arithmetic with hypergeometric seriescc.oulu.fi/~tma/stockholmslides.pdf · arithmetic with...

35
ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm 2010 May 26, Finnish-Swedish Number Theory Conference 26-28 May, 2010

Upload: others

Post on 20-Mar-2020

15 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

ARITHMETIC WITH HYPERGEOMETRIC

SERIES

Tapani Matala-aho

Matematiikan laitos, Oulun Yliopisto, Finland

Stockholm 2010 May 26, Finnish-Swedish Number Theory

Conference 26-28 May, 2010

Page 2: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Arithmetic Motivation

An interesting part of Number Theory is involved with a question

of arithmetic nature of explicitly defined numbers.

-Irrationality

-Linear independence over a field

-Transcendence

Page 3: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Arithmetic Motivation

Even more interesting and challenging with a quantitative setting.

-Irrationality measure

-Linear independence measure

-Transcendence measure

Page 4: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Generalized Hypergeometric series

Let P(y) and Q(y) ∕= 0(y) be polynomials and define generalized

hypergeometric series

F (t) =∞∑n=0

∏n−1k=0 P(k)∏n−1k=0Q(k)

tn (1)

and q-hypergeometric series

Fq(t) =∞∑n=0

∏n−1k=0 P(qk)∏n−1k=0Q(qk)

tn (2)

Page 5: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Classical hypergeometric series

Pochhammer symbol (generalized factorial)

(a)0 = 1, (a)n = a(a + 1) ⋅ ⋅ ⋅ (a + n − 1) (3)

(1)n = n! n ∈ ℤ+. (4)

Hypergeometric series

AFB

(a1, ..., aAb1, ..., bB

∣∣∣ t) =∞∑n=0

(a1)n ⋅ ⋅ ⋅ (aA)nn!(b1)n ⋅ ⋅ ⋅ (bB)n

tn (5)

Page 6: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Gauss’ hypergeometric series

Gauss’ hypergeometric series

2F1

(a, b

c

∣∣∣ t) =∞∑n=0

(a)n(b)nn!(c)n

tn. (6)

Page 7: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Gauss’ hypergeometric series/cases

Geometric series

2F1

(1, 1

1

∣∣∣ t) = 1F0

(1

∣∣∣ t) =∞∑n=0

tn (7)

Logarithm series

2F1

(1, 1

2

∣∣∣ t) = − log(1− t)

t=∞∑n=0

1

n + 1tn (8)

Binomial series:

2F1

(1,−�

2

∣∣∣ t) = (1− t)� =∞∑n=0

(�

n

)(−t)n (9)

Arcustangent:

2F1

(1, 1/2

3/2

∣∣∣ −t2) =arctan t

t=∞∑n=0

(−1)n

2n + 1t2n+1 (10)

Page 8: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Gauss’ hypergeometric series/cases

Jacobi polynomials:

2F1

(−n, � + � + n + 1

� + 1

∣∣∣ t) =n!

(� + 1)nP(�,�)n (1− 2t) (11)

Legendre polynomials:

2F1

(−n, n + 1

1

∣∣∣ t) = Pn(1− 2t) (12)

→ Tsebycheff and Gegenbauer polynomials.

Page 9: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Gauss’ hypergeometric series/cases

Elliptic integrals:

K (t) =

∫ �/2

0

d�√1− t2 sin2 �

=

∫ 1

0

dx√(1− x2)(1− t2x2)

(13)

E (t) =

∫ �/2

0

√1− t2 sin2 �d� =

∫ 1

0

√1− t2x2√1− x2

dx (14)

2F1

(1/2, 1/2

1

∣∣∣ t2) =2

�K (t) (15)

2F1

(1/2,−1/2

1

∣∣∣ t2) =2

�E (t) (16)

Page 10: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Other

Exponent:

0F0(∗∗

∣∣∣ t) = exp(t) =∞∑n=0

1

n!tn (17)

Bessel function Ja:

0F1( ∗�

∣∣∣ t) = Γ(�)(it)�−1J�−1(2it1/2) (18)

Euler’s series

2F0

(1, 1

∣∣∣ t) =∞∑n=0

n!tn, (19)

Page 11: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Classical numbers/irrationality

e =∞∑n=0

1

n!/∈ ℚ (20)

log 2 =∞∑n=0

(−1)n

n + 1/∈ ℚ (21)

� = 4∞∑n=0

(−1)n

2n + 1/∈ ℚ (22)

Page 12: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Classical numbers/linear independence

m ∈ {0, 1, 2, ...}.

Hermite:

dimℚ{ℚe0 + ...+ ℚem} = m + 1 (23)

Page 13: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Classical numbers/linear independence

Apery, Rivoal, Ball, Zudilin:

dimℚ{ℚ + ℚ�(3) + ℚ�(5) + ...+ ℚ�(2m + 1)}

= 2, m = 1; (24)

≥ 2

3

log(2m + 1)

1 + log 2(25)

dimℚ{ℚ + ℚ�(5) + ℚ�(7) + ℚ�(9) + ℚ�(11)} ≥ 2 (26)

Page 14: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Classical numbers/linear independence

Conjecture:

dimℚ{ℚ + ℚ� + ℚ�(3) + ℚ�(5) + ...+ ℚ�(2m + 1)}

= m + 2 (27)

and more generally it is conjectured: The numbers

�, �(3), �(5), ..., �(2m + 1) (28)

are algebraically independent.

Page 15: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Classical numbers/p-adic meaning

Euler’s divergent series (Wallis series)

2F0

(1, 1

∣∣∣ ±1

)=∞∑n=0

n!(±1)n ∈ ℚ ?? (29)

Conjecture: Transcendental.

Note

2F′0

(1, 1

∣∣∣ 1

)=∞∑n=0

n ⋅ n! ∈ ℚ (30)

Page 16: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Basic hypergeometric series

q-series factorials (q-Pochhammer symbols):

(a)n = (a; q)n = (1− a)(1− aq) ⋅ ⋅ ⋅ (1− aqn−1) (31)

(q)n = (q; q)n = (1− q)...(1− qn)

q-hypergeometric (basic) series

AΦB

(a1, ..., aAb1, ..., bB

∣∣∣ t) =∞∑n=0

(a1; q)n...(aA; q)n(q; q)n(b1; q)n...(bB ; q)n

tn. (32)

Page 17: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Arithmetic of q-series

Amou M., Andre Y., Bertrand D., Bezivin, Borwein P., Bundschuh

P., Duverney D., Katsurada M., Merila V., Nesterenko Yu.,

Nishioka K., Prevost M., Rivoal T., Stihl Th., Shiokawa I.,

Waldscmidt M., Wallisser R., Vaananen K., Zudilin W.

Page 18: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

q-world numbers

p-adic, p ∈ ℙ:∞∑n=1

pn

1− pn/∈ ℚ (33)

∞∑n=1

pn

n∏i=1

1± pi/∈ ℚ (34)

∞∑n=0

pn2∏n

j=1(1± pj)2/∈ ℚ (35)

Page 19: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

q-world numbers

1 +p

1 +

p2

1 +

p3

1 + . . ./∈ ℚ (36)

∞∏n=1

(1 + kpn), k = 1, ..., p − 1, (37)

∞∑n=1

pnn∏

i=1

(1 + kpi ), k = 1, ..., p − 1, (38)

For the set (37) [Vaananen] gave

dimℚ = p (39)

True also for the set (38).

Page 20: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

q-world numbers

Real, p ∈ ℤ ∖ {0,±1}:

∞∑n=1

1

1− pn/∈ ℚ (40)

∞∑n=1

1n∏

i=11± pi

/∈ ℚ (41)

∞∑n=0

1∏nj=1(1± pj)2

/∈ ℚ (42)

Page 21: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

q-world numbers

1 +p−1

1 +

p−2

1 +

p−3

1 + . . ./∈ ℚ [Bundschuh] (43)

∞∏n=1

(1 + kp−n), k = 0, 1, ..., p − 1, (44)

∞∑n=1

p−nn∏

i=1

(1 + kp−i ), k = 0, 1, ..., p − 1. (45)

For the set (37) [Vaananen] gave

dimℚ = p (46)

True also for the set (38).

Page 22: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

q-world numbers

∞∑n=0

1

Fan+b/∈ ℚ (47)

∞∑n=0

1

Lan+b/∈ ℚ (48)

where a, b,∈ ℤ+, Fn and Ln are the Fibonacci and Lucas numbers,

respectively; F0 = 0,F1 = 1, L0 = 2, L1 = 1.

[Andre-Jeannin]: a = 1; [Bundschuh+Vaananen] with a measure.

[Prevost+T.M.]: a, b ≥ 1 with irrationality measures; [Merila].

Page 23: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

IRRATIONALITY MEASURE

By an effective irrationality measure (exponent) of a given number

� ∈ ℂp we mean a number � = �(�) ≥ 2 which satisfies the

condition: for every � > 0 there exists an effectively computable

constant H0(�) ≥ 1 such that∣∣∣∣� − M

N

∣∣∣∣p

>1

H�+�(49)

for every M/N ∈ ℚ with H = max{∣M∣, ∣N∣} ≥ H0(�).

Page 24: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Irrationality measures of explicit numbers

�(e) = 2 Classical (50)

�(log 2) ≤ 3.8914 [Rukhadze] (51)

�(log 3) ≤ 5.125 [Salikhov] (52)

�(�) ≤ 8.0161 [Hata] (53)

�(�(2)) ≤ 5.4413 [Rhin+Viola] (54)

�(�(3)) ≤ 5.5139 [Rhin+Viola] (55)

Page 25: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Irrationality measures of explicit numbers

�1 =1

F1 +

1

F2 +

1

F3 + . . ., �(�1) = 2 (56)

�2 =1

L1 +

1

L2 +

1

L3 + . . ., �(�2) = 2 (57)

∣∣∣∣�i − M

N

∣∣∣∣ ≥ C

N2+D/√logN

(58)

Page 26: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Linear forms

Let Θ ∈ ℂp be a number to be studied.

a) p =∞. I an imaginary quadratic field and ℤI ring of integers.

b) p ∈ ℙ = {2, 3, 5, ...}. I = ℚ.

Page 27: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Linear forms

In the following theorems put

Q(n) = ea(n), R(n) = e−b(n) (59)

where

a(n) = an, b(n) = bn (classical) (60)

or

a(n) = an log n, b(n) = bn log n (classical) (61)

and

a(n) = an2, b(n) = bn2 (q-world). (62)

Page 28: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Linear forms

Assume that

Rn = BnΘ− An ∀n ∈ ℕ (63)

are numerical approximation forms satisfying

Bn, An ∈ ℤI (64)

BnAn+1 − AnBn+1 ∕= 0, (65)

∣Bn∣ ≤ Q(n), and also (66)

∣An∣ ≤ Q(n), if p ∕=∞ (67)

∣Rn∣p ≤ R(n) (68)

for all n ≥ n0 with some positive a and b and a < b, if p ∕=∞.

Page 29: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Linear forms/Axiomatic

Let the above assumptions be valid. Then for every � > 0 there

exists a constant H0 = H0(�) ≥ 1 such that∣∣∣∣Θ− M

N

∣∣∣∣p

> H−�−� (69)

for all M,N ∈ ℤI with H ≥ H0, where (by folkflore)

� = 1 + a/b, H = ∣N∣, if p =∞, (70)

� =b

b − a, H = max{∣M∣, ∣N∣}, if p ∈ ℙ. (71)

Kalle Leppala (Master thesis): Axiomatic for more general a(n)

and b(n).

Page 30: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Linear forms/over algebraic numbers/several variables

-Use valuations of a number field with product formula.

-Several variables with larger determinants.

Need a construction of appropriate Linear Forms.

Page 31: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Pade approximations/Classical case

First we will study the classical series F (t) with it’s derivativies

ΔbF (t), where Δ = t ddt .

Denote d = max{degP(y), degQ(y)} and let d ,m ∈ ℤ+ and the

numbers �1, ..., �m be given.

We start by giving explicit type II Pade approximations for the

series

ΔbF (t�j), b = 0, 1, ..., d − 1; j = 1, ...,m. (72)

Our construction is based on a product expansion a la Maier

[Potenzreihen irrationalen Grenzwertes. J. Reine Angew. Math.

156, 93–148 (1927)]

Page 32: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Maier’s product formula

Let l ,m ∈ ℤ+ and � = t(�1, ..., �m) be given and define

�i = �i (l , �) bym∏t=1

(�t − w)l =ml∑i=0

�iwi . (73)

Thenml∑i=0

�i ik�i

t = 0 (74)

for all t ∈ {1, ...,m}; k ∈ {0, ..., l − 1}.

Page 33: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Maier’s product formula

Moreover

�i = (−1)i∑

i1+...+im=i

(l

i1

)⋅ ⋅ ⋅(

l

im

)⋅ �l−i1

1 ⋅ ⋅ ⋅�l−imm . (75)

Page 34: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Pade approximations/Classical case

Let b, d , l ,m, � ∈ ℕ, b < d and choose m numbers �1, ..., �m. Put

Bl ,�(t) =ml∑i=0

tml−i�i (l , �)[Q]i+�+⌊l/d⌋−1

[P]i+�. (76)

Then

Bl ,�(t)ΔbF (�j t)− Al ,�,b,j(t) = Rl ,�,b,j(t), (77)

where

degt Bl ,�(t) = ml , degt Al ,�,b,j(t) ≤ ml + �− 1 (78)

ordt=0

Rl ,�,b,j(t) ≥ ml + ⌊l/d⌋+ �. (79)

Page 35: ARITHMETIC WITH HYPERGEOMETRIC SERIEScc.oulu.fi/~tma/STOCKHOLMSLIDES.pdf · ARITHMETIC WITH HYPERGEOMETRIC SERIES Tapani Matala-aho Matematiikan laitos, Oulun Yliopisto, Finland Stockholm

Pade approximations/Classical case

Thus we have a gap of lenght ⌊l/d⌋ in the power series expansion

Bl ,�(t)ΔbF (�j t) = Al ,�,b,j(t) + Rl ,�,b,j(t). (80)

The polynomials Bl ,�(t) are Pade approximant denominators in

variable t for the functions Fb,j(t) = ΔbF (t�j),

b = 0, 1, ..., d − 1; j = 1, ...,m.

Also we say that (77–79) define a Pade approximation with the

degree and order parameters

[degt B, degt A ≤, ordt=0

R ≥] = [ml ,ml + �− 1,ml + ⌊l/d⌋+ �]

(81)