Hill". Quart. J. R. Met. Soc., vol. 101, pp. 929‐955.

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    WAsP Example:Orographic Influence on Wind Speed

    WAsP (Riso

    e)

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    “CFD” Models

    • Most are Reynolds‐averaged Navier‐Stokes (RANS) solvers (e.g., Meteodyn WT, WindSim)

    • Non‐linear; can simulate re‐circulations, flow separations, other effects of steep terrain

    • Include turbulence parameterization• Usually assume constant, homogeneous boundary conditions

    • Do not simulate thermal gradients or stability (buoyancy)

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    CFD Example: Recirculation Behind a Ridge

    Source: WindSim, Vector AS

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    • Full time‐varying 3D physical model of the atmosphere. Examples: WRF, MASS, KAMM, ARPS…

    • Solve all the Primitive Equations, including energy balance, surface exchanges, phase transitions, with turbulence parameterization

    • Require 100‐1000x as much computer time as linear models; usually done on a high‐performance computing cluster

    • Can be coupled with linear models to improve resolution, reduce runtime

    • Current research: Coupled large eddy simulations to resolve the larger scales of turbulence

    Numerical Weather Prediction (NWP) Models

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    NWP Example: Island Blocking and Channeling

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    NWP Modeling: Gravity Wave

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    Research Outline• Objective: Determine how much accuracy improves (if any) with 

    more advanced models• Other research* has produced mixed results for Jackson‐Hunt and 

    CFD models. NWP‐based models rarely studied.• AWS Truepower assessed 4 leading models at 4 sites with a total of 

    26 masts• Round‐robin approach:

    – Use one mast to predict the mean wind speed at the other masts– Calculate errors (predicted minus observed mean speed)– Repeat with other masts

    • Compile root‐mean‐square error (RMSE) for all models and cases

    *For summary, see Wind Resource Assessment: A Practical Guide to Developing a Wind Project (Wiley, 2012), chapter 13.

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    Models• Jackson‐Hunt: WASP (Risoe National Laboratory)• RANS CFD: Meteodyn WT (Meteodyn)• Coupled NWP‐Linear: SiteWind (AWS Truepower)• Coupled NWP‐LES: ARPS (Oklahoma University)

    Case StudiesCase Terrain Land Cover No. Masts1 Simple Grass and trees 82 Moderate Grass and shrubs 63 Complex Coastal Mostly forest 34 Complex Forest 9

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    Results By CaseRoot‐Mean‐Square Error (m/s)

    Model 1 2 3 4 AllWASP 0.26 0.34 1.15 0.74 0.62Meteodyn WT(neutral stability) 0.50 0.46 1.07 0.95 0.76

    Meteodyn WT(mixed stability) 0.41 0.55 1.09 0.97 0.76

    SiteWind 0.10 0.39 0.56 0.67 0.48NWP/LES 0.28 0.49 0.57 0.49 0.45

  • Albany, New York  |  Barcelona, Spain  |  Bangalore, India  |  awstruepower.com |   +1 877‐899‐3463

    ©2012 AWS Truepower, LLC

    Conclusions• No single model performed best at all sites• On the whole, NWP‐based models performed better than CFD and WASP‐type models by a substantial margin

    • Overall, CFD did not perform better than WASP!!– Supports other research reporting mixed findings– This shows that wind flow in complex terrain cannot be solved by the same methods used to model air flow over wings and through jet engines

    – The atmosphere is never in equilibrium, and you cannot ignore the effects of vertical and horizontal temperature gradients