arnold engineering ,development center arnold air … · project number 5e. task number 5f. work...

59
AEDC-TMR-79-E61 ~,B AXIAL THRUST MEASUREMENT SYSTEM CERTIFICATION FOR PROPULSION DEVELOPMENT TEST CELL J-2 R. B. Runyan ARO, Inc. September 1979 Final Report for Period August 1972 through December 1974 Approved for Public Release - distribution unlimited PI1f:ft:.zTY Or- I.'.S. Am FORCE AEDC T£CHi:i(.;~LLIBRARY ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR FORCE STATION, TENNESSEE AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE

Upload: others

Post on 30-Apr-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

AEDC-TMR-79-E61

~,B

AXIAL THRUST MEASUREMENT SYSTEM CERTIFICATION FOR PROPULSION DEVELOPMENT TEST CELL J-2

R. B. Runyan ARO, Inc.

September 1979

Final Report for Period August 1972 through December 1974

Approved for Public Release - distribution unlimited

PI1f:ft:.zTY Or- I.'.S. Am FORCE AEDC T£CHi:i(.;~L LIBRARY

ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR FORCE STATION, TENNESSEE

AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE

Page 2: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

Report Documentation Page Form ApprovedOMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering andmaintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, ArlingtonVA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if itdoes not display a currently valid OMB control number.

1. REPORT DATE SEP 1979 2. REPORT TYPE

3. DATES COVERED 00-08-1972 to 00-12-1974

4. TITLE AND SUBTITLE Axial Thrust Measurement System Certification For PropulsionDevelopment Test Cell J-2

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ARO, Inc.AEDC Division,A Sverdrup Corporation Company,Arnold AirForce Station,TN,37389

8. PERFORMING ORGANIZATIONREPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as

Report (SAR)

18. NUMBEROF PAGES

58

19a. NAME OFRESPONSIBLE PERSON

a. REPORT unclassified

b. ABSTRACT unclassified

c. THIS PAGE unclassified

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

Page 3: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a defmitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

References to named commerical products in this report are not to be considered in any sense as an indorsement of the product by the United States Air Force or the Government.

APPROVAL STATEMENT

This report has been reviewed and approved.

OawlUJe~~ DANIEL W. CHEATHAM, III, 1st Lt, USAF Test Director, ETF Division Directorate of Test Operations

Approved for publication:

Page 4: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

Summary

This report presents the results of investigations and

calibrations performed during the certification and initial use

of the J-2 force measuring system. The system accuracy and operating

characteristics were determined and are presented. Specific potential

problem areas were identified and investigated and the results are

shown. It was determined that the force measuring systems is

capable of meeting force measurement needs resulting from present

and projected test article performance requirements.

i

Page 5: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

TABLE OF CONTENTS

1.0 INTRODUCTION. • . . . · . . . . · . . . 2.0 APPARATUS •. • eo. • • • G • · . . .

1

2

3.0

4.0

5.0

2.1 Thrust System. ••. •• • •• 2 2.2 Test Cell. • • •• •••• ••.••• 4 2.3 Installation • • • • • • . . • • • • • 4 2.4: Instrumentation. • •• ........,.. 5 2.5 Data Conditioning and Recording. • • • • • •• 5

PROCEDURE • • • • • . • • • • • · . . . . . · . · . 3.1 Thrust System Calibrations •••••••••• 3.2 Tare and Deflection Checks •••••••• 3.3 Thrust Stand Alignment Checks. • •• • •• 3.4 Engine Centerline Force Application •••••• 3. 5 Pressure Cal i bra t ions. • • •• •• • • • • 3.6 Data Acquisition and Reduction ••••••

RESULTS AND DISCUSSION. . . . • · · · . • · • · • · 4.1 Thrust Systems Uncertainty • • · • · · · • 4.2 Thrust System Characteristics. · · · · 4.3 Thrust System Installation Checks. · · • · • · 4.4 Test Results . . · . . · • · . · • · · • · SUMMARY OF RESULTS •••••••• · . . . . .

ILLUSTRATIONS

6

6 6 6 7 7 7

8

9 9

11 13

14

Figure

1. J-2 Test Cell Installation View • • • • · . . . . . 15

2. J-2 Thrust Stand a. Thrust Stand Installation Layout in

Test Cell J-2 . • • . • • • • • • • . • • . .• 16 b. Thrust Calibration and Measurement System • •• 17

3. Thrust Stand Calibration Linkage. • • • • • • • •• 18

4. Engine Connections a. Fuel Line Installation. • • • • • • • • • • •• 19 b. Pneumatic Line Installation • . • • . • • • 20 c. Lab Seal Installation • • • . • • • • • • • 21 d. Lab Seal Detail • • • • • . eo. • • • •• 22

ii

Page 6: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

Figure

5. Instrumentation Locations

6.

7.

8.

a. Test Cell Pressure and Temperature Location •••••••••••••• · . . . . " J-2 Thrust Stand Instrumentation b.

c. Data Load Train Temperature Instrumentation • •

Thrust Stand Deflection Measurements •••• . . Installation of Centerline Loading Hardware • Standards Laboratory-Load Cell Calibration Report 0 GO. GO. • " " • • ., • • " • 0 •

• • •

9. Load Cell Repeatability during Lab Calibration

23 24 25

26

27

28

a. Data Load Cell. • • • • • . • • • • . • 29 b. Drag Calibrate Load Cell. • • • • • • • • . 29 c. Thrust Calibrate Load Cell. • . • • • • • • •. 29

10. Load Cell Linearity during Lab Calibration

11.

a. b. c.

Data Load Cell Linearity •••••.• Drag Calibrate Load Cell Linearity •• Thrust Calibrate Load Cell Linearity.

Laboratory Calibration of Temperature Effect on Load Cell • • • • • • • • •

. . . . . .

30 30 30

31

12. Load Cell Zero Shift as a Function of Temperature. 32

13.

14.

15.

16.

17. 18.

19.

1.

Off Axis Loading Calibration a. Effect of Off Axis Loading. " . . . • • • • b. Effect of Rotation. • • • • . . . . · . . . Thrust Stand Alignment Certification. • • • • • • •

Pressure Effect on the Load Cell and Test Cell ••• Centerline Force Calibration. • • • • • • • • . Deviations between Pre- and Posttest Calibrations

Difference in Data Load Cell Bridges .••• . . Deviation Obtained during Applied Load Test • • • •

TABLE

Thrust Stand Uncertainties. • . . . . . . " . . . "

APPENDIX

33 33

34

35

36

37

38

39

40

A. THE J-2 INPLACE THRUST CALIBRATION PROGRAM. • . .• 41

iii

Page 7: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

-.,-----,.

1.0 INSTRODUCTION

The force measuring system for the Propulsion Engine Test Cell J-2 (Figo 1) of the Engine Test Facility was designed to measure axial forces produced by turbojet and turbofan engines up to force levels of 70,000 1bf. The present installation was optimized to measure ax~a1 forces up to 25,000 1bf o Certification testing of the force measuring system will be a continuing effort during engine testing and modifications to this system will be made as necessary to further improve operation and accuracy.

Several areas were considered as potential problem areas, therefore, specific methods of calibrations were designed and performed to investigate these areas. The primary areas to be considered were:

1. System force measurement uncertainty

2. Pressure and temperature effects on the measurement load cells.

3. Rressure effect on test cell.

4. Effect of off center thrust stand loading

5. Lab seal tare effects

6. Cell cooling airflow effect

7. Temperature effects on thrust stand

8. Thrust stand repeatability, hysteresis and tare

9. Computer thrust calibration and data reduction program

The thrust system calibration results presented in this report were obtained during engine testing and system checks conducted from August 1972 to December 1974. The data pre­sented include overall system accuracy, as well as pressure and various test cell effects on the thrust stand.

The certification was to support testing conducted by AEDC. Under the Sponsorship of the Aeronautical Systems Division (ASD), Air Force Systems Command (AFSC), Wright Patterson Air Force Base, Ohio under Program Element 64215F.

The results were obtained by ARO, Inc., AEDC Division (a Sverdrup Corporation Company), contract operator of the AEDC, Air Force Systems Command (AFSC), Arnold Air Force Station, Tennessee. The tests were conducted in Propulsion Development Test Cell J-2 of the Engine Test Facility (ETF) under ARO Project Number RA175, RA299, RA351 and R41K-05A.

1

Page 8: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

2.0 APPARATUS

2.1 Thrust System

The thrust system installed in the J-2 test cell consists of a fixed frame and a floating frame, data and calibrate load trains, calibrator, and calibrator control system. The overall length of the stand is 26 ft 4 in. and it weighs 13,000 lb. The engine and associated hardware increases the weight of the total system to 20,000 Ibs in the final configuration. Figure 2 shows the thrust stand installation in the test cell.

2.1.1 Thrust Stand Frames

The floating portion of the stand is of box beam type construction and covered on the outside by 2 inches of insulation. This stand is cooled by water sprayed on the interior surfaces. The floating portion of the stand is connected to ground (test cell wall) at the aft end through the data load cell and by a single universal flexure in tension for vertical support. The forward end is supported by universal flexures in tension to the fixed portion of the stand. Movement of the stand in the horizontal plane perpen­dicular to the thrust axis is controlled by side flexures at the forward and aft end of the thrust stand. The calibrator systems are part of the floating portion of the stand and are connected to the fixed portion of the thrust stand through flexures and a cone coupling during calibrations. The calibrator system is completely free of the fix~d portion of the stand during testing.

The fixed portion of the stand consists primarily of the forward support frame. The forward support frame (Fig. 1) is water cooled and attached to the test cell floor. The aft support and grounding system is attached directly to the top of the test cell wall.

2.1.2 Load Trains

The floating thrust frame is connected to the fixed frame primarily through the data load train. During calibrations the calibrate load trains also provide a con­nection to the fixed frame. Both load train systems (Fig. 3) incorporate a load cell with universal flexures at each end and are attached to the frames by couplings. The data load train located at the aft end of the thrust stand is permanently attached to both the floating and fixed frames. The thrust calibrate load train is located at the forward section of the thrust stand and mechanically connected to the test cell

2

Page 9: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

only during thrust stand calibration. The drag calibrate load train is located at the aft section of the thrust stand, but forward of the data load train. This load train is physically located inside the floating box beam structure. The connection to the fixed frame is pro­vided through flexures on parallel pull rods along the side of the aft end of the stand when the drag calibrator is being used.

2.1.3 Calibrators

A screw jack driven by an electric motor in both the thrust and drag calibrator mechanisms (Fig. 3) applies forces to the system through a series of levers and pull rods. The thrust calibrator load cell is loaded in tension which loads the data load cell in tension and corresponds to the direction of a positive engine thrust load. The drag cali­brator load cell is loaded in tension which loads the data load cell in compression and corresponds to the direction of an engine drag load.

The calibration system has the capability of inplace calibrating the data load train using a working standard calibrator load cell. The calibrations are performed auto­matically in the thrust and drag directions during normal pre and post test calibrations. The system also has the capability of performing 1) a force load calibration check at any load level or cell pressure level with the engine off and 2) a tare slope check by applying a one point null load while the engine is operating.

2.1.4 Calibrator Control

An electronic system located in the J-2 control room energizes and de-energizes the calibrator to provide the automatic calibration feature of the calibration system. Upon actuation of this system, the data load cell in the thrust stand is calibrated from the no-load or null posi­tion to full load in the drag direction (-10,000 lbs compression) to null, to full-load in the thrust direction (20,000 lbs tension), and back to null. After completion of the calibrate cycle, the calibrator is deactivated. The time required for a complete calibration cycle is approximately 4 minutes. In addition to the automatic slow sweep calibration, the calibrator control can be used to set and hold known tension or compression loads on the thrust systems. The maximum force and drag calibrate levels are variable and can be adjusted to desired levels with meter readouts.

3

Page 10: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

,.

2.1.5 Engine Centerline Force Application

Thrust system checks were made by applying forces at the engine centerline location with a simulation of the engine weight installed. The forces were applied using a hydraulic force unit and were set at predetermined levels from 0 to 25,000 lbs in the thrust direction. This calibra­tion was performed twice, once using a working standard from the ARO Technical Services Division (TSD) standards laboratory and once using the J-2 calibrator load cell to measure the applied forces.

2.2 Test Cell

The Propulsion Development Test Cell (J-2)(Fig. 1) is water-cooled and has a 20-ft-diameter by 69-ft-long test section. The l80-deg clam shell hatch is 35 ft, 4 in. in length and opens 30 deg beyond the cell vertical center­line to allow for easy entry of the test article. Additional information on the test cell can be found in the Test Facilities Handbook.*

2.3 Installation

The general arrangement of the engine and thrust stand installed in the J-2 test cell is shown in Fig. 1. The engine w~s attached to the floating frame of the thrust stand with a box beam structure so that the engine centerline was approximately 9 ft below the thrust stand centerline. An additional structure was located forward of the box beam structure to carry the weight of the inlet ducting directly to the floating stand. The stand was isolated from the fixed inlet ducting by a labyrinth (lab) seal in the engine inlet ducting.

The lines attached to the engine and the floating frame, such as fuel lines, starter air line, and stand water­cooling line were brought in at right angles to the direction of axial movement. The starter air line was a flexible line and the fuel line was a hard line (Fig. 4a). The pneumatic pressure lines are hard lines to a disconnect panel (Fig. 4b) attached to the floating portion of the stand. The hard lines provided better repeatability of tare loads even though they produced a higher tare load than flexible lines would.

". *Test ~a~ilities Handbo6k (Eleventh Edition). Englne Test FaClllty, Vol. 2." Arnold Engineering

Development Center, June 1979.

4

Page 11: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

An automatically pressure-balanced labyrinth seal (Fig. 4c) was used between the engine inlet ducting and the engine inlet bellmouth. The bellmouth is attached to the test cell inlet air ducting. With this type seal, no additional tare forces are introduced between the engine inlet duct and the test cell ducting. The normal mode of operation is to have BP-l (Fig. 4d) set equal to the average of the lab seal wall static pressures which would result in a no flow balance condition. Specific test cdnditions such as sea level static would require PB-4 to be balanced against cell pressure and lab seal air flow to maintain this balance would flow into the engine inlet duct and would be measured by an orifice in the lab seal airflow supply line.

2.4 Instrumentation

Instrumentation was required to measure force, pressure, stand deflection and thrust stand and load cell temperatures. Instrumentation locations were as shown in Fig. 5.

The force measuring system utilized three dual bridge strain gage-type load cells. The data load cell was a 20,000 lb load cell and was inplace calibrated for each test period. The thrust and drag calibrate load cells were 20,000 lb load cells and were working standard load cells which were periodically calibrated against a secondary standard by the TSD standards laboratory. The standards are directly traceable to NBS.

Pressure measurements were made with strain gage type pressure transducers which were inplace calibrated with a precision quartz pressure gage instrument. Temperatures 'were measured with thermocouples which were calibrated by millivolt substitution, pre and posttest. Thrust stand deflections were measured by 0- to O.l=in. precision-dial indicators. These indicators are accurate to the nearest 0.001 in. and are checked periodically.

2.5 Data Conditioning and Recording

Force, pressure and temperature data were recorded on a high speed digital data acquisition system (DDAS). The system digitizes at a 20,000 samples per second rate. Normal channel sample rate is 100 samples per second per channel. Pressures were recorded through the scanner valves which were controlled by the DDAS. Temperatures were routed to either continuous recording channels or to low speed multiplexers for sampling.

All DDAS data were recorded on magnetic tape and were either routed, on-line, to the data reduction computer for processing and printout or were processed off-line at a later time.

5

Page 12: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

Thrust system calibrations were recorded and processed in this manner and were controlled by the thrust system calibrator located in the control room. Thrust calibrations are made automatically by loading the thrust system continuously first in the drag direction, then to null, loading in the thrust direction, then to null while automatically recording the outputs of the calibrate and data load cells with the DDAS.

3.0 PROCEDURE

3.1 Thrust System Calibrations

Prior to and following each engine test period, automatic thrust system calibrations were obtained using the J-2 thrust system calibrator. During these calibrations the test cell was at ambient pressure conditions and the engine was not operating. The cell and thrust stand cooling water was turned on several hours before calibration to allow cell wall and thrust stand temperatures to stabilize.

3.2 Tare and Deflection Checks

A tare load was calculated at each force level during the inplace calibration. This tare load was not used in the processing of the engine scale force measure­ments, but was used only for analysis of the stand and data processing system. During the buildup and installation phase in J-2 test cell this tare measurement was used to check the installation of each major component such as the fuel line and the lab seal systems. This monitoring helped determine the amount of tare and its repeatability for each system as it was installed. The deflection versus load applied was determined after the installation of all of the major com­ponents was completed (Fig. 6). The deflection was measured at the aft end of the thrust stand to determine the movement of the stand in relation to the stand wall.

3.3 Thrust Stand Alignment Checks

Thrust stand optical alignment checks were performed by the TSD standard laboratory during and after installation of the thrust stand. The optical alignment utilized points on each of the two flexures in each load train and reference points on the test cell. Checks were made in both the hori­zontal and vertical reference plane at each point.

6

Page 13: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

3.4 Engine Centerline Force Application

The engine centerline force application test was conducted without the engine installed. A tank was installed and filled with water to simulate the engine weight, and force was applied in the thrust direction at the engine centerline (Fig. 7). The force level applied was determined with the calibrate load cell located on the engine centerline. The force transmitted through the thrust stand was measured with the data load cell and the DDAS. These forces were compared to the load transmitted through the force system with equivalent loads applied in the normal calibrate position. The loads were applied in 5,000 Ibf increments from 0 to 20,000 Ibs.

3.5 Pressure Calibrations

Pressure effects on the load cells were determined by the TSD laboratory by varying the load cell ambient pres­sure and measuring the equivalent force output.

The effects of pressure on the test cell and the thrust stand were obtained with the thrust stand in the no-load or null position and the engine installed, but not operating. The test cell was evacuated to a particular pressure level and thrust system data were obtained. Data were obtained at several pressure levels during several air periods.

3.6 Data Acquisition and Reduction

3.6.1 Automatic Calibration

The thrust system was automatically calibrated in approximately 4 minutes. During the slow sweep traverse of the thrust system, one record of data was obtained every 2.5 sec. This record consists of 10 samples of each thrust channel and averaged over a time interval of 0.2 sec. The six channels of thrust data were sampled consecutively and the time to acquire one sample of all 6 data channeis was 3 x 10-4 seconds. During the thrust portion of the cali­bration in which the load is applied from 0 to 20,000 Ibf and back to 0, approximately 35 of these data records are obtained. Each record averages a load change of approximately 120 Ibf. These records are fit with a least-squares, second-order curve with separate curves for each calibrate load cell bridge in both the tension and compression directions. The data are processed so that the average of the calibrate load cell bridges are curve fit against each of the two bridges of the data load cell bridges.

7

Page 14: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

A format of the thrust system data obtained during a calibration is shown in Appendix A. An explanation of each column is included. During each calibration, curve fit deviation of tare load and zero levels were obtained so that any changes from previous calibrations were immediately evident.

3.6.2 Steady-State Data Points

During a typical steady-state data point, force data were obtained at the same interval as pressure data. Pressure and force data were obtained at each of ten scanner valve positions that together constituted a steady-state data point and covered a time interval of approximately 90 sec. Data obtained at each valve position consisted of three records covering a time interval of five seconds. Two of the three records consisted of ten samples of the thrust data and the other record contained nine samples. Each of the records covers a time interval of 0.2 sec. Therefore, each data pOint consisted of 290 samples of each channel of thrust data, which are averaged for a value of thrust.

The six thrust values obtained from four calibrate load cell bridges and two data load cell bridges were printed out for each data point. This printout allowed the calibrate load cells to be monitored during testing to insure that no load was inadvertently being applied with the calibrate system. This system also allowed for direct comparison of a calibrate load with a data cell load at a particular level with the engine not operating.

4.0 RESULTS AND DISCUSSION

Certification test data of the J-2 thrust system defining the operating characteristics of the system were obtained prior to and during the engine testing. The system uncertainty, repeatability, hysteresis and tare loads were defined. Necessary adjustments to measured force data were determined and formulated. Continual verification of these adjustments are accomplished during testing by various thrust system checks.

8

Page 15: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

--

4.1 Thrust Systems Uncertainty

The uncertainty in thrust system measurement was calculated using procedures as outlined in AEDC TR-73-5* and CPIA No. 180** as applicable. The data were obtained during system certification checks and while con­ducting engine testing. Table I presents the uncertainty values in the form of bias (b) and the precision index (ts) at the 95 percent confidence level. The uncertainty varies from 19 to 33 Ibf over the force range of 0 to 20,000 Ibf.

The uncertainty analysis was accomplished by evaluating various components of the thrust system and combining the errors obtained for each. The specific areas considered were:

1) Laboratory standard

2) Calibrate load cell

3) Thrust system repeatability

4) Data load cell characteristics

4.2 Thrust System Characteristics

4.2.1 Laboratory Calibrations

The load cells were periodically calibrated at the TSD standards laboratory to maintain current records on the loadcell characteristics. The results of a typical calibration are presented in Fig. 8, which shows millivolts for applied load, maximum non-linearity, maximum hysteresis, non-repeatability and equivalent load for resistance cals. The load cell and TSD calibration system repeatability over several calibrations is shown in Figure 9 a, b, and c for the data load cell, thrust calibrate and drag calibrate load cells, respectively. The precision of these data at a 95 per­cent confidence level is 3.5 lbs over the range of from o to 25,000 Ibs indicating that the load cells are very repeatable from calibration to calibration. Typical load cell non-linearity characteristics are shown in Figure 10 (a thru c) for all three load cells. The nonlinearity was repeatable and due primarily to the hysteresis in the load cells. The hysteresis is less than 0.02 percent of full scale.

* Abernathy, R. B., Thompson, J. W., Jr., et aI., "Handbook, Uncertainty in Gas Turbine Measurements." AEDC-TR-73-5 (AD755356), January 1973.

**ICRPG Handbook for Estimating the Uncertainty in Measurements Made with Liquid Propellant Rocket Engine Systems. Chemical Propulsion Information Agency, CPIA, No. 180, April 1969.

9

Page 16: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

4.2.1.1 Load Cell Temperature Calibration

The data and calibrate load cells were calibrated at TSD to determine the effect of temperature on the load cell sensitivity (relationship of load applied and millivolt output). Calibrations were performed at several temperatures at load levels of 10,000 and 25,000 lbf. Deviations in sensitivity from a reference calibration are shown in Figure 11 for two load cells. No trend of variation in sensitivity is evident as a function of load cell temperature. The variation of the load cell zero level as a function of load cell temperature exhibits a definite trend, as shown in Figure 12, for the three load cells used. Since this trend was characteristic of each load cell tested, it should be assumed that any load cell zero level may be sensitive to temperature and should be calibrated for these effects. The zero shift is approximately 0.5 lb per of, therefore, a requirement was implemented to control the load cell tempera­ture to within ±5°F of the temperature existing at calibration during all engine tests.

4.2.1.2 Off-Axis Loading

A laboratory calibration was performed to evaluate the effect of off-axis loading resulting from having the load cells misaligned. A 10,000 lbf load was applied with a known axial misalignment of two degrees and the measured out­put was compared to a reference calibration.

Figure 13 shows the deviation from the reference calibration resulting from the misalignment for three load cells installed in the J-2 thrust stand. The effect for two of the load cells was 15 lbf and about 35 lbf for the other load cell which was 0.15 and .35 percent of applied load. These were for a 2° off-axis loading, therefore, the allowable alignment tolerance was set at ±15 minutes of arc for all load cell components.

With the load cell in the off-axis calibration rig the load cell was rotated about its axial centerline and the loading was repeated. The deviation of the loading for the three positions from zero (90°, 180°, 270°) are shown in Figure l3b. The scatter in the data is on the same order of magnitude as any effect of rotation. The maximum effect due to rotation is -8 lbfo

4.2.1.3 Adapter Torque

During load cell calibrations, load cell shifts were noticed after installing the adapters. Further investigation revealed that adapter torque effected both the zero level and slope of the load cell output. Because of this effect, a requirement was made that all adapters installed in the J-2 load cells be uniformly torqued to 2000 in.-lbs before laboratory calibration.

10

Page 17: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

4.3 Thrust System Installation Checks

System checks were performed during the installa­tion of the thrust system to insure that this system would meet test requirements. The system was checked for align­ment, pressure effects, repeatability and linearity.

4.3.1 System Alignment

Alignment points were provided on the stand hard­ware during its construction to aid in checking the component alignment after installation. The results of the alignment certification performed by the TSD standards lab is shown in Figure 14. The largest deviation from the centerline is 0.071 inches which is equivalent to an angle of less than 8 minutes of arc. This deviation was judged to be small enough to be acceptable.

4.3.2 Pressure Effect

The load cells were sealed units and were, therefore, affected by environmental pressure changes. The test cell being 20 ft in diameter must withstand larger compressive forces with ambient pressure on the outside and pressures as low as 2 psia on the inside. Any effects that these large forces have on the scale force measurement in the test cell must be evaluated. The pressure effect on the load cell was determined by a calibration of the load cell in a pressure chamber. The pressure effect as determined from the laboratory calibration was compared to data obtained with the load cell and thrust stand installed in the test cell and the test cell at various pressure altitude conditions. Figure 15 shows this comparison over a pressure range of 0.1 psia to atmospheric conditions. The data from the laboratory calibration and the data obtained from the test cell installation agree within the precision of the data in the pressure range of major interest (3 to 6 psia). This indicates there is no significant force interaction resulting from the pressure-area force acting on the test cell.

4.3.3 Centerline Calibration

The calibration loads applied above the engine centerline prior to each test period are assumed to be the equivalent of a load applied by the engine at its centerline. A calibration was performed to certify that a load applied by the calibration system at a point other than the engine centerline is equiva-lent to an engine applied load (Fig. 7). Tare loads are

11

Page 18: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

compared from these calibrations to provide this certifica­tion. The difference in the force applied by the calibra­tion system and the force measured by the data load cell is defined as the tare.

The tare force calculated with the force applied at the standard calibration point and the tare force calculated with the force applied at the engine centerline is shown in Figure 16. It is evident from the comparison that there is no discernible effect of applying the force at the calibrate position rather than at the engine centerline. Therefore, the engine applies the same load to the data load cell as the calibrate system.

4.3.4 Labyrinth Seal

The labyrinth seal shown in Figure 4c allows the inlet ducting connected directly to the engine to move freely with respect to the bellmouth ducting. The lab seal is positioned before testing by positioning rods which are remotely controlled to provide a specific radial clearance from the duct. An electric signal is monitored during testing that provides an indication of contact between the lab seal and the inlet ducting. Special test procedures are used to assure that the lab seal is correctly positioned so as to produce no tare effect on the thrust system prior to each test period. In addition, the air used to balance the lab seal is vented radially into the test cell to eliminate any pressure area effect on the system.

4.3.5 Cell Cooling Airflow

Cooling air is supplied to the test cell from either the upstream plenum or atmosphere to provide a positive flow of air through the test cell into the exhaust gas diffuser. The air is supplied by 16 orifices equally spaced around the upstream circumference of the 20' test cell duct. The total cooling airflow is on the order of 20 lb/sec. This flow in the 20 ft diameter test cell produces a velocity that is incapable of producing a significant force on the thrust system.

4.3.6 Temperature Effect on the Thrust Stand

The thrust stand is of box beam type construction that utilizes water sprayed on the internal surface and 2 inches of external insulation for temperature control. The stand is instrumented for temperature effects as shown in Figure 5b and c and the box beam with insulation is shown in Figure lao The drag calibrator and thrust data link mechanism are located in areas of the box beam that are protected from the water spray.

l2

Page 19: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

,-'

The thrust data link is inst+umented for tempera­ture as shown in Figure 5c. A nitrogen purge system was provided for the cavity containing the thrust data link (Fig. 3) to aid in temperature control of the data load cell and its linkage. The temperature control of the por­tion of the linkage from the data load cell that extends beyond the stand box beam to the cell ground is achieved by flowing water through copper tubing wrapped around the linkage.

4.4 Test Results

The data obtained during testirg provided information relative to system zero repeatability, calibration repeatability, time shifts, and system precision. The force system was in­place calibrated as part of the pretest and posttest calibra­tion procedure.

4.4.1 Inp1ace Calibration Repeatability

The thrust system calibration and analysis is described in detail in Appendix A. The calibration results in a second degree curve that relates the reference applied force to the force measured by the data load cell. This relationship must stay constant while testing to ensure accurate force data. Calibrations taken during pretest preparations can be compared to calibrations obtained post-test to measure this repeatability. Data from several cali­brations indicate that the calibration system repeats zero within ±lO lbf and has a precision index of t95 = ±9.24 lbf. Comparisons of three typical calibrations showing the differ­ences from pre to posttest as a function of applied load is shown in Figure 17.

4.4.2 Data Load Cell Disagreement

The data load cell has two bridges and these outputs are recorded as FAl and FA2. These are averaged for a value of scale force for each data point. The difference in these two bridges is an indication of the load cell precision and is shown in Figure 18 to be within flO lbf •

4.4.3 Applied Load Test

The J-2 force calibration has the ability of applying a load on the data system at any time. This feature was used to perform an applied load test during several air periods. The applied load test is performed after calibrations are made for an engine test period. A predetermined fixed load is set using the force loading system and a standard data point is recorded and processed with the data system. The data system

13

Page 20: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

\",--"-'

provides a reading from the data load cell which utilizes the pre-test calibrations. This is compared to the value of the load applied with the loading system, and any differ­ences are noted. These differences are plotted in Figure 19 for several test periods and provide an indication of re­peatability of ts = ±25 lbf at the 95 percent confidence level.

5.0 SUMMARY OF RESULTS

The results of this thrust measurement system certi­fication may be summarized as follows:

1. The force systems uncertainty varies from 19 to 33 lbf over the force range of 0 to 20,000 lbf.

2. Thrust stand repeatability was determined to be within ±17 lbs with a hysteresis loop of 15 lbs and a tare load of 75 lbs at a calibration level of 20,000 lbs.

3. The engine applies the same load to the data load cell as the calibrate systems even though the engine is approximately 9' below the centerline of the data load cell.

4. Pressure effects on the test cell were determined to be insignificant.

5. Cell cooling airflow effects were determined to be insignificant.

6. The thrust calibration program provides information on system tare, repeatability linearity and pertinant information on both calibrate load cells and data load cells.

7. The lab seal balance airflow produces no tare effects and the mechanical alignment system eliminates mechanical tare.

8. Thrust stand temperatures can be controlled by water cooling and external insulation for all altitude test conditions.

14

Page 21: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

I-' c.n

Figure 1. J-2 Test Cell installation view

/

Page 22: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

I-' 0')

( (

III r I I

~89.2 in.~

Q 3 it 3 in.

Thrust Stand------~

Inlet Ducting .Engine

Gap (8 to 15 in.)~ ~

27 ft 3 in. Engine Face

a. Thrust stand installation layout in Test Cell J-2!

Figure 2. J-2 thrust stand

(

Page 23: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

.... ...::a

(

W,,,rUcal fl."" .....

-1-'-" -'

§! II· lit

gJ

THRUST CALlBP.ATOR LOAD CELL LINK

~ - GROUNOfO - THRUST FRAME _..... GROUNOEO- TEST CELli.

-- LINK COMPONEJ\ITS

® FLDURE

~ LOAD CELL ~, THRUST FRAME" SUPPORT POINT

( (

T-.._-_OJO .. :r = -- . II tc : i:=&~o.s,: I ~ ~ l-:'i. .. ~" .. --:

Ii '-- II1II - -. """""'II -- : ri

»~-;'

...

SlOE LOAD LINKS

! _ U'=- j -~::;l-;r· "$~ -,I-g-P~-'':I!!~II ~

" r .: ", r:-- -----' _____ - -

, ~',~ " -

PLAN = ")'/7

___ n.d~ V cR'Ltfor¥lcaTN

ELEVATION

OZA~ C~'tIBRATOR Q 0 C 1,.1,. LINK

b. Thrust calibration and measurement system

Figure 2. Concluded

//,~~~

Page 24: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

THRUST CALIBRATOR LOAD CELL LINK

.DRAG CALIBRATOR LOAD CELL LINK

~! ---~~sii!-a~ r--

. ... ...

·--r <

---

THRUST LOAD CELL LINK (DATA)

( , . I l! ........... __ ~

;;;:;"1IIIiaia1l!Jli// / // / / // / - 88 •• 111.111.---,

Figure 3. Thrust stand calibration linkage

18

Page 25: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

I-' CD'

a. Fuel line installation

Figure 4. Engine connections

Page 26: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

I=l 0

'M

+> (\l

,....; ,....;

"0

(\l Q

)

+> §

fIl I=l

'M

'M

+> I=l

Q)

0 I=l

CJ

'M

r-l

C)

"<j1

'M

+> Q

) (\l

H

~

~

~

b.O Q

) 'M

I=l

fJ:.! P-!

,.Q

20

Page 27: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

~ J-I

(

4 Ralws at 450 • 1350 • 2250

• and :U5°

Pl--20 Ideas TTl-20 Yeas PSl-4 ideaS

( \

Lab Seal Lab Seal Venting Ports

I

L 4 Statics on Lip at 00 , 90°, 1800 and 270°

PLABC ~4 Ideas

PSI. 01 ..... 16 Yeas TK1.01 ..... 2 Yeas

P1.01-+24 Ideas PSl.0I1-+24 Yeas

c. Lab seal installation

Figure 4. Continued

Flexible Seal ~

--~

PTBL-+5 Yeas PSl. 04 -+4 Yeas PXSbD~3 Ideas

(

Engine Front

7 -

Page 28: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

1:\:). I:\:)

(

Balance Pressure Manifold of 8 Static Pressure Taps

(BP-l44)

BP-l .1 aP-2

Bellmouth Exit

( (

Lab Seal Airflow Supply

Engine Inlet Duct

Lab Seal Venting Ports

Duct Ailsa lignment, Lip Static Pressure Indication (4 eq. spaced)

I";==-

Lab Seal Vall Static Pressure (IS Taps)

d. Lab seal detail i i

Figure 4. Concluded!

Page 29: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

1.\:); w

( ( (

po-s

I '1'0-1 <p

........ If • 9R-t S. Wall

. 3 '3"

I Lab Seal Station 450 from Top on Door Side

PO-lO

Engine Front Frame 45 0 from Top on Door Side

6-

TO-4 N. Wall

21'3" Engine Fa.ce

PO-6 PO-I P0-5

I 'I m

II

~ 1<1>

4> ill TO-5 S. Wall Nozzle I Exit

I II

p0-61 I~ Mid Engine I 450

. from Top I on Door Side II P0-5 90 0

Clockwise Eng~ne Exit Plane of P0-6 I

L),'P 1'0-6 'I N. Wall Nozz

rl PO-9 A-\ PO-lO PO-ll PO-12

PO-4

PO-II P0-3

Exit

A-A Looking Upstream

a. Test cell pressure and temperature location:

Figure 5. Instrumentation locations

'.

·2

Page 30: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

~i 1/:>.1

(

<IIIIIt--

PSTS-lfB

PSTS-~ <&---:

Float

QI.

-=----fB PSTS-3

ED . PSTS-4

19' 10" ~

$ I_J$

, -t-Tn'-3

-+-1'FT-9

2SI' 5"" .... .o'--t .~ .....

.I. T

Tn'-14

29' 3"

- . II

G SR-4 STUllJ GAGE

o TIC em FAll SIDB

G TIC mt nAil sum

'., I . I 01 Tn'-7

.l -*- *-1" ~ -~ I ". T1'T-4 ~ TFT-5. Tn'- r o

-::

" r. ---- - - J ~. T1'T-13 ~"' I ~ . '.. -. t

-+- .... +. Tn-l~d'. TF1'-IO • Tn'-ll :;?'" I . l

29' 5" 33' 5" 31' 5"

b. J-2 thrust stand instrumentation Ii

Figure 5. Continued

(

Page 31: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

l'\)

tJl

( (

TDLT*-l TDLT-2

o o

StaG 20'4" 21' 4"

TDLT-3

Data Load Cell

24' 0" *Surface Temperatures

c. Da.ta load train temperature instrumentation I Figure 5. Concluded' I

(

Page 32: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

26

Page 33: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

ty

"

I [

r--: JeifMb

. . t ~--~

~ -- GROVNDEO-THRVST FJItAMI! -- IGRruIDEO -TEST eEl.&.. _ liNK COMPONENTS

® FLEXURE - PIVImII ~ iLOAD CELL • J:!!!i IHVDUWC ~

(

':

!ENGINE WEJGiiI SIMUYlTOB

Figure 7. Installation of centerline loading hardware

'WAG CllU8!'iATO!'S 1.,QAl) CEU.. I,JM

(

~~

Page 34: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

-.-.--.---.--.-----~-----.---------.-------------,

I I

TECHNICAL SUppeRT OEPARTM~NT i{

. i

iNSTRUMENT NUo 41757 BRIOGE A

WORK ORDE.R NO. A '0 T /110 CALlO TEMP

BALDH T3P,U +-20/\ lOF

25000.000 La s NUMIH:R

«,1873 R 4 -34KA 75. DEG F

351.3 OHMS 348.8 OHI<IS 10.0 K Mf-G GH~S

CAlIBkATION SUMMARY AR COMPRES TENSION

(. .. R. SENS Ml( N-L1N MAX HVST 'l;CR MAll N-REPI <liCR

0.0 L {, -3.7500

0.0224 0.0240 0.0054

"'lIT ING CllllNEcrOR eil] lObE-J.'tS-5S-Flt3 PO T P NN C I', - A ,~N

~EGATIVE INPUT CuNNl(T!UN(~1 U POSITIVE (iUTPUr c.m'NcCT lWd~);:\ NEGATIVE OUTPur CCNNECTIUN(SIC SHIELD CCNNECTICNS fACILITY IDENTIFICATICN RNvO

CALIBRATIGN PRac. TC4v.30 fI"NHCUkS 7.0 EXCITATICN VClTAGEz 10.000 VOLTS DC

ACTUAL FORCE CALIB~ATlaN UATA APPLIED OUTPUT IN MILLIVOLTS/VULT

fC~'E LBF COMPKESS lUN 1 ENSli:Jl~

0 .. 0 5000 .. 000

10000.000 16'000. 000 ZVOUil.OOO 25001.1.000 lOOOO.OOO 16000.000 10GOO.OV\)

-1.4966 -2. 861 -2.9871 -3.7375 -2.9676 -2.301'5 -1.4875 -0.7377 ~.........,R ..... ~l.Q.!.I~1\l.16P.A T ION SUMMA RY

LAST CALl~ OATE 01-07-74 rutlDGE CHAR. COMPRE S HNSION

SOOO.QuO (JoY (J .012: S . cJ,

~ i ~~U~6AL MV/V 0.0129

C.R. SENS MV/V 1.49~9 M N-~IN %CR -0.0120 MAX HVST 'CR 0.0200 MA N-REPT ~CR 0.0067

IU

,ALI8RAT10N EO~lPMENT r- INSTRUMENT I-NO. 'Al DATE

OW MACHINE COX 306'19 12-73 134'14 5-74

CALCULATED SHUNT R-CAL ~QUIVALENTS R-CAl TYPE CO~Pl

R-CAL HEfO 571 CQUBlE ~HUI"r' PCSITIVE R-CAL APPLIED A~AOSS AS _NC LC, N~GATIVE P-CAl APPLfEG ACRO~S At AND bO ~ . .

R-CAl NeM RES OUTPUT EQU IVALEfH

, I ~.....I...lJOX beN

VOL T ME TER DA TA 53693 6-74 STEP K CHMS MV/V flll,t:E ldf

~ MfGGER I<E.ITHLEV 31830 6-14 "Nl 200.000 0 .. 8812 N/A BRIDGE-RUFICON 1~4b3 6-14 RN2 100.000 1. H84 N/A

RN3 66 .. 666 2 .. 6130 N/.\ I fcf>41t 50 .. 000 3.4770 tiO. !

-RN1 200.000 -0.8562 -5793. !lit -RN2 100.000 -1.1235 -1151(;.51 I -Rf>43 66.666 -2.S8S1 -1733«,1.78 I -Rfoolt 50.001l -3.'1!:I27 -2310".05 I .. .. LINEAR EXT"APOllH ION

REMARKS: : Iffi~ I CAL BY CAL ENGI\ .~: 'to) j ?Ml' Af~:W-';E:O

• F. I ~ .... ~ -L - -------------~-------~---~-.--~--~ Figure 8. Standards laboratory-load cell calibration report

28

Page 35: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

a. Data ~oad cell

b. Drag calibrate load cell

;:L~Tl:·· '-Fi'i,l .. : .:-.1· .L:-rl._. i~;j- i~ :.-. !~]:~l::=DtIjj ,~.~ ~ I :. . I ' , .i I! . '··1 ... c. I ••• .1 I' t .' ... i .. : .. f· .. 1 ... '. 1

, 'l :" .. ~, : !.!.

0.,

]', ~l

"+'t.

Figure 9.

i', fi]

If) 12.... J'4. 1(, If ~r:I )..l.. .. .l4 C. cllib ... ~ te L"a.d "'" IO()() 1~1

c. Thrust calibrate load cell

Load cell repeatability during lab calibration

29

Page 36: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

Jlrrf}Fwtlll.I~:i:j:'::k~~: :~:ifl~:i.i:E fiE :::i:Ytii~i~t ~~;W)w.:WEi ~;dH¥~f:t#~ ~~$p'l'i~~f~::~~!~~n#.:iij~ A"Il.J C "II b ",.1'e L. "act "'" /(nN) Ij,.

a. Data load cell linearity

b. Drag calibrate load cell linearity

c. Thrust calibrate load cell linearity Figure 10. Load cell linearity during lab calibration

30

Page 37: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

CIJ .....

(

~ ~ .. ---1 -- r - -- --" .1.---~··· 0 ••

1(,

--j -.. ------ ---.- -.,. . -- - -.-- 1 --. - ----- -.. --t--~- -.- --. --- i - -- - ------

-.----- .. --1'------- ------ ________ G -~;:~!1-~1b;a~:.P::d~ r ~~/-j-- n_;-___ - - nh '-i. -;OeJ ]~)?PJ/e I ~

.. . •... _ •. 0..... J.dl> 1.+ C. II 1 - -/---- - ---.-- -- --- i----; -I'

1 i ! ' ------- --- ---I ------------ --':-------- '---i-;-'--c- . _----______ n

I - i-------~---"-·--- ---- .. -------.-- -----.- --_ .. _-I ----"--- - .. - ---- --

--'---r---- ---! ----,---

----

~ ~-

._---' --

---.------- . ---1--- -----------1--' I & ----~----.:..1--:----I--·-·--- .--:.

---t-~-'" ---.---ii, ._---/.---....--------I ' , ' -I -8\ ---- L1.

."

"'i ~ ~ -----q~~--~-L--I_~-------+--------_4----------~~--~~r_--~~~+_--~

'- ~I ~-. .' i : I ' i· _ Gl U '"" ~

&. :..----. ~ ------.- •. --I-----C----"--:...--.--.. ---L-- c -- ---...!--- - ..

--- : Ibl ~ -- -If, -- --; -- -;- --f- --e-~ -- ~ --~---r- ! - - ; - j----l ---~. I 1--; -- +- T--I---~ -->j - .~ ~! -..1 --: - -...: - --~ -~-- -- --e-i--: --I j--- ;--~~;--- .c_ ~ ~. - -T--~ID-' -- -~--i---t--I--1--+,' --r-- ---~- :

" ~l 0 1:1 1.\ _ w, '

T ~ -~ --~- .. -- ---~ , ---.. --, -0--- ;------- I ffi ~ I' - &- ,-l--L--L -I-~ _L. ___ L ~ ~1 ~, • • ~ • 0 &. I I ! I ; , • I ~ ~I ~-tt_ -0 ~ ~ ; - 0- - ~---l--~-- j -.oj --'-- -- :-- --~1

I ~ 0 --- -------:-- .o-f; ~ , &. t;\ ; I 0.1.~ - 8 t·) \.!.I:

1 ... o __ ~_;;.:.o.:: __ 000-__:- _0 ..ov_.~i~ =i-CU~:~.L • J t: i; 1 I i ~ 1

----1---- - - I - - --- - ----"--------·-·'--i-i---:-l--~·-·--;-

I -rio A ' .:; nl. .

.------ _L ___ . ___ O _______ :--'\;? __ ~~_4j!o--. ~O __ ~D _____ - __ .j10----L....; J O.....l.~----L-i---~---- ___ -'-

c.. : _.. I _ - - .. _ Load: qeJ' Tem,per<3Lfvrt __ h-jDF I_~_! __ :_. : -_,

:J Ii:.-­~

Figure 11. Laboratory calibration of temperature effect on load cell i

(

Page 38: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

WI ~I

(

I --- - -- -~ -- - - I ---- -- - ----- -----I ; __ _ ___ 1_ I

-l---- _ _1 __ -~- - __ l --.-__

~~;r"-I _ !7~~- ! oIl::. pJ..o. IoU c~1I --- ---- -I -- - - I . - --

o i 0 DJ.-iq ',;&.1 c.e II

~ __ ----1 __ ~_ • ______ • ____ . ·01tJJ.,.sr:.102-J. Cel/. ---- - --- i . <>

! --.--- I ____ L_/ ________ _ _______ ~i __ J_~: _: i_I __ '~: -: _ !-l---:--L.-;-I _i ____ . __

I~ r'

.'--­~

"'I.

<:I ~

<a N

V I _

u.:o

;r I f

Itp ,

I ~ -10 n-) -

I ~ 1-1

~~ 1-- 7'" 3 e:>

-~ I

~ I I ' ~,

---/---'---.- ---- -l--:---,---+-tl --+-c--,& --L ! 'i ;! / -- - --.- --.--- ---' -,--7- -...J---I-·~--

:/

I I -~---,---~-- -----. -.-

~ "--0;

v __ :_ ~ L __ ~_ ._.-: __ 1--. - I ~_ : , 1 !, I' --~ L ~--- --~ _ ~---. __ 1 __ ' _l-_ I I I I • I . ~ '! , ! 'i I

---. --, - t--- - --r -T---;-l -~ -- -~-. I, ---I I j , I ___ . ____ ~ L __ ':" ___ ~ ___ I :

--i-. j ! \' V--~ , : I 1_' I ,. : .. L ........ 1

--, I ...... , ,_. : ,

~+-+ ' i-- - , -. I ' +

&;.

" I, I tJ _. _: BiO.-- ;_.I1/p I I •

c.e.JI I Te;n1'.Pe,...~It'ule.~.":'- Off

--1- --_______ 1

-1-- --'

1.

CD

-0

; ,Jo : LJ ael

I

Figure 12. Load cell zero shift as a function of temperature i

(

Page 39: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

i i I t-I

: -'~ ---f.:

; "-! ~

~

.J I. j

i

i ., -l -III -&)

v 7" " oJ ~ v ~ t'

~

--""---'1\ ~ ~ ~ ~ "'

~ ..... ' .. 11)'

'+<

a..

. , i g-t,

.f/-

1-

~:2 I

-4

-~

.. , . I

b.

Figure 13.

I ,

! ! I I··

J

1'-- ;.

i .1 . i

i ·1

:0 ~ l1iJ.. t -I-Dad ! 0 TJn·v f Ca.l

4, p~u· .. .c:~1

I , t I I

i· .. !-· L :

.- j • ~

l

-- ----- -~~---------

Effect of rotation

Off axis loading calibration

33

Page 40: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

w' Joi:>.

I

(

u

"

'.

A

11\

,.

III

i~c:! 1C1S~O 1~2S-1"

III

..

-- .. , .en ....

,.

res ...... 1-23-"'"

~

(

F

1ST''' 44. , 1'~~3 '-23-~!

IsTA. ... sa I~e~ I-D-" ...........

.0015 " lC3..eaa I-a~ ...

or

......... ""iii! .err .... ""' . .a4 ~

'" e :

/~ /

.. .. Figure 14.

,-1----1-~ ! . __ .~~_,nJ ~ ~ . '- gL.L-20!S "'-.J:&IL~o,po.c ,± bJ ~

j •

~~~.rI[Fj \ ~~J.

0RpER a: 0t!"I\,:' .

Q5l!\.'<a ~~1!;s.....,,=, _".L~.;O· -l c ~s.r: .... ,,<S .7_;:.,.I!:~~ "- ~. ~;c.;;-.?..Av.: 'Yl: Qt;:L~~ ~ ~..E~_~.E 'If... ~~ .... _~£.,£ :f-' ~~~~

• ___ I __ '::::-:=i

__ 1~

~!S Ql!)p ... 0_ .".,., IiD!t!C:R 1p !L9 f!)fllldllI!.IL

-= 1-- I~IZ.::;;. :.

Thrust stand alignment certification;

(

Page 41: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

(

----f-

I

-;'0

I ! I

-: ~ ~~~---- f-_- --

-- ---1---

-- I _L

(

_~;:~J~-;~~~;~;': _r~;--/~~W~+~~~ ~~~I~b~~~~~_J '("~~LL:-e-Jt - I . ; -I

--- >-_. I I ,

L. _ _ 1_ _ ___ I '_ ~ :-:

8. t}..eHW " -force I >1£,--1-& fO"'J.J;'.t:.!.l--.!L1~j1

, I

___ - -. __ . __ 1_- ___________ ! ______ ._ I ~_ . __ ! "

f:. , .Ai;:. 'A I

IA - - !

I

! ~ A

-L~t-~--

'l ' --L--l-_+_~I----:---.L--~--- ---:. --- -1.11

~LIi-~r=!~;JI·_-j I '." - . I : ' I •

I I i - -' __ j __ c __ ! _____ t

_: ' : -J! i _ ____ __ ~. f

· '~ -Li ' I ' . ~.:-I

• __ - I : I . ' ·---t i ;-~! ~----:.; I· - ! j --"--~ , " • j

I I, 1--- --- - . --. J ;--1-, I I , I I

I I --'-"; -: I -;-

_~~I I i I .-- -. I

7

, I . J-. IS J+-'-I~-/['---l~-'--/b-- ~ , -J :_. __ I ICc:t1I.p"~5J('I/'~_ n.._:~lt t

--- --1- -: ---:- 1--

1 ! ) ! --. --- - --.... --- +-- ~ --

· I I i i _ __i __ l __ ~ __

.-----~ . I

-,-1

_5 __ _

Figure 15. Pressure effect on the load cell and test cell

Page 42: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

----------~---------~~------~--, !

..

i 1 -

tt

~

.8;<J

~

~

...... t.u

J ~

'" 0" '('

~

----~-----I_---~~-~---_+---~~-----'-

--,.:t..-

---

.... 1 '

I

I <

Itt I

-1 I 36

co 1""1

Q) ~

~ .1"'4 ~

Page 43: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

til "'l

( (

-~----~-.-- ---::: --~! ••..•.• ~:""·-·---<:'~~~t~, ... _ ..... -- ,. ---_.

. -- - ------._-

: '. j.. :-: ..... : . . . .. .. .. .. 0 AlJ~21f .

-~--~~~·~~~:-[~t:··: . - ... :. ;... =~~.=~ ~ .... c-~=~~:=~~~ :.= .. ~~L~ ./:~~~:~t:~:~~-~~ .. :; .. ,.~:~:"'=~r~~~ . :-- ~ .. : ~

--'---- : t~--~~7f-~: ::-"~i~' 'L-:~L~-

._.-....;

--. . : .... 12- _.;..._._

, .. -_.--- .-.---... ----:~.-.- :'~·-·~-·-:---·--·--7--~~r:llht·J-~-r~1' .. _u \j

-l.... ...... _ .....

·8

. ~ If,;. :~_ ~ ~ __ .~ __ :Lt ~- .

. ~ .. ::: \.l J : J!) }. .~---:-:-:-:-...

~,;", .. :+.: .J::) .c: .:-'to. . . .~-.- -. ~ " ~ "'fo.;

.... ~ ~ ~ ..,:B..

~"i ~.. . -~ .. <QJ n!I

.. ~0, .. _ ... "":l2..

-~--

QJ a

----_.- -.'

....... j. ,.

·'t. , t---:---.·~~~f: " .: . -,-, ,. ~T. L':~:.l:~l-~~ i :;::Y

j.

.. • . 1 . _ _ . • • .;: : : ~ . • : ..

--+-.--.--- ----<---- ---- ---_ ... _-<--.•• _---- ..... -

. ___ . ___ .... ________ ._:.. __ .-:.--=--~~ ___ .:~_._.: ___ ..:.. ___ ~_.:"'_ __ . ___________ ~ __ ~ __ ~ ·::1-' :::~~t: .~L_·_

. .. ~ , ~. -7·-: .. ~. :: .. :: -.~ - .. : ... : ... --.. : ....... : .... -. ~-- --··l·---~- :::~~~~-:-: \·:~·!·~:·h:~:

... -.. ;:---- ..... _.1: :. ~~~.~ ~. __ .;~~.i~~.:::::~ .. ___ .. ~~~:-:-:~ .• j :~: ;~~: ~~~ .. ~t ~i i; ~.jG~.iL U •. :.: .1Lt=! ~.~ t~~~ • t •. I . ,. ~ •. . I· ~ •• . .; : .. ::l:>+--:::.+-<.+~-~

<D ... ~_1 . _'t: ~ ... ~~~.=~.i:.~~_._~ __ ~~. ~~.-,4-.~-i('---.-.i9 .. _._~r~=~~.~t~·~:~~·:~)/-:~·j:·· • , I ,. 4. •

. 1. "_: : ,J

.. :.; . .). f : T··~::·: .. 0J:J6:¥~·b~·:·~::t~·: ,': A-pp /J oe.J..:_.c..a. Lb.I:d-._L __ L.D 4,.J._~:T!.. __ .-.. _____ .),r·.QE~J...13r--:-

Figure 17. Deviations between pre- and posttest calibrations]

(

Page 44: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

'--,

38

Page 45: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

--~~TT=r. ·.~.i_~~. ~::.-t~~-~-.·=·: .. ~-LIPIFi_f-.-. 'Lr=-~ •.. ' ·1.J :.~ •. :_~_I :.L~ -:-)H --; • ___ ~

• •.•• -'J--: >~L-:iI-.l' , I I:"

.. ,'

. I ,-.. :

.: I!

I" I

.: . ':

:

:. : : I I,: I

I::: .

::' : ~

':'1

. I " I

: , " .

! '

. "

! i I

I r

i r

~ 1

1

' ,

, f

• I

I !'

. I ~

._-.-~-~ ... ----,~'

:.~-:~--,->' -' ~.0~-

1-"!, '~--I

-'-~-~---l I '"

.::: I:"

.. , "

I

. .

. I

'i:': '

, . I': : , I ' . ,;

;. i' . I

i

-I· .. -· ..c:j · : .• ··-.c 1-:-: t -;-

.: -'-r-' -.. "'1

<: II

:.

I .

'I .

I":'

i '

. I:",,' 1 ..

.,' f"

E> . I

. , . I .' .:

":.' I ,.'

..,@

'

: ~ '"

.

.. -... ----~~--:-~: ....:-~-... -+--:..~-~----0~f---:--,.----~.:~.-.-:-,

--."

.-.. . ...... ....: ~

~ .

1 ..

1 "I

I~_

;.--.-------::t-:-

~: --r--·· .... I .. ~ . ! . 1

• ..

) J

... 1 ·-

.... --· .. 1-··· --.. : .. -----·--t.. " .. --_

.1'.-'-.. -.....

,-,,1

t. !

I ._

--t-

~

_.~ __ .~_L.":'_. __ -~~.~J.~ ._G)_ __..:L

. ___ -____ L .. _ ........ _

_ . ;---:....":' __ --------; .. -~,,-

. ....:--.. J-~~-j .

! : .

• i .~ . j..

,,!,

.!

.: .:t

~

1

"i :. . . ..-.-i

-,.-r .. . -:;-','" ~-..--. 1:··-· ...... : -.. -.. -.

; .. ~ i

"~-'. h·--·--'·--~-1 ... -... ·~-. . i .-'------.. --.. ~t-· ..... ----~--f -----~--~+---.--,1-----~ ----, -1'

. • j< I

I .

i .

i : ::

..... -11

'.

. .... ---'1--' ..... -.. -

'-"-:,$ ~-:I

.... -... -';-"""

" -~ .. : ---, , .

: .

' (i)

1 .

. .

..0

-+

---1

---"

"1

'---+

---1

---+

---1

---1

----+

---1

---..,-

---+

---

·t------I I~'

I .

I

. I !

39

Page 46: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

;

w::..: o

(

Range

Source

Lab Standard

Calibrator System

at Zero

Thrust Cal

Applied Load Tests

Data Load Cell

Total

TABLE 1

< 5000 Ibf

bias t95S

I

.155 -

3.78 5.78

1.16 ,2.()1

1.17 4.36

5.55 10.42

7.08 12.84

19.93

(

THRUST STAND UNCERTAINTIES

5000 ~ 10,000 Ibf 10,000 ~ 15,000 Ibf 15000 ~ 20000 Ib

f

bias t9SS bias t9SS bias t95S

3.10 - I 6.15 - 11.75 i -

3.78 5.78 3.78 5.78 3.78 5.18

1.19 2.57 5.65 5.49 6.23 9.24 I

I

1.44 5.42 1.10 3.39 1.10 3.39 I I

I

5.18 10.77 7.46 14.27 8.97 12.40

7.36 13.61 11.60 16.10 16.52 16.85 I

I 20.97 28.29 33.37 J

Page 47: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

APPENDIX A

THE J-2 INPLACE THRUST CALIBRATION PROGRAM

The calibration takes approximately three minutes for both the thrust and drag directions and the data system records 100 records equally spaced during this time interval. The record number of each record appears under the heading of "Rec. No." on the first column of Fig. Al through Fig. A6. Figures A5 and A6 present the data from the drag portion of the calibration which is conducted first; therefore, the record numbers begin at three and go through 34. Figure A5 contains the data for the applied drag load and the drag force measured with FA-I. Figure A6 contains the data for the same applied load and the drag force measured with FA-2. Figure Al thru Fig. A4 contain the data for the applied thrust load and the record number goes from 36 through 100. Figures Al and A2 apply to the thrust-force measured with FA-l and Figs. A3 and A4 apply to the thrust force measured with FA-2. The thrust loading cycle will be discussed first. A thrust force applied to the stand by the gear mechanism is trans­mitted through the calibrate load cell. The counts from FACT-l and FACT-2 during the thrust loading are tabulated in the 2nd column, Fig. Al (FACT-I, channel number 72) and Fig. A3 (FACT-2, Channel Number 73). A set of resistance cals (R-Cal) is applied to these count levels to convert the counts to Ibs of applied force for FACT-l and FACT-2. These are both estimates of the same applied force so the two calculated forces are averaged and the average is tabulated in Column 4, Fig. Al (FACT AVG. APP. R-CAL LD) and Col. 4, Fig. A3. The deviation of each reading (FACT-l and FACT-2) from this average is tabulated in Column 3, Fig. AI, and Column 3, Fig. A3. This deviation is used to check the agreement of the two bridges of the cal load cell. Eighty to ninety percent of these deviations should be below 15 Ibs to have good agreement between the two bridges. When the deviations are random (+) and, (-), it is a result of noise and can be averaged out if the deviation is biased either (+) or (-) it is a result of the R-cals for one of the bridges varying from the norm.

Column 5, Fig. AI, is a tabulation of the counts from the data load cell (FA-l Bridge A) and to obtain the relationship of the applied load to the measured data a least square curve fit is obtained of load applied as a function of measured counts (Col. 4 vs. Col. 5). This curve fit is of the form of F = A + BX + CX2 and the constants (A, B, C) are tabulated directly above Columns 2 through 5 and titled "Positive Thrust Coefficients" (Fig. AI). These coefficients relate FA-l to the applied load and to evaluate the goodness of curve fit the curve is applied to Col. 5 to determine an FA-l calculated load (Col. 6). The difference in the applied load (Col. 4)

41

Page 48: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

r

and the calculated load (Col. 6) is determined and tabu­lated (lbf) in Col. 7 titled "error." This represents the curve fit error and is also tabulated in Col. S in percent of 30,000 lbf. The curve fit is also evaluated at a no­load condition (RN-O) to determine its zero force intercept. The count level at RN-O is used in the equation to obtain the value titled RN-O shown above Col. 10, Fig. Al and should be 10 Ibs or less. The value titled "cxx" tabulated to the left (Fig. AI) of the RN~O value represents the nonlinearity of the 2nd degree curve The primary purpose of the inplace thrust calibration is to obtmn the coefficients for the 2nd degree curve; however, additional information is printed out on Fig, Al to aid in trouble shooting the thrust system.

Column 5 is the count signal from the data load cell and by applying the R-cals for this channel the calculated force tabulated in Col. 9 is obtained. This force is used to determine the tare load on the stand but is not used in test data processing. The tare load is calculated as (FACT AVG. APP. R-CAL LD) - (FA-l R-CAL LD) or as (Col. 4 - Col. 9) and is tabulated in Col. 10. This.tare load (Col. 10) is also plotted on Fig. A7 for tare 1 (using FA-I) and Fig. AS for tare 2 (using FA-2). These can have flO Ibs scatter but should be linear. To help compile a history of the stand characteristics, a least square curve fit is applied to the tare load (Col. 10) and the constants (A, B, C) for this curve are titled, "Positive Tare Coefficients" and are listed directly above Col. 7 through Col. 10, Fig. AI. The curve using these constants are evaluated at load levels of 5,000, 10,000 and 20,000 Ibs, and this calculated tare is tabulated as "calculated tare", Fig. AI. These tare loads should be repeatable (±S Ibs) from calibration to calibration.

The thrust calibration program applies the same procedures discussed previously on the remaining thrust channel (FA-2) and both data bridges (FA-I, FA-2) for the drag cycle. The data are shown in Fig. A3 through Fig. AIO, but will not be discussed.

Several major areas can be checked to evaluate a thrust cal and are discussed as follows:

42

Page 49: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

1. Column 2 - Cal load cell deviation from avg.

a. Eighty to 90 percent of these should be:

< 15 Ibs, thrust cycle < 10 lbs, drag cycle

2. Column 7 - curve fit error

a. This should compare closely with Col. 2 and the limits will be the same.

b. This includes one bridge of the data load cell and a bad bridge or stand irrt erference will indicate large deviations (consistent deviations > 20 lbs)

3. Column 9 - R-cal data load

a. This should start at zero (± 10 lbs) check beginning and end of drag cycle

4. Column 10 and Fig. 7 - Tare

a. Tare should be linear (± 15 lbs) b. Hysteresis < 15 lbs c. Calculated tare at 5K, 10K and 20K should

compare to previous cals (± 10%)

5. RN-O Load

Should be zero (± 10 lbs)

6. Column 4, Column 9

a. The max load should not go above 25,000 lbs or the count level in Cols. 2 and 5 will be approaching 16,383 which is a SEL max level.

43

Page 50: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

EN'JPJE TEST FACILITY TFST DATE: 3- 3-75 726 HRS -TEsri-cGf3' DATA P~I\JT: 5302 __ ---LTl:..I='L..cELL.L~~ C'J:-;p DATE: 3-12~~a~LHRS PROGR~EVISION NO ...... -*-l-,----____ _

TEST A~TICLE: CElr:,P RU\J: "'FF LIN~ INSTRU'-'ENT 8r'eK REVISPN N~. 09 ___ --'T,ES'LnA~ U,~~E..-_S /J',L!u. PRtl~iHRU,s..Li: AWR ~lJ O~! FL 1 GHL,f;.J~e,h~Sl_

- ,!;I_rAJ C;4n1 I UHu H~E lOAD lJ,RE I flAn T A RF= I r.)(X RNn

.50000+0 4 .24318.~2 ·10000+05 .44936+0? :2("000 .. 05 .6 89 18"02 I - • 6 9 2 3 8.0,' -.1 687 4.01

--'I POSITIVE THRUST COEFFICIENTS \ ,A..._, _____ , _ 0

.613235"02' - .161122.01

CH.~~,72 FACT-l ___ ~RllEC. FACT-1 DEVI~Iy~

NO. COUNTS FROM AVG.

FACT AVG,APP. R-CAL LD

------POSITIVE TAR~ CO~FFICIENTS

-L I ______ --A- I?--- • 4 4 6 17 6 - 0 61 -.'0 5184+01 .58491 3-02 -~-E5-0-3-2~

CH.\JO.68 FACT,FA-l Lf,,~ ____ F~L- PER~ENT FA-...L ___ R-CAL,._l,._D __ C~UNT~ CALC.L~AD ERROR ERROo R-CAL LD DE_TA

36 231. 6 000 O.9CQ9 4.0761 42.0000 -6.3486 10.4246 0.0347 -4.6264 B.7J24 37 230.8QOO 4.6 d 91 1.9391 37.9...a.nC 0.257 6 L..6812 Q~JJQ?6 1_.9_~~1. ___ 0-,?J~_7 __ 38 232.1111 0.6816 3.7941 39.2000 -1.8370 5.6311 0.0188 -0.1485 3.9426

______ 3.2. ____ ~.f'?.!...~Q.O,D 2. 8e20 5. 6~97 ~9_ . .111L-~ .6~~8 ___ ..J_'_3.~_~5 0 .JJ24~ __ -Jl.OQ~l ____ ~.!..?_~~1 __ i 4Q 225.4000 6.2761 9.012 9 39.10QO -1.675 9 10.6888 0.0356 0.0114 9.0~15

____ 24..J.1 ___ 22~-,-1000 5. 9Z-'!4 14....§Z67 35 ,,1QntL... __ 'L._~§'91 9. 9!l7.§ 0 ._Q~~n 6 ._~213 ___ ~!,2_35~ __ 42 219,'000 2.4832 22.3121 28.6000 15.2 422 7.0699 0.0236 16.8374 5,4748 43 218.COGO 2.0013 25.2110 25.68 0 9 19,610 5 5:6005 0.0187 21.1818 4.0292

-----:44 210.4000 2.5i-l32 36:874-6---24":0000 22:6"540 14.226-6 0.6-4i4 24-.2087 i2~'65?9---___ 4-'....6, 206.2_222 ,.L~t6.L __ 4_4..l.724 1e,_Z.Q.QO 31-'.1?3 5 13.1],89 0.CJ.~,3_o ~2_!.7_0_P 1~!.~2a6 __

~ 47 202'~OOO O.QPB6 52.0981 10.9000 43.7612 8.3369 0.0278 45.2011 6.5970 ~ 48 ,~_ .• J,Q.G~J2_. 3 4 .6._4 ___ 31JL,297..? __ -1_~?_ ... ~Ol)_n __ ~?..Q.,.3?13 14.2059 O. Q:lL4... ___ 2,?Q!,468-,' 14, • .1290 __

49 -59B.3aoO 4.220~ 1338.2572. -779.7000 1317.3217 20.9354 0.069~ 1312.1132 26.1 4 39 5 Q -12 91. oQ.Qll 6.5193 2453,04.0 0 -14 76.00 n Q 2438. 5_1~5 1 ~-,-2255 0...!...Q_~~1-_2,~.?7 ! 9126 2~12? 4 51. -2029.5000 '.277 0 3641.2248 -2212.7000 3624.2890 16.9358 0.056~ 3608.4516 32.773~

__ ----"5~: -2778. QQ.G'l 1. 6~41 __ 4852~8~1.?--=1~_c-_2.:2JUlll 4836_~_6 Q~? 16_-,-2]}9 _~.Q51_3 _.~_815_! 9t 22 36.; S?L-J 53 -3657.4000 1.3971 6269.2144 -3851.0000 6259.520 8 9.6935 0.0323 6232.9159 36.2954 i 54 -4612.555~ 5.054~ 7801.8569 -4805.8e~Q 7794.3 7 01 7:4868 0.0250 7760,1032 41.7537

----, 55----::-5 56 6 ~-4 444-----9.377 =-- 9331 -.7966-':-575 {: 4444-9321-,446'1'--10 -: 3'5'0'5 ri:'O:5 45--9 280.3600 ----5 i : 4366--____ ""5=-;6::,-.' __ -6511. 7_Q.QQ 5. a ;:;d42.--l~ 8 5_?.....!~~~~~lO,~~.i~ 4 4 1 n 846 .8 2~? 8 '._~ 4 2 6 0 .0 29~Z.~ ?..!_Z 2~~?_~-'~3 ~_3 __

57 -74S~uOO 6.7~94 12416.1222 -76c3.6~~7 1?415.0712 1.0510 0.0035 12361.5521 ~4.5701 55 -8441.400n 12.1e9~ 13951.0561 -8639.8080 13948.6501 2:4060 o.ooan 138F8.624 0 62.43:7

----59----939j~6 0 ()('l---iz :3 1 Ji-l~4~~-ii'46--:'9598-:70f) 6-'1t34?5.8 473--~' .f327----6:oisl\-15'42Q.11 6~·--60. 9 0 82--6 (L~Jl], 38 ~ ~ 0 0 n i 4 • 57:; 0 1 7 0 2 9 • 1 7 6 4 -10 5 5 8 . 22? 2 1 7 0 ? 3 • 2 2 0 7 5 • 95 5 7 0 • 0 1 9 9 16 9 ') 2. 6 0 1 ,~ 76 . 5 7 4 6

-----"'-61 -11 3 i 8 , :, 06'0--'1.1'.-276 o-i'~ 5 7 5-: e 74'8 -·:'11523 ':50 -'1 011'1 5 1;il-.-ciB 6 p,---e;-:e 880 0 .6 2 30~i 8 5 0 2' .11 86--73 -;7562--62 -122 5 2. 8 00" 14.8~80 20074.1591 -12457:20~n 200~3.3941 10.7650 0.0359 2n003.4881 70.6 710.

-----=-63 -1'212 4 ~ DC' 0-----:)': 9 ~ 4 "-19 ES 1.9-;72'-;;-'1234 2 -:-8-000-1 Q? 80'-: 3 36-2 1.66 i 0 o~ 6'5 i519 8 i 9'.5353 62--:451-9--§'L __ -11J, 8 2.P.Oon 11.9 430:; 1:'1357.071 5 -11391.40CI) 183'37.4950 -0.4236 0.0014 1 Q289.7047 67.366Q 65 :1024 <;.100 6------i 1: 7165-- -i 6 35('-:5 42 7- ':'-10459 ':30'1 O-iF:S64 :7627'---;;8-: 21 41 0-;--6 27 4-i~ 794 -. /)09 A 61.-932'9--66 -92 33.6000 17.9fc2n 15298.7194 -~49o.1~~n 15311.7 Q 3 6 -13.0742 0.043~ 15246.6677 52.051 7 6'7---,::8291.5001'] 11.7': 77 -- 1. :>:710 :5546-- -:~'499 .0600 -13722. E 66~ --- ;';12:3122 0.0410'-13663.748,,---46', c 061--68 -7314,&00n 5.7f4~ 1?144.0060 -75~1.nn"n 1?154.0g2 6 -10.0766 0.0336 12101.7516 42.2544

---.o..6'=-~ - -632h-;-i:;O 0 ill '.3-r'69-105'';; 0.0621---65:<3:10 Q G--in5A8:~51-6"----8--:4895 0 :0283--1-652i:~4924 37':5597--

COlu;~}--~2~Cj;/2f? ________ 1&7j.~ ,"9G·~~~~·---::~2~-®1Q.,~.L- ·-~9.~0/989i --'~~§d)?7 0 '-Mi~_~-9~(;},4~_~ __ ~~@3_0 __

- ------------~---

Figure AI.

Page 51: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

w:::. t11

E'JGI NE TE-ST-r-ACIu TV TEST lr,iTE: 3- 3-75-- -726 HRSTESr:-C-G13 DATA PO! \IT: 5302 CBMP DATE: 3-12-75 1032 HRS PROGRAM REVISION N~. I C~~P RU'J: N'F LI NEe I NSTqU~ENT SO(,,)K REV I S I ON N~. 09

________ -'P'-'R~:"..L< G",-,-,-P A M : T HR U S~ALlilRAlJ (;t 'J F L! GHL-.,'::J e i! ~ LET EST _______ _

T E S L-.tE.J..l,L .J ___ 2 TEST A'HICLE::

JEc:T t,PJiM~-.!-1'-W._

***** P-CAl 5401 H~E LOAD TARE L(")AD TARE CXX ~Na ____ ----"l'-"5~

.50000.0 4 .24~la.O' .10000.05 .4 4 ;36.0' .2~DnO.05 .68918.02 -.6 9238.p' -.16874.01

DOS IT I VE THRUST CtJEFFl C I ENTS----------p-esTr: VE-TAR-E-CO-EFF I C I ENTS -

----~t,13~35~C2 - '16~122+01 -. 44et7-6--n-6--------~2051~4.01 ; 5849~3-02 - .l1?o~:-02c---O~6'---CH.NO.72 FACT-l FACT CH.\lO.~B . FACT,r'-l

REe. FACT=L __ nEVJ_AJION AVG-A-APP. FA-L FA-1 PERCENT FA-l ~-CAL LD ~O. C~UNTS FReM AVG. R-CAL LD CMUNTS CAlC.LeAD ERROR ERROR R-CAL LD ~E~_~T~A--71 -436.~ 500(1 2. O~4? __ z..1~~.2.? __ --.::~~~2_~~(l.!l_n _I~_o.~~82~~ ___ -:?:.1l317 Q~.oJ.t<!.~ __ 7_3?...l....!..i.~25 ___ 29 .~_597 __ 7~ -3 4 2j '~~0~ 2.4420 5888.901 9 -3626.1111 5897.9253 -9.023 4 0.0301 5873.2433 15.6386 73 -_:2.2:;'jc:~Ccn ~~_1 44?_1...,8_4Q8 -2708~Qc.Q d4~_~!.Q440 2.7969 0.OQ93 44Q~_~J~59 21.8S~9 __ 74 -16e8.3C~o 3.1471 3095.5961 -1855.4000 3097.5346 -1.9385 0.0065 3083.9635 11.~327

_75 -1 OJ) ?-,2~.?~ __ ~1 Q 8 ~~E-,-18_·'-O_:.HP ~~) o~ L_~Q 0 7 _.:5 U_~ -9 '.7272 0 • 0~~_4 _199 ~. 931? ___ :J ... 1 :7_6 __ 76 -573.uOC~ 6.1e94 1295.5237 -7f8.90GO 129 0 .9280 -4.4043 0.0147 1294.8066 0.7171 77 -271.3000 2.5977 813.C005 -4 6 9.1000 817.049 4 -4.0489 0.0135 814.3863 -1.3358

-7-B----{05~ 4 4 4 4--::-i.4410 ---2 To: 009-6-- :;, 92: 301"1-0--- 2 i 0.-841 i ---. 0 ~-8314 0 :0 6-2-R---2 11-.-377'1----- -:; i .- 3 ~ 7 5--70 2!8. 0001'1 1. 7~2~ __ 25 !.~yU ___ !~L6~1''L___.2~,~ 7434 ___ :'i_.} 237 0_,--0_1~4 ____ ~1,_~~?J.6 -~_.8 3?9 __ Bn 22!j.222? -1.0 4 12 24 .. 6729 17.88'19 32.5004 -7.B276 0.0261 34.0016 -9.3281 81 21 9 .1111 7.3 0 82 18.0237 22.66~7 24.802 3 -6.7785 0.0226 26.3454 -8.321 6 84 224: 3 GO 0 5-:-4-823---11-:-5 791---?cL 4 C I: (1-- --1: 8;7870---;;-7.-20 79 0-.--0240-- -2'0:-3628---":8.73:3 7--85 229.0000 3.2R10 6.2066 33.11j1 7.9 7 3 7 -1.7671 0.005 0 9.6085 -3. 4 J19

-U----23i ~3GOo---3~3C7C---- 2:4754------33 :70: I: --- -7. 024 9 -----4. 5495----o.0-i5i---- 8~ 6648-----6: 1 39':--

87 233.3333 6.1769 -3.6705 36.1000 3.1579 -6.8283 0.0228 4.8189 -8.4893 90 239:7Oi)o 2.4564 -10.20-83 4i~-33~~---:5:2744 -4.9'339 0.0164 -3:5602 -6.-6~e-l--91 243.400~ 0.7904 -14.5039 35.3000 4.4469 -18~9508 0.063' 6.1008 -20.6~47 92 240:-3-000 :r. 54 8-7------;;-{ 2.-i6 n--~7.-2 O-QO----l~ 3855---13-.6528 ti;-645 ,,--- 3;-656 i ---i5 ; 3235--93 235.555~ 2.1536 -3.227 7 40.8?r,c -4.5583 1.330 5 0.0044 -2.8495 -0.3 7 83

94-----246.j333 ';4-;- 498'1----;;,-17-.16-36-'---38:200 a ----~o .225 e----16;9378 O-.056'5----f~ 4537- ---H. 6172 95 237.3000 4.4003 -8.2853 37.0000 1.7077 -9.9930 0.0333 3.3766 -11.e5~9

-96 2'34-;-VOcn 4. 7269 -4:7445- 36:'6000 2 .352~----7-;0910 0-;-0237 4.6170-----;.& .152.r--_?:L_ 237.2222 2.Q~3!) -5.8226 36.000!'1 3.319n -9.141 6 0.030'5 4.9791 -10.8:1 7

gil 239 .111i--- - 0 ~ 3Q52 ----7.191:3-- 39.30(10-----1.9982----5 ,'200C--O. 0113---;';'0.3084 --- --;'6.8998--99 237.777p -1.1~02 -3.4946 37.5cro 0.9021 -4.3967 0.0147 2.5754 -6.0 7 00 io c-- 234.4444- 7.0661 --- - -6.3500 35.90 ('10 -- 3. 48 01 ---- -9; 8301-----0; 032-8----5-; 139::r----;..lI; 4 ~9:r----

Figure A2.

Page 52: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

H:>. 0')

ENGINE TEST FACILITY ----I£S.L C;::I L: J-2

rEST prH I GLE: --I Es.LJ~U rC~~Lt~

***.*

TEST VArE: 3- 3-75 726 HRS rEST: CG13 DATA P~r~T: 5302 ________ ----'C"-'("I~~_'c:p::_'rcA.;=.L~~5 la3~S PR(lGRM'" REVISI~lLH .. '-L .... 1.,--__ _

CeMP RU\J: "F''F" LINE rNsTRu~P'JT Bae,,~ REV!spN \15, 09 ________ ...P..RfLGRAl".: __ TJ.iRUSLCAUSBA . .II ~ F.U§l-lLHft.HLf;..-.-lESL_

P-CAL 5401 LeAD TARE IOIlD T APE I !'lAD TARE CX.l( ~Na

.50000.0 4 ~2947e.02 .1~OOO.05 .53636.0' .200no.05 .846 R6·02 -.91727.02 -.217 74.00

-··-POS TrT"vE ·Tw~L~S"· ceE~FTCiT~·TS .-----....... - -.- --p-es i rr-VE-TA·F1F·-CeEFF Ie rENTS _____ . ___ ._"'-__ . __ .. _. E . ..C ____ ._ .. _. ___ . ___ ._. __ ...... ..A=:--____ .

• 12 3418.03 -.19~952.01 -.860438-06 -,43 5797.00 .8

.655821-02 c

- .115105-06

~ ..... - ~e.

Cy • ~:J. 73 F ACl.:2 crUNT~

FACT-? FACT c~.~e.~9 nEVIATYON AVG.APP, FA-~. __ ..l:~ j;R·eM" f:liG. R-CAL LD c"urns CALC. LOAD

FACT,FA-1 . ___ -=-=~-_-P'-'E=R CENT _-.U~ ___ ~C~L __ L_D __

~RROR ERRO~ R-CAL LD DE_TA

36 12B.b657 -0.900 0 4.0761 67.6667 -2.6270 6.9031 0.0230 -2.5864 6.662 4 37 131. 5 00('1 -4.6<-191 1.9391 65.onna 2...3 453 -0.4062 0 • ...0111.1. 2.5462 -0.6071 38 :t ?8 • 7 0 (' f) - 0 • 6 l' 1 6 3 • i' 9 4 1 72 . 8 (} 0 0 -1 2 :-78 3 8 16 '.578 0 0 • 0:; 5 3 - 1 2:·4 5 5 9 16 • 2-:5 o~

~1... _ .. __ .1..2~_.f ~::~ __ :.?.8f'-21J 5. 63'U 6§.§.Q'1D_~.~O?.23 1 0.....Q65 0 0 oll)55 -4..Z6~4 1 Op.~o~J. __ 4C 126.~DOO -6.27~1 9,0129 66.4000 -0.3701 9.3831 O.03~3 -0.1511 9.1640

_4_~ __ --.11..5.70.l2.D. -5.92.94 14.6767 5.2.DJ100 13 ... 98 31 Q~Q.~3.f> Od)02~ H .. !.lQZ4 .Q..'.5~CZ~ __ 4~ 119.~DOO -2.4832 22.3121 AQ.55~~ 10.965 9 11.3462 0,0378 11.1101 11.2021 4:: 11~.C.~1n -2"-'1.0.13 25.2110 55 • ..60'1n fJ),-~?78 4.6~~.2 O.-..!.015 4 2lJ_.62~§ 4.552..2 __ 44 112.1000 -2.5R32 36.8746 54.10~D 23.4872 13.3873 0.0446 23.5491 13.3255

_'16 1.QL.LGoc -1 •. ~6.8 44 ... 3724 '-6.3..Q.':)D 38 •. i>H2 5~7563 o...!.Q122 ___ ~§'!.2.Z.§] _____ 5 •. n3.§. __ 47 102.6667 -O.O~S6 52.0981 44.3000 42.4954 9.6027 0.0320 42.4324 9.6557 411 -?2..2Q.OO -lC. ~56.4 31 D.59Z£ ___ -~;; ... ~1i.Q~2q3." 8~28 l.Q ..• ~Z414 Q ... 025R 292.15'lp ___ 1.8_~~~26 __ 49 -579.9000 -4.2206 1338.2572 -611.22?2 1313.5751 24.6821 0.0823 1305.5379 32.7193 50 -117~.2000 -6.51.93 2453 •. 0.400 -1:l,.~...1~~8Qn(l 2444.5~99 8.51Q1,. O!....0.?§4 24~Q,01~9 2~~.Q.2~~ __ 51 -leo4.4CC~ -7.2779 3641.2248 -lb06.111t ~6?8,6C25 12.6222 0.0421 3607.9323 33.2924 52 -24~£ •. ~QGO -:L,~~:4_1 4852'.~B812 -2427. 70CO 483~. 92R ___ 2.Q~,~~~.0 0 • .Q~.2..~§Q?! ~?~.7 ___ ~Z.?2§_5 __ 53 -3207. 7 UOO -1.3Q71 62~9.2144 -31 6 4.2000 6256.8371 12.3773 0.0413 6223.7241 45. 49 03

__ .2.1. __ ~.Q 2 4 !..~ 0 !J -5,.Q5 4L--.l.~ Q1.~~ ?~.9 ~.9 ~ 6.~ ~Qn!L __ 7 La 8_'_f ~9_1 1 ~'. ~Z?7 .ll.!. 0 ~ 51 __ 7} j 6 -'? l? 2.. __ ~ 5 .... 04 10 __ 55 -48~O.1000 -9.3775 9331.7966 -4751.50ao ~324.6286 7.1680 0.023~ 9274,6662 57.1 30 4 56 -565~.333:t -5.8.!j2~2.5~Q.~5 -55.~~"""O..Q1lD~85e.2~§? -Z.!..6Z£4 0.OJlcz.~801..!.??J,O 5~-,-.8?5_5 __ 57 -6490.7000 -6,7894 1?416.1222 -63~1.30r0 1?412.191 9 3.9303 0,0131 12348.4525 67.6596 5° -7309,~Oor -12.1F93 13951.0561 -7146.20~r 13944.685 8 6~3703 0;021? 13874.0093 77.ot63 ':' c·-_··-:,p, i 2 9 ·.30-00---:;'-2-:-3 4 o~i ~4Tl-:ii46---·7 9 4 3 :7-0 ('0--1'5 4~i ·,0995---··0":0-i 51 0 .;"0001--.1540 4 :5569---'1"6:5511--

.~o -~!.~?.!.Pll -14...!..~Z?? __ 11Q2.9.'..lZ6i..._":.~7~O ... 20C Q_1701~_,_7390 -4.'...~62.6 0 • .Ql?~ __ 1~?52.,-;P ~7 7 6 ~!9}!_7 __ 61 -97 F3.400C -11.2769 15575.6748 -9548.00~0 18568~5284 7!346 4 0.0245 1~487,1546 88.7202 62 -1 Q~ ~.O..! ?~n -1 4 .,.~:t8.L.Yo.Ol~1-'-£.L"':'1.Q.3?~n.~Q._.1Q.O~.2-,2?O": 1t.! .. ~.087 O. o3.~~~~~~~J 774 90. 991? __ 63 -104B~.20CD -0.9248 19881.9972 -102 3 0.6000 108~0.8292 1.1681 0.003 0 19801.4212 20.5760

_._6.4 __ :-J~ 66_,4000 ___ .":'11 ... 9482 _V3'5? .C.?1~ __ .,,:,94 4 P .... 1 Q (lL t l' 361.0 16 9 ___ -:3~:9454Q. 013~ ___ ~8279 • .4 0 58 7Z ..• 665 7 __ 65 -8606.3000 -11.7165 16856.5487· -R661.50~O 16863.032 4 -6,483 7 O.021~ 16782.1453 i4.4J33 66 -8(128.6000 -17.9~2Q 15298;719 4 -7851.50~O 15303:526 7 -4~8D93 0.016n 15227.6084 71.1110 67··---::7151. 306o--:iL797i·-137io .55<16--::703i·:30[0 -·137;13 :236 4---;;-12. 68i8--- 6;042~ - 13653. 4959---37 ~·o3e7--68 -6343.90CO -8.7A45 1~144.006Q -6212.1n~0 121 43,7152 0:2908 O.OOln 12081.3025 62.7D35 69 -5491~6"d G 0 -7~n6q-i05·5(1:-66~":53/f9·:-4Q 0"0"10-5 75"'";565 7 -1~r:523·6 0 .05i 7---r-6519~·99 ill 40.0 703--

_2!L._.-4 ~5?' 40 Q r, _. __ -.1.978" f\9~5. ~~?~. ::.~~ 73. Bon 0 .P9Ql. 4 O~~ .. _ --=-1~. 7191 O. 0.?2~ __ . R93~ ~J o 98 ____ 3? 5 72~ __

Figure A3.

Page 53: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

~ -.:J

E~!GINE TEST FAt..IL1TY TEST DATE: 3· 3--75---·126 HRS TEST: CG13 DATA ~T: 5302 TEST CELL: J-2 ce~p DATE: 3-1?-75 1032 HRS PR~GRA~ REVISION Ne. I TEST ARTICLE: ct1I"P RU'V: ~FF UtilE INSTRU'1ENT BOOK REV!S!Of"J N:'!. :19 .TE<:T APT I CLE Sh': pPeGpAM :~AL r 9P.ATrON FL! G.=H-,-T--,-,-N-,,-o_r=~L ..... t:=-~_T.:....E=S,.._T-,---_______ _

*""it*' f;"'GAl 5401 U1AD T ,t.RE___ LE'UI ___ TARE LElAD TARE C)(X

.50000"'0 4 .2 04 78 ... 02 .10000"'05 .5 3 636"'02 .20000"'05 .84686"'02 -.91727 .... 02

POSITIVE THPUST C~EFFICIENTS POSITIVE TARF COEFFICIENTS A R

.128410+03 -.193952 ... 01 ~ A

-.8604~8·06 •• 43~797"'00 g

.655821-02

R"JO -.21774·00

-~ - .11516"'5-.-0"76--

CH.N~.73 FACT-? FACT CH.NO.69 FACT,FA·1 REC. FACT-2 nEvIAUo~1 AVG.AP~ __ FA~L ___ JJ,-2 PERCENT FA-2 R-CAl._L~ N~. C3UNTS FReM AVG. R-CAL LD C~UNTS CALC.LOAD ERROR ERROR R-CAL LD D~_TA 71 -3812. 20 ~_. _-£._0~42 7401. 042~2~1. 50 n r. 7411.753 9 -10_ .. .1J.J 7 0.0357 7371.7917 29.2_3_0':-'5:--__ 72 -30Q3.90Q~ -2.4420 5888.9019 -29S2.00~O 5904.4198 -15.5180 0.0517 5873.5183 !5.3e36 n -222~~~U~ __ -~-,_2.191.~~~,!~-=-?'G_~_~3~~_1.H.-,"..2~59 7 .. Jl2~9 o. Q.~§~ __ 4_3.n..!-~_~20 32.30_58 __ _ 74 -1516.1000 -3.1 4 71 ~095.5961 -1532.7000 3099.101 2 -3.5051 0.0117 3081.1049 14. 49 12 ~-=-~~1_~101).L __ ....:i.~QaL--.1.22.z-,.z~'LO __ -~~5.~QQ..D __ 2Q!)O-,.Q3Q1 __ --..:~.!.~.~61Q_~OJ)Z2 ___ 19?J_'_9~11 ___ 2._'_?.:.j,~ __ 76 -556.100~ -6.1~94 1295.5237 -bOl.50eo 1294.72e A 0.7949 0.0026 1286.8044 8.7193 ~ __ -:.~Ol.11J,1 -2. 5977 _____ 81l~p Q 02 ___ =-3:;4. 3CIj0 ____ ?12!_4e2_~ ___ . -2 .• 4818 ____ 0. QO 83 __ 81 Q. 4824 ___ 2~518~ __ 7A 17.777P 1.4419 210.0096 -39.0000 204.057 9 5.9517 0.0196 202.9406 7.0690 79 tl?J772 -~._~92~ ____ 25 ._41J_? ___ 4?~0r;Q 34_ •. 34_~1_ -8,_9294 0 .02?_B _._~4. .. _3396 -_~ ~ 9192 __ Bn 116.6667 1.0412 24.6729 53.1000 25.4269 -0.7540 0.002~ 25.4760 -O.e~31

_8). 124 • 70 U 0 - 7 • 3982 18 .- 0 237 52. 7778 ~ 6 • 0518 - 8. 0281 0 • 026 il 26 • 096'3 - S • 0 731 84127,-111 i--- --'-;5~ 4 R 23 ---11-;579-{--- 5'r'-7000--- 20 :383 9 -8·:8048 o. 0293-----20. 466i---~8. 8'370--

_82 ___ 1_ 2 ~ ~e~ 0 Q.(L ___ ~~_. 2 B 1 0 ____ 6 -,206 t>. _. ____ 66.'.33 ,_:; ____ ':.0 _.2 4 058 ___ ( •. 4474 0 ~ 0 21'2.._._":0.'.0229 6 ! 22 9 ~ __

86 1 3 0. 8 080 -3.3072 2.4754 62.70GO 6.806 -4.3311 0.0144 6.9780 -4.5026 87 135.bOOQ -6.1769 -3.6705 61.nn~o 10.103 9 -13.7744 0.0459 10.253 7 -13.9242 90 137 ;10-00 -2:-4564--~O-.2c83 l'-i.-3-0 0-0----=2-;i-{58 -8:-0 9 25 0.0270 -1.8814 -8-:-3269--

__ ~L-. ____ .138'?OOI) -0.7~04 -14.503 9 69.1CnO ·5.6072 -8.8967 0.0297 -5.3421 -901.51 8 92 13a. 777i>------:.3. 5487-;';i2~-2673--- 67.0050 -._- -1-, 533 9 ---~iO.7334----o. 0351l---';;i. 3Q46---f6. 952 7 --93 1 33.2222 -2.1536 -3.2277 66.2000 0.0178 -3.2455 a.Ol01l 0.2340 -3. 45 1 7

--·-94---- - i37~ 100 0-- 4 ~-498'l - -';;17'-1 ~3 6 67: 0 0" n ------1.5339 -- ..:15:6296-----0.0521 ';'1-: 30 46--":15.8589--95 lj7.1111 -4.4003 -8.2853 65.44rt4 1.4833 -9.7685 0.0326 1.689E -9.9751 Of., 13!5:40 0 0 -4 :-7269 -4:7448---(:5:-4" 444 1:-483 3 ---';6':2281 0-:-0208-- 1.6898 -6 ;-4346--97 134.5556 -2.0630 -5.E226 f3.oono 6.2246 -12~0472 0.0402 6.4000 -12.2226 913 1j4. ~o 00 -0.3952 -7.1 °83 60.70 "10· ---io. 6958 ---';17.8840 0.0596---10.8318-- --18.0300 99 ljl.6000 1.160? -3.4946 65.3000 1.7635 -5.2580 0.017~ 1.9682 -5. 4 527

100 1 37 • 5 000- -7.0661 - -6.350C f4.00GO 4.2 850---10":634 9 ----6:0354 4;'P3i---io~823a--

Figure A4.

Page 54: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

H:>-00

(

;:NGINE TEST FACILITY rFsT DATE: 3- 3-75 726 HRS TEST: CG13 DATA P::lI'lT: 5302 __ ~5J_.-llU~:~~ Cr.~P DATE: 3-j2-75 1032 !-IRS PROGRA~ REvISION ~r,-::-~=-___ _

rEST ARTJ:CLE: C~MP °U'J: ~rr LINE INSTRU'1ENT BOOK REVISION NO. 09 -IES~BIl~LS!.l.LL- -.EQF'IGRAJ,t_.L~HH..lLSLCA..LlJlaAT I ON ru_GH..Llie~i!LLl~T

***** R-CAL 5401 _____ -.1. ('J A 0 -.lA.R E I (j A D lAPE I 'AD TARE k XX ~nl ______ _

-.300GO·04 -.1211 8 +02 ~.60000.D4 -.2 9 a41+0? -.10000+05 -.44495·02 .35698.02 .11342+02

--rJEGATIVE THRUST COEFFICIENTS __ ___ __ F._ _________ R __ r: _________ .

.744237.~2 -.161307.01 .7132~7-0~

NEGATIVE TARE COEFFICIENTS A B _

.11 3 751.02 .87 9 297-02 c'-,------,-__

.320596-06

GH.Na.70 FACe-1 FACC CH.~(j,68 FACC,FA-l ~-,--______ Ft,q;~l __ ~"'~yIATIO'J AVG...A~ ___ [~l '=A~~ PE.Bc;.ft..lT __ ~-l R~_c-..~LL~D,,-__

~~. cnU~T~ FROM AVG, R.CAL LD C~UNTS CALC.L~AD ERROR ERROR R-CAL LD DE~TA 3..----.:.1._2Q.·_~~.a() lL...B.1Z7 ~J_n-O.l.2--_~.d!l.O.n 7. 6n9_--.:.3..L6~27 0......0.364 -3J-.6pM ____ Z-'-~&8::'_'O"----4 -123.ea~0 -3.1172 9.5644 44.4000 2.804 8 6.7595 0.0676 -8.4646 18.0290 '" -'12_?_~;;2LL--1_~i30 3.2022 41.33.....3.3 7.751 4 -4 .... 2.12_2 0 .... .0455 -.3_.5602 6.76_.",-2~5 __ 6 -128.4000 2.6 d 26 3.4140 45.6667 0.7617 2,6522 0.0265 -10.4903 13.9042 7 -125.3:5_;33 0. 9977 2.609Q 48..,20."0 -4.111J 6.Z~9L 0..0674 -1~.!..:3413 17.9~9:-4,---_ ~ -113. 8 000 -0.6093 -4.8020 50.00~0 -6.2280 1. 4260 0.0143 -17.420 4 12.6184 Q 3?_.~QCLC... 1 ,_E.9?_~12hJ~~9.-------.1~L.:10" n -1?0~~Q~5 __ -=.6 .:_03Q4 0--,0604 -1;;1,--12.§8 4 •. 191J __

!J 3~9.50Gn -1.3283 -374.5351 2 73.ROOO -367.1 811 -7.3540 0.0735 -375.3317 0. 79 66 --1L- 4°2. 5000 -1_~_!.?2.° -4'30.3 7 92 3<10111 -480!.5"68 ___ o...J.~76 O. 0012... __ -~~?--,J7Q57~_~~Z_3 __

1~ 1 691. 0 000 1. 8 011 -14~0.3909 936.6010 -1 4 35. 75 11 -14.6298 0.1463 -1435.3122 -15.0 687 13 3~ 99 .lJ2P-___ .-9 ...!..l.';12..~2.!J..J__,_J72 ~ ___ 2 Q?5 .. : :n-:3 __ -3.1 ~_2-,.6:; lQ __ -_"-~-!.~ 19 4 0 --,143 ~~ lZ Q_d 6 ~ Q __ ~27 .. ~ 5 0 7~_ 14 6 214.2000 1.2437 -5060.8588 31 78.90no -5046.153 6 -14.7052 0.1471 -5021.3023 -39.5565 '

---15 ___ ~~_E'~3 .90 0 0 - 4. 410 ~5Z~1. 6 7~ ? __ 4..2J f> .•• 2?22..._'::'~7' 7 8 .• _2} '5 ~ ____ :§.': 4 39 9 D ..• 0 ~ 14. ___ :'_?7 4 4._7 51 o.._~_39 •. ~ 212---: 16 10 4 09.3000 -3.0286 -R4ao.2374 52 6 0.70no -R391.7089 -8.5785 0.08S Q -8352.0885 -48.1959

__ 1. 7 12317 • 5 u 0 n -1. 6653 - 9922 . J '3 6 3 Ii 21 4 ~ 0.11. n Q - 9 9 21 .6 45 3 - 0 • 5411 0 • 0054 - 9877 • 5298 - < 4 • 6565 18 1 4 05 5. B 0 C [) 4.6410 -11313-:-64.4 7 7 0 74.5000 -11301:5351 -12.1 -096 0.1211 -11254; 4755----:r9-:1:6"9-3--

---1 0 ~ 2454 .• 77711 -l.d, 973 -1QQ~g_,.Q.i~J __ 6~?2.!.OQ :JJL.~.llLO~6 ~?6§~ ___ ---.J:~_., 7~~7 0..!.1~2l~_~QOPf.! 3~~o __ -29._LQQJ __ 20 10 429 • 4 QOO -0.347R -8418.9848 52~5.4444 ·Q431.4372 12.4525 0.1245 -8391.6838 -27.3010 ~ e 28 2~~lLD. 0 - Q..2I~'§_Zi1 ~~ 6 Q 0 ~ __ ~~J-.-1~_J1!lll.~J 1 L. •. .§~~ 8 4..!..0 0D 4 JloJl1o.6._- 6 6? ~~ 4? 14 - 29_~1J~ ? __

22 6023. f OOD -12.2831 -4895.4045 30 05.50no -4911.9968 16.5923 0.1650 -4887.9252 -7.4793 23 3696. 4001' l-,~lLL -~Q~?_._12~2 19~_,_~nQ~·to~L.?465 9 .• _~?3~ o.. 022'?~~O~~-'1~16 ____ _.:2~?51L __ 24 1521.20Qn -3.6~60 -1308.5766 859.5090 -t311.4822 2.9056 0.0291 -1312.0103 3.4337

_2? ____ 121 • 4~!I_~ ___ ':'_0 _,74 0 <I ___ ~1:; ~_~ 5 9 ~ 2 __ ,3 ~5 _~4 4.1 ~ ___ -46_6 •. 5911 ______ 5 ... 9979 _____ Q_._l 0 0 (1 ___ ::473.9164 ___ V.' 3 2 3_2 __ 2~ 205.4444 -0.9937 -253.7459 208.3333 -2~1.6014 7.8555 0.0786 -270.6344 16.8885

___ 2.7 ___ :.E·_ 3 QJ)L-_:il._8 ~lL __ -=-.§1...8't8 6 10 O.Ull _____ -=P:_? • 0553 ___ 2-,_156 7 Q~ Q 5 L~ ____ '::.~ 7~ 56 0 1 ___ ~~_~~ 6J,~ __ 28 -117.2000 -1.3667 -1.527 4 47.4444 -2.105 9 0.5784 0.005~ -13.3334 11.8060 ~ -!?2. 2000 -0 ~J~:!,_1 ___ 1-,,_2628 46 .33~_3 ___ -Q...!.~136 1_!-??6~ O. Ot~_A_· ___ -=-U_~?~5 1~~~1_9,:-2~ __

32 -125.8000 0.0191 3.9596 42.00~O 6.6761 -2.7165 0.027' -4.6264 8.5860 _J_L __ --=-123_. GO O~_~1.172? __ . ___ 2.9133. _ 4.1_ .. .00'10 ____ 3_._ 45QO ____ :-O. 53~B 0 ._002~ _____ .::.~._8?49 ___ :.1.0.?382 __

34 -118.1111 -4.5?39 2.3579 4C.3C~O 9.418? -7.0603 0.0706 -1.9077 4.2656

---- --------- -------- - ------------- ._----------

Figure A5.

Page 55: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

EtlGINt:TEST FACILITY TEST CI=LL: J-2 '!'EST A'H ICLE:

Tf$T--nATE: 3- 3-75 '-26 HRS i'Es'fI(:G13 DAU ?:!~T: ~3C2 ceMP DAT~: 3-1~75 1032 HRS PR~G~AM REVISION N~~.~I~ __ ~ __ Ct'J'1P RU'J: ":FF UN,= I~STRUV,ENT g("lcrK REVIS!:)N '\::. ~;

TEq A~E ShL! __ _________ -'PRt!£~~__.L._:r:..."l.RUSI_ ~~L I BRAT LOI>J FLJQH.L "lflCi!LE TE_S:::..T-'---_______ _ ***** R-CAL 5401

__ --,..-,~L~AD ·ARE LOAD l.Al:..E U'J*-D TARE CXX R'.JO -.30000+0 4 -.1?6~9.0? -.60000+04 -.307 51+0' -.10000+05 -.4~362+02 .390?0~0' .10960.02

NEGATIVE THRUST COEFFICIENTS NEGATIVE TARE cOEFFICIENTS _ A ____________ Jl __________ _

.139593·C 7 -.193962+01 __ C ______________ . __________ . A _ 8

.1113~7-05 .10 9 620+02 .87~-1~9~O---0-2-------.=3~O~4~9~52-:6

CH.NO.71 FACC-2 FACC CH.~O.59 FA:C,~'-l REC. FACC-2-_--D_i;_'Ll..Al~_~1 AVG.APP. E~ ____ f.k.L PERC~ti!. FA-2 ~..::~~.-:.._n __ _

N". CeU~T~ FROM AVG. R-CAL LD C~UNTS CALC.L~AD ERROR ERROR R-CAL LD :E.TA _~ __ -_2.~!...5yj" ~0_,--~477 4. 00~ __ ~6. '2..O'!1n._----1.0~.6J._~ _ _._:.~~.~~_2 Q.!...Q66L __ -:J)~_33 4. 3:"~

4 -259.777~ 3.1172 9.5644 65.5556 12.4451 -2.880 7 0.0288 1.4757 8.~~c6 5 -2 4 7.5.2-5" -1..!.2..~}Q 3.2022 ?_5_.~9_cn -';.8 7 2_1 9.0744 O.O~07 -16.6656 19_ • ..§37:l __ 6 -2 47.uO uC -2.6426 3.4140 73.70~O -3.350b 6.7648 0.0676 -14.1862 17.6::2 7 -~~.z.~_Q.o_n ____ ..::_9...,-99]7 2. ~ll~_O ___ ~i.. 5'5<;" -1§ ~_64 69 19.2549 0.19?5 -27. 36§9 _____ .1_~. ;7 ~; __ 8 -~41.88t? 0.8093 -4.8020 72.4000 -0.8295 -3.9724 0.0397 -11.6868 6.5348 ? - ~ 0 ,s_. 5 0 Q..L __ . ..::~-,- 3 7 ~_,~_~J,..?§'c91_~_102.'_1O_Q 0 __ -_116_.6115 .. :...1 O.!. 3333 ___ 0 • .10 ~ ' __ -12 6.,_4 §. 7'5 - 0 • "774 __

lrJ 1 5 4.222? 1.3283 -374.5351 2 6 2.2000 -368.899:;-- -5.6356 0.0564 -376.6010 2.C~3; 11 267 ._~DOn 1. 71..g~--=.i2.o... 372..2 __ ~_lL~ 4QQCI -47?_._?~12 -4 •. ~~80 o. 914.~.4~2._.?2?~ ____ .?~~32 __

~ 1~ 131l.eJOC -1.8011 -1 450.380 9 814.40~O -1439.298 4 -11.0825 0.110~ -1438.2743 -12.::66 ~ _ll ____ 3_1_81.~O ~ [) ~....)~_1? _ -'2n}-,-~Z_?~.--!Z1 Z ___ FLG 0L..::..:31 P,?~ 008 7 ___ -14 '.: 9 ~3? 0 .!4 9_6_ .. 317 5,1 7 3_3 ___ -~? . ;:;;;.

14 51ab.60QO -1.2437 -5060.8588 26BO~90DO -5052.345 4 -8~5134 0.0851 -5026.8531 -34.::3 7

_.12... ____ 7 0 ~ 7.5 0 Qn ___ ~_ •. _:l1 O? __ ":: § 7 ~4_. 67 5 2 __ ~5. 73-,_55_'3~_ .. .§ n 7 _._ 5 4 7 ~ __ -:.7.'_12? 8 Q'_ O? 13 ___ -61 ~ 3 .• .1 4 ~ 2 ___ :.' 1 .. :; 3: J __ lA 8776.3333 3.0286 -?400.2874 4409.9000 -83°2.3095 -7~9779 0.0798 -8351.2074 -49.0 7;; 17 10 412. 777<=l L 6_65.~~922 •. ~863 __ 5_~nQ.0.0..2._0 _-99J,?_.JQ?O -_~.'.~8±4 0_~.Q4~1. -9871. 7.00~ __ -~O .':.52 __ 18 1l9:!.4~0'J -4. 6l!10 -11313" 6447 5920. 80no -11305."5142 -8.1305 O. 0813 ~1256. 2560 -~i.3::5'

_-.l'L __ 1...0.531_,-:3 v _~ I'l 1 •. 1 9 Z 3--...::..1 r) 0 ~~0.13 :L_'526 3_ ... 77 Zc~_-...1_0 Q 39: 317 4 ___ !~ 274? 0 .. 0..] 2 ? __ - 99 9 2_, ~ 81_5 __ - ~~ • :::~;. 5 __ _ 20 8799.30QQ 0.3 d 7Q -R418,9848 4432.2000 -8435.343 7 16.3589 0.163~ -~394.0843 -24.;:~5 21 695R.70oa 0.5713 -6707;608 4 3543.5000 -"719.4890 11.880 7 0.118P -6685.3566 -22.25:3

22----49 96; GO C (I 12 :z'i3i--':.i895-,-404S- 26,~6:5556--~49(l8 .5827 -----13:17 82 0.13i5--";4883. 916C---- ii. ~ 3-:-;--?~ 3030.100r. -1.6117 -3052.193? 1648.00~O -3053.884 4 1.6912 0.0169 -3040.9741 -11.219:

-24 11 ?3~FO 0 (1 :r.-6 <;"60--={308--:5 76£"- -745:-Q I)oo--~i 306 .- 553 'C---"; 2 ~ 0235 ---'-0:-O? 0 :; ---,;. i:3 6 6 -. 574 5·---~2 . 0 -~ 2-:--2~ 242.c8~g 0.7404 -456.5932 3n9.20f1D -460.0320 3;4388 0.0344 -466.9643 10.3711 26 18.55:;~ 6.9937 ·-253.745t?---- 209.00r:;!) -2'<'5.739 4 11:9935 -- 0.119 0 --274.3173 ---20.5 7 1 4 ---

27 -1 5 9.2000 0.8319 -~1.e9ti6 115.00"0 -Q3.44R6 1.5500 O.015~ -93.5906 11.502~ 2 p .':2 4 6 . 0 (I r: (l 1 . 3667 -1 • 5274 74 • 70 (\ n - '5 • 2 J 0 3 ---- 3: 7 6 2 9- ----0 :- 03 7 ~ --- -16 • 1088 --- i 4; :5 :; : 4--

31 -2 4 7.700n 0.1"11 1.262e 73.3313 -2.639 7 3.9025 0.039n -13.4813 14.7 4 4J ~-~~-4GOI) -0. 019i----3-;-9596----6"5-;-0-0:'(1 ---7-~70'f1 -3. 7445 0-:-037-4-_--::5~273---7:-1;6-9--

3~ -250.555'<' 1.172? 2.913~ 72.70"0 -1: 411 4 4.3247 0.0432 -12.2636 15.1 769 34 ------;;.253. :;55-6------ 4-. '239 - 2. 3579 6'1.~onn 14 :8802 -----12.5223 C .1252 3. 8950-----~i; 5371

Figure A6.

Page 56: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

I 1 I ~ ... q '1 I

+

I el I

/

/1 • \

• \ \ '"

'm

I

1 ::1

i ~

i i

~i ,

I I

I ,

I \

• I I ,

~r 50

"" "-/ '" ....... .......

~

.. ,. ..

........ '" I '" '" I • *' -... ... .. ,. '" .. ,.

>I< * *

10 Ig +

Im

"N

,I

11 I, 11 +' t t I I +

I Ie

,

C)

I c>

+

0

:1 N

" , .. , , , , +, 'I :1 II

..... ' :1

~i I Ie; .... 1 '1

0

!I~ I

.-t II

'1/ :! 'I :1 ~I " .! .' +1 I, I'e

.'0

,: c:

t:~ I " I, +, I, I' I: " +' " II :1 +i

" ,1° 1

,0

!!~ : I 'I

:1 ,I II

" + I'

" : i +

I , I I .!

-..

a If'.

'" I:

Page 57: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

01 J-I

100'· I

___ ...:L-___ _ I

'. ___ L I

~* ---/

/ __ ~L ___________ _

I --------- ~* 75,. .-$ .. -4 - * - -/1 .-

1 ____ L-

'. ----------- ------

7

/ j* // /'

1/ ,1*

I __ ~_-------4 ;c.. - . ..

--~.:: .. -- - / ~-------------------------------------------------------------------------

I ___ I T .[ A 2

' . I

25,. I

.1'< -

/\ /~ \ / \ / v

r----- I

*

* I? /

.--* -II

---'------ ------ -------- ----~-------------------------- --------r*

*Ii ,of --<H I // * [t-- - :,;.----~--.,.' I

1/" I) ,.

*-. '. *r.

*'" ,~

" '. '. ____ t

, .. ~ ...

------ ----- ------- -- --- -

-------------------------------------------

-25.----·----+----.----.----.----+----·.---•.. -.+----+----+.---+----&----+----+---.+.-_-+ ____ + ____ +. __ .+

11 5('10f'1 ~. 0 t1 0 n

Figure AS.

15000 _______ !:.AC T

20 I) 0 I) ------ 25000

Page 58: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

\ \

52

\ 'I I I I I I

\ il I \

.... \\

+

I I I I ~ I I I I + I I I,

I .. 10

,

r,

IC

)

,er .. , I , , , .. I I ,

I , .. , I , I +

0 I

(j

! C

J

I 0

J

I rl

i ,

Page 59: ARNOLD ENGINEERING ,DEVELOPMENT CENTER ARNOLD AIR … · project number 5e. task number 5f. work unit number 7. performing organization name(s) and address(es) aro, inc.aedc division,a

\

I

53

... I

\ \

\ \

\ \ \ , \.

\ , I

.' ~ \

\ \

, :

~

: ! I: , ~ 1

0

11

0

I c>

'''' ~ ,

I I I II

~ I I I I

+ I I I I

• I I I II ., .' I 1

0

" c.

~

a ,

0 I

I ,

i I +, I I I I • , I I I .. I'

.--

I

II I'

I'

+,0

1

10

':0

1,(\1

, ' ..... . : ,

o Ir-t !~

I~ '::;:l ib

n

'M

fJ:.I