ars.els-cdn.com · web viewfig. s5 cv curves of the cross-linked mno-based electrode at a scan rate...

12
Supporting Information Design of polydopamine-encapsulation multiporous MnO cross-linked with polyacrylic acid binder for superior lithium ion battery anode Jufeng Zhang, Ting Ren, G. P. Nayaka, Peng Dong, Jianguo Duan, Xue Li, Ding Wang*, Yingjie Zhang* National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and

Upload: others

Post on 07-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ars.els-cdn.com · Web viewFig. S5 CV curves of the cross-linked MnO-based electrode at a scan rate of 0.1 mV s1. Fig. S6 FTIR spectra of the crosslinked anode electrode after 500

Supporting Information

Design of polydopamine-encapsulation multiporous MnO

cross-linked with polyacrylic acid binder for superior lithium

ion battery anode

Jufeng Zhang, Ting Ren, G. P. Nayaka, Peng Dong, Jianguo Duan, Xue Li,

Ding Wang*, Yingjie Zhang*

National and Local Joint Engineering Laboratory for Lithium-ion Batteries and

Materials Preparation Technology, Key Laboratory of Advanced Battery

Materials of Yunnan Province, Faculty of Metallurgical and Energy

Engineering, Kunming University of Science and Technology, Kunming

650093, China

E-mail: [email protected] (D. Wang), [email protected] (Y.

Zhang)

Page 2: ars.els-cdn.com · Web viewFig. S5 CV curves of the cross-linked MnO-based electrode at a scan rate of 0.1 mV s1. Fig. S6 FTIR spectra of the crosslinked anode electrode after 500

Fig.S1 XRD pattern and SEM image of the MnO2 (EMD).

Page 3: ars.els-cdn.com · Web viewFig. S5 CV curves of the cross-linked MnO-based electrode at a scan rate of 0.1 mV s1. Fig. S6 FTIR spectra of the crosslinked anode electrode after 500

Fig. S2 Pore size distribution curve for the multiporous MnO.

Fig. S3 XRD patterns of MnO and PD-encapsulation MnO.

Page 4: ars.els-cdn.com · Web viewFig. S5 CV curves of the cross-linked MnO-based electrode at a scan rate of 0.1 mV s1. Fig. S6 FTIR spectra of the crosslinked anode electrode after 500

Fig. S4 XPS spectra of all regions for MnO-based electrode with and without

crosslink.

Fig. S5 CV curves of the cross-linked MnO-based electrode at a scan rate of

Page 5: ars.els-cdn.com · Web viewFig. S5 CV curves of the cross-linked MnO-based electrode at a scan rate of 0.1 mV s1. Fig. S6 FTIR spectra of the crosslinked anode electrode after 500

0.1 mV s-1.

Fig. S6 FTIR spectra of the crosslinked anode electrode after 500 cycles test.

Page 6: ars.els-cdn.com · Web viewFig. S5 CV curves of the cross-linked MnO-based electrode at a scan rate of 0.1 mV s1. Fig. S6 FTIR spectra of the crosslinked anode electrode after 500

Fig. S7 High-resolution spectrum of N 1s region of the cycled crosslinked

anode.

Page 7: ars.els-cdn.com · Web viewFig. S5 CV curves of the cross-linked MnO-based electrode at a scan rate of 0.1 mV s1. Fig. S6 FTIR spectra of the crosslinked anode electrode after 500

Table S1 Comparison of the cycling performances of reported MnO-based

anode materials with current work.

Materials Current density(mA g-1)

Cycles Reversible Capacity(mAh g-1)

Reference

MnO@BC 600 500 ~500 [1]MnO@NC 500 200 784 [2]MnO@C 100 100 812 [3]MnO@CNF 123 90 923 [4]MnO@C 100 100 421 [5]MnO@N-doped carbon 300 400 513 [6]MnO@N–C 500 500 667 [7]MnO@PCNTs 500 300 573 [8]MnO@C 98 120 861 [9]MnO@C composites 100 50 740 [10]MnO cubes 1000 500 420 [11]GNs@MnO 100 200 815 [12]MnO@Carbon 200 90 561 [13]MnO@C nanorods 200 200 509 [14]MnO@C nanowires 100 100 832 [15]MnO@C microtubes 200 60 610 [16]MnO@N-C 100 60 578 [17]MnO@RGOS 100 50 666 [18]MnO nanoflakes 246 100 646 [19]MnO@C nanoplates 200 30 563 [20]MnO@PD/PAA 300 500 682 This work

References

[1] H. Zhang, Z. Zhang, J.-D. Luo, X.-T. Qi, J. Yu, J.-X. Cai, Z.-Y. Yang, Molten-Salt-

Assisted Synthesis of Hierarchical Porous MnO@Biocarbon Composites as Promising

Electrode Materials for Supercapacitors and Lithium-Ion Batteries, ChemSusChem, DOI:

10.1002/cssc.201802245

[2] Q. Gou, C. Li, W. Zhong, X. Zhang, Q. Dong, C. Lei, Hierarchical structured porous N-

doped carbon coating MnO microspheres with enhanced electrochemical performances

Page 8: ars.els-cdn.com · Web viewFig. S5 CV curves of the cross-linked MnO-based electrode at a scan rate of 0.1 mV s1. Fig. S6 FTIR spectra of the crosslinked anode electrode after 500

as anode materials for lithium-ion batteries, Electrochimica Acta, 296 (2019) 730-737.

[3] J.-G. Wang, H. Liu, H. Liu, Z. Fu, D. Nan, Facile synthesis of microsized MnO/C

composites with high tap density as high performance anodes for Li-ion batteries,

Chemical Engineering Journal, 328 (2017) 591-598.

[4] E. Samuel, H.S. Jo, B. Joshi, S. An, H.G. Park, Y. Il Kim, W.Y. Yoon, S.S. Yoon,

Decoration of MnO Nanocrystals on Flexible Freestanding Carbon Nanofibers for Lithium

Ion Battery Anodes, Electrochimica Acta, 231 (2017) 582-589.

[5] J. Guo, J. Liang, C. Cui, J. Ma, Oleic acid-treated synthesis of MnO@C with superior

electrochemical properties, Journal of Energy Chemistry, 26 (2017) 340-345.

[6] L.-F. Chen, S.-X. Ma, S. Lu, Y. Feng, J. Zhang, S. Xin, S.-H. Yu, Biotemplated

synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable

rapeseed pollen: An anode material for lithium-ion batteries, Nano Research, 10 (2017)

1-11.

[7] W. Zhang, J. Sheng, J. Zhang, T. He, L. Hu, R. Wang, L. Mai, S. Mu, Hierarchical

three-dimensional MnO nanorods/carbon anodes for ultralong-life lithium-ion batteries,

Journal of Materials Chemistry A, 4 (2016) 16936-16945.

[8] Q. Zhang, Q. Dai, M. Li, X. Wang, A. Li, Incorporation of MnO nanoparticles inside

porous carbon nanotubes originated from conjugated microporous polymers for lithium

storage, Journal of Materials Chemistry A, 4 (2016) 19132-19139.

[9] Y.-F. Xu, G.-L. Xu, H. Su, Y. Chen, J.-C. Fang, Q. Wang, L. Huang, J.-T. Li, S.-G. Sun,

Porous MnO/C of composite nanostructure consisting of nanorods and nano-octahedra

as anode of lithium ion batteries with enhanced electrochemical performances, Journal of

Alloys and Compounds, 676 (2016) 156-163.

Page 9: ars.els-cdn.com · Web viewFig. S5 CV curves of the cross-linked MnO-based electrode at a scan rate of 0.1 mV s1. Fig. S6 FTIR spectra of the crosslinked anode electrode after 500

[10] W. Zhu, H. Huang, W. Zhang, X. Tao, Y. Gan, Y. Xia, H. Yang, X. Guo, Synthesis of

MnO/C composites derived from pollen template for advanced lithium-ion batteries,

Electrochimica Acta, 152 (2015) 286-293.

[11] X. Fan, S. Li, L. Lu, Porous micrometer-sized MnO cubes as anode of lithium ion

battery, Electrochimica Acta, 200 (2016) 152-160.

[12] Q. Sun, Z. Wang, Z. Zhang, Q. Yu, Y. Qu, J. Zhang, Y. Yu, B. Xiang, Rational Design

of Graphene-Reinforced MnO Nanowires with Enhanced Electrochemical Performance

for Li-Ion Batteries, ACS Applied Materials & Interfaces, 8 (2016) 6303-6308.

[13] C. Zhu, C.-g. Han, G. Saito, T. Akiyama, Facile synthesis of MnO/carbon composites

by a single-step nitrate-cellulose combustion synthesis for Li ion battery anode, Journal

of Alloys and Compounds, 689 (2016) 931-937.

[14] Z. Cai, L. Xu, M. Yan, C. Han, L. He, K.M. Hercule, C. Niu, Z. Yuan, W. Xu, L. Qu, K.

Zhao, L. Mai, Manganese oxide/carbon yolk-shell nanorod anodes for high capacity

lithium batteries, Nano Letters, 15 (2015) 738-744.

[15] J.-G. Wang, C. Zhang, D. Jin, K. Xie, B. Wei, Synthesis of ultralong MnO/C coaxial

nanowires as freestanding anodes for high-performance lithium ion batteries, Journal of

Materials Chemistry A, 3 (2015) 13699-13705.

[16] J. Wang, W. Liu, J. Chen, H. Wang, S. Liu, S. Chen, Biotemplated MnO/C

microtubes from spirogyra with improved electrochemical performance for lithium-ion

batterys, Electrochimica Acta, 188 (2016) 210-217.

[17] H. Liu, Z. Li, Y. Liang, R. Fu, D. Wu, Facile synthesis of MnO multi-core@nitrogen-

doped carbon shell nanoparticles for high performance lithium-ion battery anodes,

Carbon, 84 (2015) 419-425.

Page 10: ars.els-cdn.com · Web viewFig. S5 CV curves of the cross-linked MnO-based electrode at a scan rate of 0.1 mV s1. Fig. S6 FTIR spectra of the crosslinked anode electrode after 500

[18] Y.J. Mai, D. Zhang, Y.Q. Qiao, C.D. Gu, X.L. Wang, J.P. Tu, MnO/reduced graphene

oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage

performance, Journal of Power Sources, 216 (2012) 201-207.

[19] X. Li, D. Li, L. Qiao, X. Wang, X. Sun, P. Wang, D. He, Interconnected porous MnO

nanoflakes for high-performance lithium ion battery anodes, Journal of Materials

Chemistry, 22 (2012) 9189.

[20] X. Zhang, Z. Xing, L. Wang, Y. Zhu, Q. Li, J. Liang, Y. Yu, T. Huang, K. Tang, Y. Qian,

X. Shen, Synthesis of MnO@C core–shell nanoplates with controllable shell thickness

and their electrochemical performance for lithium-ion batteries, Journal of Materials

Chemistry, 22 (2012) 17864.