ars.els-cdn.com · web viewft-ir spectra of five samples for origin (black line) and after...

81
Supporting Information Polyoxometalate-based metal-organic frameworks for boosting electrochemical capacitor performance Dongfeng Chai a , Carlos J. Gómez-García b , Bonan Li a , Haijun Pang a, *, Huiyuan Ma a, *, Xinming Wang a , Lichao Tan a Contents SECTION 1: EXPERIMENTAL SECTION I. Materials and general methods...........…….......... ………..........................................…Page 4 II. Synthesis of [Cu I 4 H 2 (btx) 5 (PW 12 O 40 ) 2 ]·2H 2 O (1).……………...………... ……….….Page 4 III. Synthesis of [Cu II Cu I 3 (H 2 O) 2 (btx) 5 (PW VI 10 W V 2 O 40 )]·2H 2 O (2). 1

Upload: others

Post on 21-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Supporting Information

Polyoxometalate-based metal-organic frameworks for boosting electrochemical

capacitor performance

Dongfeng Chaia Carlos J Goacutemez-Garciacuteab Bonan Lia Haijun Panga Huiyuan Maa

Xinming Wanga Lichao Tana

Contents

SECTION 1 EXPERIMENTAL SECTION

I Materials and general methodshelliphelliphelliphelliphelliphellipPage 4

II Synthesis of [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 4

III Synthesis of [CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2)helliphelliphelliphelliphelliphelliphelliphellipPage 5

IV Synthesis of [CuI6(btx)6(PWVI

9WV3O40)]middot2H2O (3)helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 5

V Synthesis of [CuI4H2(btx)5(PMo12O40)2]middot2H2O (4)helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 6

VI Synthesis of [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)helliphelliphelliphelliphellipPage 6

VII Synthesis of Cu-MOFhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 6

VIII Single crystal X-ray crystallography and the microscopic morphologyhelliphelliphelliphellipPage 7

IX Preparation of the working electrodeshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 7

X Electrochemical measurementshelliphellipPage 8

SECTION 2 RESULTS AND DISCUSSION

Figure S1 The formula unit of compound 1 (similar for 4)Page 10

Figure S2 The formula unit of compound 2 (similar for 5)Page 10

Figure S3 The formula unit of compound 3helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 10

Figure S4 The space-filling view of title compounds 1-5helliphelliphelliphelliphelliphelliphelliphelliphellipPage 11

1

Figure S5 A scheme of pseudo-rotaxane structure of compound 2 and 5helliphelliphellipPage 11

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3hellipPage 12

Figure S7 The 3D framework of compound 3Page 12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3hellipPage 12

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for different time Page 13

Figure S10 Experimental and simulated XRPD patterns of compounds 1-5Page 13

Figure S11 The cathodic peak currents of 4 and 5 against scan ratesPage 14

Figure S12 The CV curves of compounds 1~3 and the plot of current density against scan

ratehelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 16

Figure S13 The proposed equivalent circuit for the electrochemical capacitorhelliphelliphellipPage 17

Figure S14 Cycling stabilities of compounds 2 3 and 5 based electrodes during 1000

cycleshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 17

Figure S15 FT-IR spectra of five samples for origin and after electrochemical testhellipPage 18

Figure S16 SEM images of compound 4 (triturated crystal sample)helliphelliphelliphelliphelliphelliphellipPage 19

Figure S17 The elements mapping images of compound 4 (triturated crystal sample)Page 19

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 20

Figure S19 The elements mapping images of the fresh prepared compound 4-based electrode

material (before electrochemical test)helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 20

Figure S20 The SEM images of the electrode material (after electrochemical test)

helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 20

Figure S21 The elements mapping images of the electrode material (after electrochemical

test)helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 21

2

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 rangePage 21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compoundhelliphelliphelliphelliphelliphelliphelliphellipPage 21

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 22

Figure S25 Repeating CV curves and GCD curves of compound 4 loaded on CCPage 22

Figure S26 Two groups of CV curves deposited on GCE with different slurryPage 23

Figure S27 CV test of 4-based electrode at different electrolytesPage 23

Table S1 Crystal data and structure refinement for compounds 1-5hellipPage 24

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1helliphelliphelliphelliphelliphelliphellipPage 25

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2helliphelliphelliphelliphelliphelliphellipPage 26

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3helliphelliphelliphelliphelliphelliphellipPage 27

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4helliphelliphelliphelliphelliphelliphellipPage 28

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5helliphelliphelliphelliphelliphelliphellipPage 29

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodeshellip

helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip Page 30

Table S8 The calculated values of Rc and Rct through the proposed equivalent circuit

helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip Page 32

ReferencesPage 33

3

SECTION 1 EXPERIMENTAL SECTION

I Materials and general methods All reagents were commercially purchased and used

without further purification except the btx ligand[1] All syntheses were carried out in 20 mL

polytetrafluoroethylene lined stainless steel containers under autogenous pressure The

reproducibility of the compounds 1-5 is good and the yield of all the compounds is also well

(The yields of these compounds are all over 35 based on W or Mo) Elemental analyses

were performed for C H and N on a Perkin-Elmer 2400 CHN elemental analyzer and W Mo

Si P and Cu were determined on a Leaman inductively coupled plasma (ICP) spectrometer

The samples pre-treatment of ICP have been done by microwave digestion and adding aqua

regia The five standard curves were prepared through the similar process by diluting original

standard solution IR spectra were recorded in the 4000-400 cmminus1 region on a Bruker Vertex

70 IR spectrometer (KBr pellets) XRPD (X-ray powder diffraction) patterns of the samples

were recorded with a Panalytical XPert Powder diffractometer (Holland) with Cu Kα

irradiation the scanning rate was 4deg s-1 with 2θ ranging from 5 to 50deg X-ray photoelectron

spectroscopy (XPS) analyses were performed on an ESCALAB-MKII spectrometer with Mg

Kα X-ray radiation as the X-ray source for excitation

II Synthesis of [CuI4H2(btx)5(PW12O40)2]2H2O (1) A mixture of H3[PW12O40]middot6H2O

(03586 g 012 mmol) Cu(Ac)2middot2H2O (00479 g 024 mmol) btx (00433 g 018 mmol) and

H2O (15 mL) was stirred for 1 h The pH of the mixture was adjusted to 20 with 10 M NaOH

solution and the mixture was transferred to a 25 mL Teflon-lined reactor and kept at 160 degC

for 3 days The reactor was slowly cooled to room temperature at a cooling rate of 10 degC h -1

Yellow block crystals of 1 were filtered from brown slurry (pH is about 25) washed with

4

water and dried at room temperature Yield 42 based on W Anal Calcd for

C60H66N30P2Cu4W24O82 Cu 351 W 6088 P 085 C 994 N 580 H 092 Found Cu

345 W 5883 P 090 C 1006 N 587 H 095 IR (KBr disk) 3405(w) 3127(w)

1538(w) 1425(w) 1384(w) 1346(w) 1309(w) 1279(w) 1212(m) 1141(m) 1097(m)

1068(m) 1047(m) 962(m) 887(w) 820(sh) 786(s) 689(m) 516(w) cm-1 (Figure S22)

III Synthesis of [CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]2H2O (2) A mixture of

K5H2[[Ti(OH)(ox)2(μ-O)](α-PW11O39)]middot13H2O[2] (06870 g 012 mmol) CuCl (00238 g

024 mmol) btx (00433 g 018 mmol) and H2O (15 mL) was stirred for 1 h The pH of the

mixture was adjusted to 20 with 10 M HCl solution and the mixture was transferred to a 25

mL Teflon-lined reactor and kept at 160 degC for 3 days The reactor was slowly cooled to room

temperature at a cooling rate of 10 degCh Green block crystals of 2 were filtered from brown

slurry (pH is about 24) washed with water and dried at room temperature Yield 40 based

on W Anal Calcd for C60H68N30PCu4W12O44 Cu 577 W 5009 P 070 C 1636 N 954

H 156 Found Cu 569 W 4879 P 074 C 1651 N 967 H 159 IR (KBr disk)

3434(w) 3121(w) 1530(w) 1425(w) 1376(w) 1346(w) 1279(w) 1212(m) 1132(m)

1094(m) 1059(m) 962(m) 887(w) 801(s) 672(m) 510(w) cm-1 (Figure S22)

IV Synthesis of [CuI6(btx)6(PWVI

9WV3O40)]2H2O (3) Compound 3 was prepared as

compound 2 but adjusting the final pH to 50 Brown block crystals of 3 were filtered from

brown slurry (pH is about 35) washed with water and dried at room temperature Yield 40

based on W Anal Calcd for C72H76N36PCu6W12O42 Cu 805 W 4658 P 065 C 1826 N

1065 H 162 Found Cu 794 W 4485 P 069 C 1852 N 1078 H 166 IR (KBr

disk) 3433(w) 3121(w) 1530(w) 1425(w) 1376(w) 1346(w) 1279(w) 1212(m) 1132(m)

5

1094(m) 1059(m) 962(m) 887(w) 801(s) 672(m) 510(w) cm-1 (Figure S22)

V Synthesis of [CuI4H2(btx)5(PMo12O40)2]2H2O (4) The synthesis of 4 is similar to 1

except that H3[PW12O40]middot6H2O was replaced by H3[PMo12O40]middot6H2O (02320 g 012 mmol)

Red block crystals of 4 were filtered from dark blue slurry (pH is about 26) washed with

water and dried at room temperature Yield 43 based on Mo Anal Calcd for

C60H66N30P2Cu4Mo24O82 Cu 495 Mo 4481 P 121 C 1403 N 818 H 129 Found

Cu 492 Mo 4298 P 125 C 1425 N 823 H 132 IR (KBr disk) 3423(w) 3134(w)

1623(w) 1533 (w) 1431(w) 1283(w) 1137(w) 1063(s) 960(m) 879(m) 803(vs) 672(w)

cm-1 (Figure S22)

VI Synthesis of [CuIICuI3(btx)5(SiMoVI

11MoVO40)]4H2O (5) The synthesis of 5 is similar to

4 except that H3[PMo12O40]middot6H2O was replaced by H4[SiMo12O40]middot6H2O (02318 g 012

mmol) and 030 mL triethylamine was added Black block crystals of 5 were filtered from

dark blue slurry (pH is about 25) washed with water and dried at room temperature Yield

38 based on Mo Anal Calcd for C60H68N30SiCu4Mo12O44 Cu 759 Mo 3440 Si 084 C

2153 N 1255 H 205 Found Cu 749 Mo 3298 Si 087 C 2186 N 1279 H 213

IR (KBr disk) 3423(w) 3134(w) 1623(w) 1533 (w) 1472(w) 1431(w) 1283(w)

1137(w) 1063(s) 960(m) 879(m) 803(vs) 672(w) cm-1 (Figure S22)

VII Synthesis of Cu-MOF Cu-MOF compound was prepared by an identical synthesis

method with title compounds 1~5 except that the POMs had not been added into the reaction

system Additionally instead of the single crystal the green color powder was obtained and it

was characterized by IR spectrum (Figure S23) The powder contains Cu cation which could

be confirmed by the green color Meanwhile the powder contains btx ligand which could be

6

confirmed by comparing IR spectra between the obtained powder and btx ligand

VIII Single crystal X-ray crystallography and the microscopic morphology High-quality

crystals of compounds 1-5 were selected from their mother liquors and sealed in a capillary

tube for data collection Their intensity were collected on a Bruker Apex CCD diffractometer

with graphite-monochromated Mo Kα radiation (λ = 071073 Aring) at 298 K These structures

were determined by direct methods and refined by means of full-matrix least-squares on F2

using the SHELXTL-97 program package[3 4] All the crystal data have been tried to refine

however there are still some mistakes for the crystal structures Nevertheless these mistakes

are common in polyoxometalate chemistry since the large unit cell volumes and the existence

of a large number of heavy metal atoms (such as W or Mo atoms) in polyoxometalates which

makes the refinement difficult Fortunately the mistakes do not affect the crystal structure

analyses Meanwhile all the mistakes of Alert level A and B can be reasonably explained and

the explanations are listed in cif data and checkCIFPLATON reports Additionally these

bulk crystals are easy to pick up under the optical microscope which could be used

conveniently to characterize microscopic morphology of title compounds as shown in Figure

S24

IX Preparation of the working electrodes Considering the convenience and the accuracy

glassy carbon electrodes have been employed as the working electrodes as shown in latest

literatures[5-7]

The glassy carbon (GCE) working electrode was polished before each experiment with 1 03

and 005 mm alumina power on chamois leather respectively rinsed thoroughly with DI

water between each polishing step

7

In general the POMs possess many surface oxygen atoms with high negative charges and the

metal atoms in MOF possess unoccupied orbital and thus POMs and MOFs are easily to

coordinate together which alleviates the solubility of POMs To prepare the working

electrodes for the three-electrode systems a mixture of 25 mg of the corresponding

compound and 25 mg of acetylene black were mixed and ground together by agate mortar to

achieve a uniform mixture Then 05 mL of distilled water was added to the above mixture

The obtained mixture was further sonicated to make a well dispersed slurry This slurry (10

μL) was deposited onto a glassy carbon surface (3 mm diameter) and dried for 3 hours at

room temperature A Nafion solution (25 μL) was deposited onto the sample surface and the

modified electrode was then dried for 1 hour at room temperature

In addition in order to further investigate the quality loaded on the glassy carbon electrode

(GCE) surface in this work is accurate two experiments of compound 4 as an example which

shows the best capacitance performance have been done On the one hand the CV (5 mV s-1)

and GCD (2 A g-1) measurements have been repeated by carbon cloth (CC) as shown in

Figure S25 The result indicates that the capacitance performance of CC is similar with GCE

though higher current through loading more active materials The tiny differences of

capacitance performance between them could be contributed to the disperse problem of slurry

on CC because of its poor hydrophobicity although it has been handed in HNO3 On the other

hand many parallel experiments loading with the same slurry (6 μL or 8 μL) on GCE have

been done as shown in Figure S26 The results that the CV curves of the two groups (total 10

experiments) are nearly identical for the 6 μL and 8 μL slurry respectively

X Electrochemical measurements All electrochemical tests were measured with a

8

CHI760E electrochemical workstation (Shanghai CH Instruments Inc) at room temperature

The three-electrode tests were conducted in 1 M H2SO4 Pt and AgAgCl were used as counter

and reference electrodes respectively Cyclic voltammetry (CV) tests were carried out with

sweep rates from 5 to 100 mV s-1 in a voltage range (vs AgAgCl) from 01 to -06 V for

compounds 1-3 from -005 to 055 V for compound 4 and from -005 to 045 V for compound

5 Electrochemical impedance spectroscopy (EIS) measurements were conducted from 100

kHz to 01 Hz with the amplitude of 5 mV referring to the open-circuit potential

Galvanostatic charge-discharge (GCD) tests were carried out at different current densities in

the range 2 to 20 A g-1 The specific gravimetric capacitance value can be calculated from the

following equations C= I times ∆ tmtimes ∆ V where C (F g-1) represents the specific capacitance I (A)

represents the discharge current ∆ V (V) represents the potential change within the discharge

time ∆ t (s) and m (g) corresponds to the amount of active material on the electrode The

cycling stabilities were evaluated by carrying out multiple chargedischarge cycles

Additionally in order to demonstrate the effects of different electrolytes on the

electrochemical performances compound 4 which shows the best capacitance performance

among the title compounds has been measured through cyclic voltammetry (CV) and

galvanostatic chargedischarge (GCD) at two kinds of additional electrolytes namely 1M HCl

and 1M HNO3 As a result compound 4 exhibits the similar electrochemical performance in

different electrolytes of 1M H2SO4 1M HCl and 1M HNO3 as shown in Figure S27

9

SECTION 2 RESULTS AND DISCUSSION

Figure S1 The formula unit of compound 1 (similar for 4) Hydrogen atoms and

crystallization water molecules are omitted for clarity)

Figure S2 The formula unit of compound 2 (similar for 5) Hydrogen atoms and

crystallization water molecules are omitted for clarity

10

Figure S3 The formula unit of compound 3 Hydrogen atoms and crystallization water

molecules are omitted for clarit)

Figure S4 The space-filling view of title compounds 1-5

Figure S5 A scheme of pseudo-rotaxane structure molecular ldquostringsrdquo (Cu4-btx chains)

11

thread molecular ldquoloopsrdquo (Cu1-btx-Cu2-POM) to form an unusual pseudo-rotaxane

structure in compound 2 and 5 Green and blue spheres represent Cu1 and Cu2 atoms purple

spheres represent POMs

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3

Figure S7 The 3D framework of compound 3 showing the channels along the c axis

12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for 0 24 48 and 96 h

13

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 2: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Figure S5 A scheme of pseudo-rotaxane structure of compound 2 and 5helliphelliphellipPage 11

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3hellipPage 12

Figure S7 The 3D framework of compound 3Page 12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3hellipPage 12

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for different time Page 13

Figure S10 Experimental and simulated XRPD patterns of compounds 1-5Page 13

Figure S11 The cathodic peak currents of 4 and 5 against scan ratesPage 14

Figure S12 The CV curves of compounds 1~3 and the plot of current density against scan

ratehelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 16

Figure S13 The proposed equivalent circuit for the electrochemical capacitorhelliphelliphellipPage 17

Figure S14 Cycling stabilities of compounds 2 3 and 5 based electrodes during 1000

cycleshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 17

Figure S15 FT-IR spectra of five samples for origin and after electrochemical testhellipPage 18

Figure S16 SEM images of compound 4 (triturated crystal sample)helliphelliphelliphelliphelliphelliphellipPage 19

Figure S17 The elements mapping images of compound 4 (triturated crystal sample)Page 19

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 20

Figure S19 The elements mapping images of the fresh prepared compound 4-based electrode

material (before electrochemical test)helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 20

Figure S20 The SEM images of the electrode material (after electrochemical test)

helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 20

Figure S21 The elements mapping images of the electrode material (after electrochemical

test)helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 21

2

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 rangePage 21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compoundhelliphelliphelliphelliphelliphelliphelliphellipPage 21

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 22

Figure S25 Repeating CV curves and GCD curves of compound 4 loaded on CCPage 22

Figure S26 Two groups of CV curves deposited on GCE with different slurryPage 23

Figure S27 CV test of 4-based electrode at different electrolytesPage 23

Table S1 Crystal data and structure refinement for compounds 1-5hellipPage 24

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1helliphelliphelliphelliphelliphelliphellipPage 25

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2helliphelliphelliphelliphelliphelliphellipPage 26

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3helliphelliphelliphelliphelliphelliphellipPage 27

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4helliphelliphelliphelliphelliphelliphellipPage 28

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5helliphelliphelliphelliphelliphelliphellipPage 29

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodeshellip

helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip Page 30

Table S8 The calculated values of Rc and Rct through the proposed equivalent circuit

helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip Page 32

ReferencesPage 33

3

SECTION 1 EXPERIMENTAL SECTION

I Materials and general methods All reagents were commercially purchased and used

without further purification except the btx ligand[1] All syntheses were carried out in 20 mL

polytetrafluoroethylene lined stainless steel containers under autogenous pressure The

reproducibility of the compounds 1-5 is good and the yield of all the compounds is also well

(The yields of these compounds are all over 35 based on W or Mo) Elemental analyses

were performed for C H and N on a Perkin-Elmer 2400 CHN elemental analyzer and W Mo

Si P and Cu were determined on a Leaman inductively coupled plasma (ICP) spectrometer

The samples pre-treatment of ICP have been done by microwave digestion and adding aqua

regia The five standard curves were prepared through the similar process by diluting original

standard solution IR spectra were recorded in the 4000-400 cmminus1 region on a Bruker Vertex

70 IR spectrometer (KBr pellets) XRPD (X-ray powder diffraction) patterns of the samples

were recorded with a Panalytical XPert Powder diffractometer (Holland) with Cu Kα

irradiation the scanning rate was 4deg s-1 with 2θ ranging from 5 to 50deg X-ray photoelectron

spectroscopy (XPS) analyses were performed on an ESCALAB-MKII spectrometer with Mg

Kα X-ray radiation as the X-ray source for excitation

II Synthesis of [CuI4H2(btx)5(PW12O40)2]2H2O (1) A mixture of H3[PW12O40]middot6H2O

(03586 g 012 mmol) Cu(Ac)2middot2H2O (00479 g 024 mmol) btx (00433 g 018 mmol) and

H2O (15 mL) was stirred for 1 h The pH of the mixture was adjusted to 20 with 10 M NaOH

solution and the mixture was transferred to a 25 mL Teflon-lined reactor and kept at 160 degC

for 3 days The reactor was slowly cooled to room temperature at a cooling rate of 10 degC h -1

Yellow block crystals of 1 were filtered from brown slurry (pH is about 25) washed with

4

water and dried at room temperature Yield 42 based on W Anal Calcd for

C60H66N30P2Cu4W24O82 Cu 351 W 6088 P 085 C 994 N 580 H 092 Found Cu

345 W 5883 P 090 C 1006 N 587 H 095 IR (KBr disk) 3405(w) 3127(w)

1538(w) 1425(w) 1384(w) 1346(w) 1309(w) 1279(w) 1212(m) 1141(m) 1097(m)

1068(m) 1047(m) 962(m) 887(w) 820(sh) 786(s) 689(m) 516(w) cm-1 (Figure S22)

III Synthesis of [CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]2H2O (2) A mixture of

K5H2[[Ti(OH)(ox)2(μ-O)](α-PW11O39)]middot13H2O[2] (06870 g 012 mmol) CuCl (00238 g

024 mmol) btx (00433 g 018 mmol) and H2O (15 mL) was stirred for 1 h The pH of the

mixture was adjusted to 20 with 10 M HCl solution and the mixture was transferred to a 25

mL Teflon-lined reactor and kept at 160 degC for 3 days The reactor was slowly cooled to room

temperature at a cooling rate of 10 degCh Green block crystals of 2 were filtered from brown

slurry (pH is about 24) washed with water and dried at room temperature Yield 40 based

on W Anal Calcd for C60H68N30PCu4W12O44 Cu 577 W 5009 P 070 C 1636 N 954

H 156 Found Cu 569 W 4879 P 074 C 1651 N 967 H 159 IR (KBr disk)

3434(w) 3121(w) 1530(w) 1425(w) 1376(w) 1346(w) 1279(w) 1212(m) 1132(m)

1094(m) 1059(m) 962(m) 887(w) 801(s) 672(m) 510(w) cm-1 (Figure S22)

IV Synthesis of [CuI6(btx)6(PWVI

9WV3O40)]2H2O (3) Compound 3 was prepared as

compound 2 but adjusting the final pH to 50 Brown block crystals of 3 were filtered from

brown slurry (pH is about 35) washed with water and dried at room temperature Yield 40

based on W Anal Calcd for C72H76N36PCu6W12O42 Cu 805 W 4658 P 065 C 1826 N

1065 H 162 Found Cu 794 W 4485 P 069 C 1852 N 1078 H 166 IR (KBr

disk) 3433(w) 3121(w) 1530(w) 1425(w) 1376(w) 1346(w) 1279(w) 1212(m) 1132(m)

5

1094(m) 1059(m) 962(m) 887(w) 801(s) 672(m) 510(w) cm-1 (Figure S22)

V Synthesis of [CuI4H2(btx)5(PMo12O40)2]2H2O (4) The synthesis of 4 is similar to 1

except that H3[PW12O40]middot6H2O was replaced by H3[PMo12O40]middot6H2O (02320 g 012 mmol)

Red block crystals of 4 were filtered from dark blue slurry (pH is about 26) washed with

water and dried at room temperature Yield 43 based on Mo Anal Calcd for

C60H66N30P2Cu4Mo24O82 Cu 495 Mo 4481 P 121 C 1403 N 818 H 129 Found

Cu 492 Mo 4298 P 125 C 1425 N 823 H 132 IR (KBr disk) 3423(w) 3134(w)

1623(w) 1533 (w) 1431(w) 1283(w) 1137(w) 1063(s) 960(m) 879(m) 803(vs) 672(w)

cm-1 (Figure S22)

VI Synthesis of [CuIICuI3(btx)5(SiMoVI

11MoVO40)]4H2O (5) The synthesis of 5 is similar to

4 except that H3[PMo12O40]middot6H2O was replaced by H4[SiMo12O40]middot6H2O (02318 g 012

mmol) and 030 mL triethylamine was added Black block crystals of 5 were filtered from

dark blue slurry (pH is about 25) washed with water and dried at room temperature Yield

38 based on Mo Anal Calcd for C60H68N30SiCu4Mo12O44 Cu 759 Mo 3440 Si 084 C

2153 N 1255 H 205 Found Cu 749 Mo 3298 Si 087 C 2186 N 1279 H 213

IR (KBr disk) 3423(w) 3134(w) 1623(w) 1533 (w) 1472(w) 1431(w) 1283(w)

1137(w) 1063(s) 960(m) 879(m) 803(vs) 672(w) cm-1 (Figure S22)

VII Synthesis of Cu-MOF Cu-MOF compound was prepared by an identical synthesis

method with title compounds 1~5 except that the POMs had not been added into the reaction

system Additionally instead of the single crystal the green color powder was obtained and it

was characterized by IR spectrum (Figure S23) The powder contains Cu cation which could

be confirmed by the green color Meanwhile the powder contains btx ligand which could be

6

confirmed by comparing IR spectra between the obtained powder and btx ligand

VIII Single crystal X-ray crystallography and the microscopic morphology High-quality

crystals of compounds 1-5 were selected from their mother liquors and sealed in a capillary

tube for data collection Their intensity were collected on a Bruker Apex CCD diffractometer

with graphite-monochromated Mo Kα radiation (λ = 071073 Aring) at 298 K These structures

were determined by direct methods and refined by means of full-matrix least-squares on F2

using the SHELXTL-97 program package[3 4] All the crystal data have been tried to refine

however there are still some mistakes for the crystal structures Nevertheless these mistakes

are common in polyoxometalate chemistry since the large unit cell volumes and the existence

of a large number of heavy metal atoms (such as W or Mo atoms) in polyoxometalates which

makes the refinement difficult Fortunately the mistakes do not affect the crystal structure

analyses Meanwhile all the mistakes of Alert level A and B can be reasonably explained and

the explanations are listed in cif data and checkCIFPLATON reports Additionally these

bulk crystals are easy to pick up under the optical microscope which could be used

conveniently to characterize microscopic morphology of title compounds as shown in Figure

S24

IX Preparation of the working electrodes Considering the convenience and the accuracy

glassy carbon electrodes have been employed as the working electrodes as shown in latest

literatures[5-7]

The glassy carbon (GCE) working electrode was polished before each experiment with 1 03

and 005 mm alumina power on chamois leather respectively rinsed thoroughly with DI

water between each polishing step

7

In general the POMs possess many surface oxygen atoms with high negative charges and the

metal atoms in MOF possess unoccupied orbital and thus POMs and MOFs are easily to

coordinate together which alleviates the solubility of POMs To prepare the working

electrodes for the three-electrode systems a mixture of 25 mg of the corresponding

compound and 25 mg of acetylene black were mixed and ground together by agate mortar to

achieve a uniform mixture Then 05 mL of distilled water was added to the above mixture

The obtained mixture was further sonicated to make a well dispersed slurry This slurry (10

μL) was deposited onto a glassy carbon surface (3 mm diameter) and dried for 3 hours at

room temperature A Nafion solution (25 μL) was deposited onto the sample surface and the

modified electrode was then dried for 1 hour at room temperature

In addition in order to further investigate the quality loaded on the glassy carbon electrode

(GCE) surface in this work is accurate two experiments of compound 4 as an example which

shows the best capacitance performance have been done On the one hand the CV (5 mV s-1)

and GCD (2 A g-1) measurements have been repeated by carbon cloth (CC) as shown in

Figure S25 The result indicates that the capacitance performance of CC is similar with GCE

though higher current through loading more active materials The tiny differences of

capacitance performance between them could be contributed to the disperse problem of slurry

on CC because of its poor hydrophobicity although it has been handed in HNO3 On the other

hand many parallel experiments loading with the same slurry (6 μL or 8 μL) on GCE have

been done as shown in Figure S26 The results that the CV curves of the two groups (total 10

experiments) are nearly identical for the 6 μL and 8 μL slurry respectively

X Electrochemical measurements All electrochemical tests were measured with a

8

CHI760E electrochemical workstation (Shanghai CH Instruments Inc) at room temperature

The three-electrode tests were conducted in 1 M H2SO4 Pt and AgAgCl were used as counter

and reference electrodes respectively Cyclic voltammetry (CV) tests were carried out with

sweep rates from 5 to 100 mV s-1 in a voltage range (vs AgAgCl) from 01 to -06 V for

compounds 1-3 from -005 to 055 V for compound 4 and from -005 to 045 V for compound

5 Electrochemical impedance spectroscopy (EIS) measurements were conducted from 100

kHz to 01 Hz with the amplitude of 5 mV referring to the open-circuit potential

Galvanostatic charge-discharge (GCD) tests were carried out at different current densities in

the range 2 to 20 A g-1 The specific gravimetric capacitance value can be calculated from the

following equations C= I times ∆ tmtimes ∆ V where C (F g-1) represents the specific capacitance I (A)

represents the discharge current ∆ V (V) represents the potential change within the discharge

time ∆ t (s) and m (g) corresponds to the amount of active material on the electrode The

cycling stabilities were evaluated by carrying out multiple chargedischarge cycles

Additionally in order to demonstrate the effects of different electrolytes on the

electrochemical performances compound 4 which shows the best capacitance performance

among the title compounds has been measured through cyclic voltammetry (CV) and

galvanostatic chargedischarge (GCD) at two kinds of additional electrolytes namely 1M HCl

and 1M HNO3 As a result compound 4 exhibits the similar electrochemical performance in

different electrolytes of 1M H2SO4 1M HCl and 1M HNO3 as shown in Figure S27

9

SECTION 2 RESULTS AND DISCUSSION

Figure S1 The formula unit of compound 1 (similar for 4) Hydrogen atoms and

crystallization water molecules are omitted for clarity)

Figure S2 The formula unit of compound 2 (similar for 5) Hydrogen atoms and

crystallization water molecules are omitted for clarity

10

Figure S3 The formula unit of compound 3 Hydrogen atoms and crystallization water

molecules are omitted for clarit)

Figure S4 The space-filling view of title compounds 1-5

Figure S5 A scheme of pseudo-rotaxane structure molecular ldquostringsrdquo (Cu4-btx chains)

11

thread molecular ldquoloopsrdquo (Cu1-btx-Cu2-POM) to form an unusual pseudo-rotaxane

structure in compound 2 and 5 Green and blue spheres represent Cu1 and Cu2 atoms purple

spheres represent POMs

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3

Figure S7 The 3D framework of compound 3 showing the channels along the c axis

12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for 0 24 48 and 96 h

13

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 3: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 rangePage 21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compoundhelliphelliphelliphelliphelliphelliphelliphellipPage 21

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipPage 22

Figure S25 Repeating CV curves and GCD curves of compound 4 loaded on CCPage 22

Figure S26 Two groups of CV curves deposited on GCE with different slurryPage 23

Figure S27 CV test of 4-based electrode at different electrolytesPage 23

Table S1 Crystal data and structure refinement for compounds 1-5hellipPage 24

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1helliphelliphelliphelliphelliphelliphellipPage 25

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2helliphelliphelliphelliphelliphelliphellipPage 26

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3helliphelliphelliphelliphelliphelliphellipPage 27

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4helliphelliphelliphelliphelliphelliphellipPage 28

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5helliphelliphelliphelliphelliphelliphellipPage 29

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodeshellip

helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip Page 30

Table S8 The calculated values of Rc and Rct through the proposed equivalent circuit

helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip Page 32

ReferencesPage 33

3

SECTION 1 EXPERIMENTAL SECTION

I Materials and general methods All reagents were commercially purchased and used

without further purification except the btx ligand[1] All syntheses were carried out in 20 mL

polytetrafluoroethylene lined stainless steel containers under autogenous pressure The

reproducibility of the compounds 1-5 is good and the yield of all the compounds is also well

(The yields of these compounds are all over 35 based on W or Mo) Elemental analyses

were performed for C H and N on a Perkin-Elmer 2400 CHN elemental analyzer and W Mo

Si P and Cu were determined on a Leaman inductively coupled plasma (ICP) spectrometer

The samples pre-treatment of ICP have been done by microwave digestion and adding aqua

regia The five standard curves were prepared through the similar process by diluting original

standard solution IR spectra were recorded in the 4000-400 cmminus1 region on a Bruker Vertex

70 IR spectrometer (KBr pellets) XRPD (X-ray powder diffraction) patterns of the samples

were recorded with a Panalytical XPert Powder diffractometer (Holland) with Cu Kα

irradiation the scanning rate was 4deg s-1 with 2θ ranging from 5 to 50deg X-ray photoelectron

spectroscopy (XPS) analyses were performed on an ESCALAB-MKII spectrometer with Mg

Kα X-ray radiation as the X-ray source for excitation

II Synthesis of [CuI4H2(btx)5(PW12O40)2]2H2O (1) A mixture of H3[PW12O40]middot6H2O

(03586 g 012 mmol) Cu(Ac)2middot2H2O (00479 g 024 mmol) btx (00433 g 018 mmol) and

H2O (15 mL) was stirred for 1 h The pH of the mixture was adjusted to 20 with 10 M NaOH

solution and the mixture was transferred to a 25 mL Teflon-lined reactor and kept at 160 degC

for 3 days The reactor was slowly cooled to room temperature at a cooling rate of 10 degC h -1

Yellow block crystals of 1 were filtered from brown slurry (pH is about 25) washed with

4

water and dried at room temperature Yield 42 based on W Anal Calcd for

C60H66N30P2Cu4W24O82 Cu 351 W 6088 P 085 C 994 N 580 H 092 Found Cu

345 W 5883 P 090 C 1006 N 587 H 095 IR (KBr disk) 3405(w) 3127(w)

1538(w) 1425(w) 1384(w) 1346(w) 1309(w) 1279(w) 1212(m) 1141(m) 1097(m)

1068(m) 1047(m) 962(m) 887(w) 820(sh) 786(s) 689(m) 516(w) cm-1 (Figure S22)

III Synthesis of [CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]2H2O (2) A mixture of

K5H2[[Ti(OH)(ox)2(μ-O)](α-PW11O39)]middot13H2O[2] (06870 g 012 mmol) CuCl (00238 g

024 mmol) btx (00433 g 018 mmol) and H2O (15 mL) was stirred for 1 h The pH of the

mixture was adjusted to 20 with 10 M HCl solution and the mixture was transferred to a 25

mL Teflon-lined reactor and kept at 160 degC for 3 days The reactor was slowly cooled to room

temperature at a cooling rate of 10 degCh Green block crystals of 2 were filtered from brown

slurry (pH is about 24) washed with water and dried at room temperature Yield 40 based

on W Anal Calcd for C60H68N30PCu4W12O44 Cu 577 W 5009 P 070 C 1636 N 954

H 156 Found Cu 569 W 4879 P 074 C 1651 N 967 H 159 IR (KBr disk)

3434(w) 3121(w) 1530(w) 1425(w) 1376(w) 1346(w) 1279(w) 1212(m) 1132(m)

1094(m) 1059(m) 962(m) 887(w) 801(s) 672(m) 510(w) cm-1 (Figure S22)

IV Synthesis of [CuI6(btx)6(PWVI

9WV3O40)]2H2O (3) Compound 3 was prepared as

compound 2 but adjusting the final pH to 50 Brown block crystals of 3 were filtered from

brown slurry (pH is about 35) washed with water and dried at room temperature Yield 40

based on W Anal Calcd for C72H76N36PCu6W12O42 Cu 805 W 4658 P 065 C 1826 N

1065 H 162 Found Cu 794 W 4485 P 069 C 1852 N 1078 H 166 IR (KBr

disk) 3433(w) 3121(w) 1530(w) 1425(w) 1376(w) 1346(w) 1279(w) 1212(m) 1132(m)

5

1094(m) 1059(m) 962(m) 887(w) 801(s) 672(m) 510(w) cm-1 (Figure S22)

V Synthesis of [CuI4H2(btx)5(PMo12O40)2]2H2O (4) The synthesis of 4 is similar to 1

except that H3[PW12O40]middot6H2O was replaced by H3[PMo12O40]middot6H2O (02320 g 012 mmol)

Red block crystals of 4 were filtered from dark blue slurry (pH is about 26) washed with

water and dried at room temperature Yield 43 based on Mo Anal Calcd for

C60H66N30P2Cu4Mo24O82 Cu 495 Mo 4481 P 121 C 1403 N 818 H 129 Found

Cu 492 Mo 4298 P 125 C 1425 N 823 H 132 IR (KBr disk) 3423(w) 3134(w)

1623(w) 1533 (w) 1431(w) 1283(w) 1137(w) 1063(s) 960(m) 879(m) 803(vs) 672(w)

cm-1 (Figure S22)

VI Synthesis of [CuIICuI3(btx)5(SiMoVI

11MoVO40)]4H2O (5) The synthesis of 5 is similar to

4 except that H3[PMo12O40]middot6H2O was replaced by H4[SiMo12O40]middot6H2O (02318 g 012

mmol) and 030 mL triethylamine was added Black block crystals of 5 were filtered from

dark blue slurry (pH is about 25) washed with water and dried at room temperature Yield

38 based on Mo Anal Calcd for C60H68N30SiCu4Mo12O44 Cu 759 Mo 3440 Si 084 C

2153 N 1255 H 205 Found Cu 749 Mo 3298 Si 087 C 2186 N 1279 H 213

IR (KBr disk) 3423(w) 3134(w) 1623(w) 1533 (w) 1472(w) 1431(w) 1283(w)

1137(w) 1063(s) 960(m) 879(m) 803(vs) 672(w) cm-1 (Figure S22)

VII Synthesis of Cu-MOF Cu-MOF compound was prepared by an identical synthesis

method with title compounds 1~5 except that the POMs had not been added into the reaction

system Additionally instead of the single crystal the green color powder was obtained and it

was characterized by IR spectrum (Figure S23) The powder contains Cu cation which could

be confirmed by the green color Meanwhile the powder contains btx ligand which could be

6

confirmed by comparing IR spectra between the obtained powder and btx ligand

VIII Single crystal X-ray crystallography and the microscopic morphology High-quality

crystals of compounds 1-5 were selected from their mother liquors and sealed in a capillary

tube for data collection Their intensity were collected on a Bruker Apex CCD diffractometer

with graphite-monochromated Mo Kα radiation (λ = 071073 Aring) at 298 K These structures

were determined by direct methods and refined by means of full-matrix least-squares on F2

using the SHELXTL-97 program package[3 4] All the crystal data have been tried to refine

however there are still some mistakes for the crystal structures Nevertheless these mistakes

are common in polyoxometalate chemistry since the large unit cell volumes and the existence

of a large number of heavy metal atoms (such as W or Mo atoms) in polyoxometalates which

makes the refinement difficult Fortunately the mistakes do not affect the crystal structure

analyses Meanwhile all the mistakes of Alert level A and B can be reasonably explained and

the explanations are listed in cif data and checkCIFPLATON reports Additionally these

bulk crystals are easy to pick up under the optical microscope which could be used

conveniently to characterize microscopic morphology of title compounds as shown in Figure

S24

IX Preparation of the working electrodes Considering the convenience and the accuracy

glassy carbon electrodes have been employed as the working electrodes as shown in latest

literatures[5-7]

The glassy carbon (GCE) working electrode was polished before each experiment with 1 03

and 005 mm alumina power on chamois leather respectively rinsed thoroughly with DI

water between each polishing step

7

In general the POMs possess many surface oxygen atoms with high negative charges and the

metal atoms in MOF possess unoccupied orbital and thus POMs and MOFs are easily to

coordinate together which alleviates the solubility of POMs To prepare the working

electrodes for the three-electrode systems a mixture of 25 mg of the corresponding

compound and 25 mg of acetylene black were mixed and ground together by agate mortar to

achieve a uniform mixture Then 05 mL of distilled water was added to the above mixture

The obtained mixture was further sonicated to make a well dispersed slurry This slurry (10

μL) was deposited onto a glassy carbon surface (3 mm diameter) and dried for 3 hours at

room temperature A Nafion solution (25 μL) was deposited onto the sample surface and the

modified electrode was then dried for 1 hour at room temperature

In addition in order to further investigate the quality loaded on the glassy carbon electrode

(GCE) surface in this work is accurate two experiments of compound 4 as an example which

shows the best capacitance performance have been done On the one hand the CV (5 mV s-1)

and GCD (2 A g-1) measurements have been repeated by carbon cloth (CC) as shown in

Figure S25 The result indicates that the capacitance performance of CC is similar with GCE

though higher current through loading more active materials The tiny differences of

capacitance performance between them could be contributed to the disperse problem of slurry

on CC because of its poor hydrophobicity although it has been handed in HNO3 On the other

hand many parallel experiments loading with the same slurry (6 μL or 8 μL) on GCE have

been done as shown in Figure S26 The results that the CV curves of the two groups (total 10

experiments) are nearly identical for the 6 μL and 8 μL slurry respectively

X Electrochemical measurements All electrochemical tests were measured with a

8

CHI760E electrochemical workstation (Shanghai CH Instruments Inc) at room temperature

The three-electrode tests were conducted in 1 M H2SO4 Pt and AgAgCl were used as counter

and reference electrodes respectively Cyclic voltammetry (CV) tests were carried out with

sweep rates from 5 to 100 mV s-1 in a voltage range (vs AgAgCl) from 01 to -06 V for

compounds 1-3 from -005 to 055 V for compound 4 and from -005 to 045 V for compound

5 Electrochemical impedance spectroscopy (EIS) measurements were conducted from 100

kHz to 01 Hz with the amplitude of 5 mV referring to the open-circuit potential

Galvanostatic charge-discharge (GCD) tests were carried out at different current densities in

the range 2 to 20 A g-1 The specific gravimetric capacitance value can be calculated from the

following equations C= I times ∆ tmtimes ∆ V where C (F g-1) represents the specific capacitance I (A)

represents the discharge current ∆ V (V) represents the potential change within the discharge

time ∆ t (s) and m (g) corresponds to the amount of active material on the electrode The

cycling stabilities were evaluated by carrying out multiple chargedischarge cycles

Additionally in order to demonstrate the effects of different electrolytes on the

electrochemical performances compound 4 which shows the best capacitance performance

among the title compounds has been measured through cyclic voltammetry (CV) and

galvanostatic chargedischarge (GCD) at two kinds of additional electrolytes namely 1M HCl

and 1M HNO3 As a result compound 4 exhibits the similar electrochemical performance in

different electrolytes of 1M H2SO4 1M HCl and 1M HNO3 as shown in Figure S27

9

SECTION 2 RESULTS AND DISCUSSION

Figure S1 The formula unit of compound 1 (similar for 4) Hydrogen atoms and

crystallization water molecules are omitted for clarity)

Figure S2 The formula unit of compound 2 (similar for 5) Hydrogen atoms and

crystallization water molecules are omitted for clarity

10

Figure S3 The formula unit of compound 3 Hydrogen atoms and crystallization water

molecules are omitted for clarit)

Figure S4 The space-filling view of title compounds 1-5

Figure S5 A scheme of pseudo-rotaxane structure molecular ldquostringsrdquo (Cu4-btx chains)

11

thread molecular ldquoloopsrdquo (Cu1-btx-Cu2-POM) to form an unusual pseudo-rotaxane

structure in compound 2 and 5 Green and blue spheres represent Cu1 and Cu2 atoms purple

spheres represent POMs

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3

Figure S7 The 3D framework of compound 3 showing the channels along the c axis

12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for 0 24 48 and 96 h

13

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 4: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

SECTION 1 EXPERIMENTAL SECTION

I Materials and general methods All reagents were commercially purchased and used

without further purification except the btx ligand[1] All syntheses were carried out in 20 mL

polytetrafluoroethylene lined stainless steel containers under autogenous pressure The

reproducibility of the compounds 1-5 is good and the yield of all the compounds is also well

(The yields of these compounds are all over 35 based on W or Mo) Elemental analyses

were performed for C H and N on a Perkin-Elmer 2400 CHN elemental analyzer and W Mo

Si P and Cu were determined on a Leaman inductively coupled plasma (ICP) spectrometer

The samples pre-treatment of ICP have been done by microwave digestion and adding aqua

regia The five standard curves were prepared through the similar process by diluting original

standard solution IR spectra were recorded in the 4000-400 cmminus1 region on a Bruker Vertex

70 IR spectrometer (KBr pellets) XRPD (X-ray powder diffraction) patterns of the samples

were recorded with a Panalytical XPert Powder diffractometer (Holland) with Cu Kα

irradiation the scanning rate was 4deg s-1 with 2θ ranging from 5 to 50deg X-ray photoelectron

spectroscopy (XPS) analyses were performed on an ESCALAB-MKII spectrometer with Mg

Kα X-ray radiation as the X-ray source for excitation

II Synthesis of [CuI4H2(btx)5(PW12O40)2]2H2O (1) A mixture of H3[PW12O40]middot6H2O

(03586 g 012 mmol) Cu(Ac)2middot2H2O (00479 g 024 mmol) btx (00433 g 018 mmol) and

H2O (15 mL) was stirred for 1 h The pH of the mixture was adjusted to 20 with 10 M NaOH

solution and the mixture was transferred to a 25 mL Teflon-lined reactor and kept at 160 degC

for 3 days The reactor was slowly cooled to room temperature at a cooling rate of 10 degC h -1

Yellow block crystals of 1 were filtered from brown slurry (pH is about 25) washed with

4

water and dried at room temperature Yield 42 based on W Anal Calcd for

C60H66N30P2Cu4W24O82 Cu 351 W 6088 P 085 C 994 N 580 H 092 Found Cu

345 W 5883 P 090 C 1006 N 587 H 095 IR (KBr disk) 3405(w) 3127(w)

1538(w) 1425(w) 1384(w) 1346(w) 1309(w) 1279(w) 1212(m) 1141(m) 1097(m)

1068(m) 1047(m) 962(m) 887(w) 820(sh) 786(s) 689(m) 516(w) cm-1 (Figure S22)

III Synthesis of [CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]2H2O (2) A mixture of

K5H2[[Ti(OH)(ox)2(μ-O)](α-PW11O39)]middot13H2O[2] (06870 g 012 mmol) CuCl (00238 g

024 mmol) btx (00433 g 018 mmol) and H2O (15 mL) was stirred for 1 h The pH of the

mixture was adjusted to 20 with 10 M HCl solution and the mixture was transferred to a 25

mL Teflon-lined reactor and kept at 160 degC for 3 days The reactor was slowly cooled to room

temperature at a cooling rate of 10 degCh Green block crystals of 2 were filtered from brown

slurry (pH is about 24) washed with water and dried at room temperature Yield 40 based

on W Anal Calcd for C60H68N30PCu4W12O44 Cu 577 W 5009 P 070 C 1636 N 954

H 156 Found Cu 569 W 4879 P 074 C 1651 N 967 H 159 IR (KBr disk)

3434(w) 3121(w) 1530(w) 1425(w) 1376(w) 1346(w) 1279(w) 1212(m) 1132(m)

1094(m) 1059(m) 962(m) 887(w) 801(s) 672(m) 510(w) cm-1 (Figure S22)

IV Synthesis of [CuI6(btx)6(PWVI

9WV3O40)]2H2O (3) Compound 3 was prepared as

compound 2 but adjusting the final pH to 50 Brown block crystals of 3 were filtered from

brown slurry (pH is about 35) washed with water and dried at room temperature Yield 40

based on W Anal Calcd for C72H76N36PCu6W12O42 Cu 805 W 4658 P 065 C 1826 N

1065 H 162 Found Cu 794 W 4485 P 069 C 1852 N 1078 H 166 IR (KBr

disk) 3433(w) 3121(w) 1530(w) 1425(w) 1376(w) 1346(w) 1279(w) 1212(m) 1132(m)

5

1094(m) 1059(m) 962(m) 887(w) 801(s) 672(m) 510(w) cm-1 (Figure S22)

V Synthesis of [CuI4H2(btx)5(PMo12O40)2]2H2O (4) The synthesis of 4 is similar to 1

except that H3[PW12O40]middot6H2O was replaced by H3[PMo12O40]middot6H2O (02320 g 012 mmol)

Red block crystals of 4 were filtered from dark blue slurry (pH is about 26) washed with

water and dried at room temperature Yield 43 based on Mo Anal Calcd for

C60H66N30P2Cu4Mo24O82 Cu 495 Mo 4481 P 121 C 1403 N 818 H 129 Found

Cu 492 Mo 4298 P 125 C 1425 N 823 H 132 IR (KBr disk) 3423(w) 3134(w)

1623(w) 1533 (w) 1431(w) 1283(w) 1137(w) 1063(s) 960(m) 879(m) 803(vs) 672(w)

cm-1 (Figure S22)

VI Synthesis of [CuIICuI3(btx)5(SiMoVI

11MoVO40)]4H2O (5) The synthesis of 5 is similar to

4 except that H3[PMo12O40]middot6H2O was replaced by H4[SiMo12O40]middot6H2O (02318 g 012

mmol) and 030 mL triethylamine was added Black block crystals of 5 were filtered from

dark blue slurry (pH is about 25) washed with water and dried at room temperature Yield

38 based on Mo Anal Calcd for C60H68N30SiCu4Mo12O44 Cu 759 Mo 3440 Si 084 C

2153 N 1255 H 205 Found Cu 749 Mo 3298 Si 087 C 2186 N 1279 H 213

IR (KBr disk) 3423(w) 3134(w) 1623(w) 1533 (w) 1472(w) 1431(w) 1283(w)

1137(w) 1063(s) 960(m) 879(m) 803(vs) 672(w) cm-1 (Figure S22)

VII Synthesis of Cu-MOF Cu-MOF compound was prepared by an identical synthesis

method with title compounds 1~5 except that the POMs had not been added into the reaction

system Additionally instead of the single crystal the green color powder was obtained and it

was characterized by IR spectrum (Figure S23) The powder contains Cu cation which could

be confirmed by the green color Meanwhile the powder contains btx ligand which could be

6

confirmed by comparing IR spectra between the obtained powder and btx ligand

VIII Single crystal X-ray crystallography and the microscopic morphology High-quality

crystals of compounds 1-5 were selected from their mother liquors and sealed in a capillary

tube for data collection Their intensity were collected on a Bruker Apex CCD diffractometer

with graphite-monochromated Mo Kα radiation (λ = 071073 Aring) at 298 K These structures

were determined by direct methods and refined by means of full-matrix least-squares on F2

using the SHELXTL-97 program package[3 4] All the crystal data have been tried to refine

however there are still some mistakes for the crystal structures Nevertheless these mistakes

are common in polyoxometalate chemistry since the large unit cell volumes and the existence

of a large number of heavy metal atoms (such as W or Mo atoms) in polyoxometalates which

makes the refinement difficult Fortunately the mistakes do not affect the crystal structure

analyses Meanwhile all the mistakes of Alert level A and B can be reasonably explained and

the explanations are listed in cif data and checkCIFPLATON reports Additionally these

bulk crystals are easy to pick up under the optical microscope which could be used

conveniently to characterize microscopic morphology of title compounds as shown in Figure

S24

IX Preparation of the working electrodes Considering the convenience and the accuracy

glassy carbon electrodes have been employed as the working electrodes as shown in latest

literatures[5-7]

The glassy carbon (GCE) working electrode was polished before each experiment with 1 03

and 005 mm alumina power on chamois leather respectively rinsed thoroughly with DI

water between each polishing step

7

In general the POMs possess many surface oxygen atoms with high negative charges and the

metal atoms in MOF possess unoccupied orbital and thus POMs and MOFs are easily to

coordinate together which alleviates the solubility of POMs To prepare the working

electrodes for the three-electrode systems a mixture of 25 mg of the corresponding

compound and 25 mg of acetylene black were mixed and ground together by agate mortar to

achieve a uniform mixture Then 05 mL of distilled water was added to the above mixture

The obtained mixture was further sonicated to make a well dispersed slurry This slurry (10

μL) was deposited onto a glassy carbon surface (3 mm diameter) and dried for 3 hours at

room temperature A Nafion solution (25 μL) was deposited onto the sample surface and the

modified electrode was then dried for 1 hour at room temperature

In addition in order to further investigate the quality loaded on the glassy carbon electrode

(GCE) surface in this work is accurate two experiments of compound 4 as an example which

shows the best capacitance performance have been done On the one hand the CV (5 mV s-1)

and GCD (2 A g-1) measurements have been repeated by carbon cloth (CC) as shown in

Figure S25 The result indicates that the capacitance performance of CC is similar with GCE

though higher current through loading more active materials The tiny differences of

capacitance performance between them could be contributed to the disperse problem of slurry

on CC because of its poor hydrophobicity although it has been handed in HNO3 On the other

hand many parallel experiments loading with the same slurry (6 μL or 8 μL) on GCE have

been done as shown in Figure S26 The results that the CV curves of the two groups (total 10

experiments) are nearly identical for the 6 μL and 8 μL slurry respectively

X Electrochemical measurements All electrochemical tests were measured with a

8

CHI760E electrochemical workstation (Shanghai CH Instruments Inc) at room temperature

The three-electrode tests were conducted in 1 M H2SO4 Pt and AgAgCl were used as counter

and reference electrodes respectively Cyclic voltammetry (CV) tests were carried out with

sweep rates from 5 to 100 mV s-1 in a voltage range (vs AgAgCl) from 01 to -06 V for

compounds 1-3 from -005 to 055 V for compound 4 and from -005 to 045 V for compound

5 Electrochemical impedance spectroscopy (EIS) measurements were conducted from 100

kHz to 01 Hz with the amplitude of 5 mV referring to the open-circuit potential

Galvanostatic charge-discharge (GCD) tests were carried out at different current densities in

the range 2 to 20 A g-1 The specific gravimetric capacitance value can be calculated from the

following equations C= I times ∆ tmtimes ∆ V where C (F g-1) represents the specific capacitance I (A)

represents the discharge current ∆ V (V) represents the potential change within the discharge

time ∆ t (s) and m (g) corresponds to the amount of active material on the electrode The

cycling stabilities were evaluated by carrying out multiple chargedischarge cycles

Additionally in order to demonstrate the effects of different electrolytes on the

electrochemical performances compound 4 which shows the best capacitance performance

among the title compounds has been measured through cyclic voltammetry (CV) and

galvanostatic chargedischarge (GCD) at two kinds of additional electrolytes namely 1M HCl

and 1M HNO3 As a result compound 4 exhibits the similar electrochemical performance in

different electrolytes of 1M H2SO4 1M HCl and 1M HNO3 as shown in Figure S27

9

SECTION 2 RESULTS AND DISCUSSION

Figure S1 The formula unit of compound 1 (similar for 4) Hydrogen atoms and

crystallization water molecules are omitted for clarity)

Figure S2 The formula unit of compound 2 (similar for 5) Hydrogen atoms and

crystallization water molecules are omitted for clarity

10

Figure S3 The formula unit of compound 3 Hydrogen atoms and crystallization water

molecules are omitted for clarit)

Figure S4 The space-filling view of title compounds 1-5

Figure S5 A scheme of pseudo-rotaxane structure molecular ldquostringsrdquo (Cu4-btx chains)

11

thread molecular ldquoloopsrdquo (Cu1-btx-Cu2-POM) to form an unusual pseudo-rotaxane

structure in compound 2 and 5 Green and blue spheres represent Cu1 and Cu2 atoms purple

spheres represent POMs

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3

Figure S7 The 3D framework of compound 3 showing the channels along the c axis

12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for 0 24 48 and 96 h

13

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 5: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

water and dried at room temperature Yield 42 based on W Anal Calcd for

C60H66N30P2Cu4W24O82 Cu 351 W 6088 P 085 C 994 N 580 H 092 Found Cu

345 W 5883 P 090 C 1006 N 587 H 095 IR (KBr disk) 3405(w) 3127(w)

1538(w) 1425(w) 1384(w) 1346(w) 1309(w) 1279(w) 1212(m) 1141(m) 1097(m)

1068(m) 1047(m) 962(m) 887(w) 820(sh) 786(s) 689(m) 516(w) cm-1 (Figure S22)

III Synthesis of [CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]2H2O (2) A mixture of

K5H2[[Ti(OH)(ox)2(μ-O)](α-PW11O39)]middot13H2O[2] (06870 g 012 mmol) CuCl (00238 g

024 mmol) btx (00433 g 018 mmol) and H2O (15 mL) was stirred for 1 h The pH of the

mixture was adjusted to 20 with 10 M HCl solution and the mixture was transferred to a 25

mL Teflon-lined reactor and kept at 160 degC for 3 days The reactor was slowly cooled to room

temperature at a cooling rate of 10 degCh Green block crystals of 2 were filtered from brown

slurry (pH is about 24) washed with water and dried at room temperature Yield 40 based

on W Anal Calcd for C60H68N30PCu4W12O44 Cu 577 W 5009 P 070 C 1636 N 954

H 156 Found Cu 569 W 4879 P 074 C 1651 N 967 H 159 IR (KBr disk)

3434(w) 3121(w) 1530(w) 1425(w) 1376(w) 1346(w) 1279(w) 1212(m) 1132(m)

1094(m) 1059(m) 962(m) 887(w) 801(s) 672(m) 510(w) cm-1 (Figure S22)

IV Synthesis of [CuI6(btx)6(PWVI

9WV3O40)]2H2O (3) Compound 3 was prepared as

compound 2 but adjusting the final pH to 50 Brown block crystals of 3 were filtered from

brown slurry (pH is about 35) washed with water and dried at room temperature Yield 40

based on W Anal Calcd for C72H76N36PCu6W12O42 Cu 805 W 4658 P 065 C 1826 N

1065 H 162 Found Cu 794 W 4485 P 069 C 1852 N 1078 H 166 IR (KBr

disk) 3433(w) 3121(w) 1530(w) 1425(w) 1376(w) 1346(w) 1279(w) 1212(m) 1132(m)

5

1094(m) 1059(m) 962(m) 887(w) 801(s) 672(m) 510(w) cm-1 (Figure S22)

V Synthesis of [CuI4H2(btx)5(PMo12O40)2]2H2O (4) The synthesis of 4 is similar to 1

except that H3[PW12O40]middot6H2O was replaced by H3[PMo12O40]middot6H2O (02320 g 012 mmol)

Red block crystals of 4 were filtered from dark blue slurry (pH is about 26) washed with

water and dried at room temperature Yield 43 based on Mo Anal Calcd for

C60H66N30P2Cu4Mo24O82 Cu 495 Mo 4481 P 121 C 1403 N 818 H 129 Found

Cu 492 Mo 4298 P 125 C 1425 N 823 H 132 IR (KBr disk) 3423(w) 3134(w)

1623(w) 1533 (w) 1431(w) 1283(w) 1137(w) 1063(s) 960(m) 879(m) 803(vs) 672(w)

cm-1 (Figure S22)

VI Synthesis of [CuIICuI3(btx)5(SiMoVI

11MoVO40)]4H2O (5) The synthesis of 5 is similar to

4 except that H3[PMo12O40]middot6H2O was replaced by H4[SiMo12O40]middot6H2O (02318 g 012

mmol) and 030 mL triethylamine was added Black block crystals of 5 were filtered from

dark blue slurry (pH is about 25) washed with water and dried at room temperature Yield

38 based on Mo Anal Calcd for C60H68N30SiCu4Mo12O44 Cu 759 Mo 3440 Si 084 C

2153 N 1255 H 205 Found Cu 749 Mo 3298 Si 087 C 2186 N 1279 H 213

IR (KBr disk) 3423(w) 3134(w) 1623(w) 1533 (w) 1472(w) 1431(w) 1283(w)

1137(w) 1063(s) 960(m) 879(m) 803(vs) 672(w) cm-1 (Figure S22)

VII Synthesis of Cu-MOF Cu-MOF compound was prepared by an identical synthesis

method with title compounds 1~5 except that the POMs had not been added into the reaction

system Additionally instead of the single crystal the green color powder was obtained and it

was characterized by IR spectrum (Figure S23) The powder contains Cu cation which could

be confirmed by the green color Meanwhile the powder contains btx ligand which could be

6

confirmed by comparing IR spectra between the obtained powder and btx ligand

VIII Single crystal X-ray crystallography and the microscopic morphology High-quality

crystals of compounds 1-5 were selected from their mother liquors and sealed in a capillary

tube for data collection Their intensity were collected on a Bruker Apex CCD diffractometer

with graphite-monochromated Mo Kα radiation (λ = 071073 Aring) at 298 K These structures

were determined by direct methods and refined by means of full-matrix least-squares on F2

using the SHELXTL-97 program package[3 4] All the crystal data have been tried to refine

however there are still some mistakes for the crystal structures Nevertheless these mistakes

are common in polyoxometalate chemistry since the large unit cell volumes and the existence

of a large number of heavy metal atoms (such as W or Mo atoms) in polyoxometalates which

makes the refinement difficult Fortunately the mistakes do not affect the crystal structure

analyses Meanwhile all the mistakes of Alert level A and B can be reasonably explained and

the explanations are listed in cif data and checkCIFPLATON reports Additionally these

bulk crystals are easy to pick up under the optical microscope which could be used

conveniently to characterize microscopic morphology of title compounds as shown in Figure

S24

IX Preparation of the working electrodes Considering the convenience and the accuracy

glassy carbon electrodes have been employed as the working electrodes as shown in latest

literatures[5-7]

The glassy carbon (GCE) working electrode was polished before each experiment with 1 03

and 005 mm alumina power on chamois leather respectively rinsed thoroughly with DI

water between each polishing step

7

In general the POMs possess many surface oxygen atoms with high negative charges and the

metal atoms in MOF possess unoccupied orbital and thus POMs and MOFs are easily to

coordinate together which alleviates the solubility of POMs To prepare the working

electrodes for the three-electrode systems a mixture of 25 mg of the corresponding

compound and 25 mg of acetylene black were mixed and ground together by agate mortar to

achieve a uniform mixture Then 05 mL of distilled water was added to the above mixture

The obtained mixture was further sonicated to make a well dispersed slurry This slurry (10

μL) was deposited onto a glassy carbon surface (3 mm diameter) and dried for 3 hours at

room temperature A Nafion solution (25 μL) was deposited onto the sample surface and the

modified electrode was then dried for 1 hour at room temperature

In addition in order to further investigate the quality loaded on the glassy carbon electrode

(GCE) surface in this work is accurate two experiments of compound 4 as an example which

shows the best capacitance performance have been done On the one hand the CV (5 mV s-1)

and GCD (2 A g-1) measurements have been repeated by carbon cloth (CC) as shown in

Figure S25 The result indicates that the capacitance performance of CC is similar with GCE

though higher current through loading more active materials The tiny differences of

capacitance performance between them could be contributed to the disperse problem of slurry

on CC because of its poor hydrophobicity although it has been handed in HNO3 On the other

hand many parallel experiments loading with the same slurry (6 μL or 8 μL) on GCE have

been done as shown in Figure S26 The results that the CV curves of the two groups (total 10

experiments) are nearly identical for the 6 μL and 8 μL slurry respectively

X Electrochemical measurements All electrochemical tests were measured with a

8

CHI760E electrochemical workstation (Shanghai CH Instruments Inc) at room temperature

The three-electrode tests were conducted in 1 M H2SO4 Pt and AgAgCl were used as counter

and reference electrodes respectively Cyclic voltammetry (CV) tests were carried out with

sweep rates from 5 to 100 mV s-1 in a voltage range (vs AgAgCl) from 01 to -06 V for

compounds 1-3 from -005 to 055 V for compound 4 and from -005 to 045 V for compound

5 Electrochemical impedance spectroscopy (EIS) measurements were conducted from 100

kHz to 01 Hz with the amplitude of 5 mV referring to the open-circuit potential

Galvanostatic charge-discharge (GCD) tests were carried out at different current densities in

the range 2 to 20 A g-1 The specific gravimetric capacitance value can be calculated from the

following equations C= I times ∆ tmtimes ∆ V where C (F g-1) represents the specific capacitance I (A)

represents the discharge current ∆ V (V) represents the potential change within the discharge

time ∆ t (s) and m (g) corresponds to the amount of active material on the electrode The

cycling stabilities were evaluated by carrying out multiple chargedischarge cycles

Additionally in order to demonstrate the effects of different electrolytes on the

electrochemical performances compound 4 which shows the best capacitance performance

among the title compounds has been measured through cyclic voltammetry (CV) and

galvanostatic chargedischarge (GCD) at two kinds of additional electrolytes namely 1M HCl

and 1M HNO3 As a result compound 4 exhibits the similar electrochemical performance in

different electrolytes of 1M H2SO4 1M HCl and 1M HNO3 as shown in Figure S27

9

SECTION 2 RESULTS AND DISCUSSION

Figure S1 The formula unit of compound 1 (similar for 4) Hydrogen atoms and

crystallization water molecules are omitted for clarity)

Figure S2 The formula unit of compound 2 (similar for 5) Hydrogen atoms and

crystallization water molecules are omitted for clarity

10

Figure S3 The formula unit of compound 3 Hydrogen atoms and crystallization water

molecules are omitted for clarit)

Figure S4 The space-filling view of title compounds 1-5

Figure S5 A scheme of pseudo-rotaxane structure molecular ldquostringsrdquo (Cu4-btx chains)

11

thread molecular ldquoloopsrdquo (Cu1-btx-Cu2-POM) to form an unusual pseudo-rotaxane

structure in compound 2 and 5 Green and blue spheres represent Cu1 and Cu2 atoms purple

spheres represent POMs

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3

Figure S7 The 3D framework of compound 3 showing the channels along the c axis

12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for 0 24 48 and 96 h

13

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 6: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

1094(m) 1059(m) 962(m) 887(w) 801(s) 672(m) 510(w) cm-1 (Figure S22)

V Synthesis of [CuI4H2(btx)5(PMo12O40)2]2H2O (4) The synthesis of 4 is similar to 1

except that H3[PW12O40]middot6H2O was replaced by H3[PMo12O40]middot6H2O (02320 g 012 mmol)

Red block crystals of 4 were filtered from dark blue slurry (pH is about 26) washed with

water and dried at room temperature Yield 43 based on Mo Anal Calcd for

C60H66N30P2Cu4Mo24O82 Cu 495 Mo 4481 P 121 C 1403 N 818 H 129 Found

Cu 492 Mo 4298 P 125 C 1425 N 823 H 132 IR (KBr disk) 3423(w) 3134(w)

1623(w) 1533 (w) 1431(w) 1283(w) 1137(w) 1063(s) 960(m) 879(m) 803(vs) 672(w)

cm-1 (Figure S22)

VI Synthesis of [CuIICuI3(btx)5(SiMoVI

11MoVO40)]4H2O (5) The synthesis of 5 is similar to

4 except that H3[PMo12O40]middot6H2O was replaced by H4[SiMo12O40]middot6H2O (02318 g 012

mmol) and 030 mL triethylamine was added Black block crystals of 5 were filtered from

dark blue slurry (pH is about 25) washed with water and dried at room temperature Yield

38 based on Mo Anal Calcd for C60H68N30SiCu4Mo12O44 Cu 759 Mo 3440 Si 084 C

2153 N 1255 H 205 Found Cu 749 Mo 3298 Si 087 C 2186 N 1279 H 213

IR (KBr disk) 3423(w) 3134(w) 1623(w) 1533 (w) 1472(w) 1431(w) 1283(w)

1137(w) 1063(s) 960(m) 879(m) 803(vs) 672(w) cm-1 (Figure S22)

VII Synthesis of Cu-MOF Cu-MOF compound was prepared by an identical synthesis

method with title compounds 1~5 except that the POMs had not been added into the reaction

system Additionally instead of the single crystal the green color powder was obtained and it

was characterized by IR spectrum (Figure S23) The powder contains Cu cation which could

be confirmed by the green color Meanwhile the powder contains btx ligand which could be

6

confirmed by comparing IR spectra between the obtained powder and btx ligand

VIII Single crystal X-ray crystallography and the microscopic morphology High-quality

crystals of compounds 1-5 were selected from their mother liquors and sealed in a capillary

tube for data collection Their intensity were collected on a Bruker Apex CCD diffractometer

with graphite-monochromated Mo Kα radiation (λ = 071073 Aring) at 298 K These structures

were determined by direct methods and refined by means of full-matrix least-squares on F2

using the SHELXTL-97 program package[3 4] All the crystal data have been tried to refine

however there are still some mistakes for the crystal structures Nevertheless these mistakes

are common in polyoxometalate chemistry since the large unit cell volumes and the existence

of a large number of heavy metal atoms (such as W or Mo atoms) in polyoxometalates which

makes the refinement difficult Fortunately the mistakes do not affect the crystal structure

analyses Meanwhile all the mistakes of Alert level A and B can be reasonably explained and

the explanations are listed in cif data and checkCIFPLATON reports Additionally these

bulk crystals are easy to pick up under the optical microscope which could be used

conveniently to characterize microscopic morphology of title compounds as shown in Figure

S24

IX Preparation of the working electrodes Considering the convenience and the accuracy

glassy carbon electrodes have been employed as the working electrodes as shown in latest

literatures[5-7]

The glassy carbon (GCE) working electrode was polished before each experiment with 1 03

and 005 mm alumina power on chamois leather respectively rinsed thoroughly with DI

water between each polishing step

7

In general the POMs possess many surface oxygen atoms with high negative charges and the

metal atoms in MOF possess unoccupied orbital and thus POMs and MOFs are easily to

coordinate together which alleviates the solubility of POMs To prepare the working

electrodes for the three-electrode systems a mixture of 25 mg of the corresponding

compound and 25 mg of acetylene black were mixed and ground together by agate mortar to

achieve a uniform mixture Then 05 mL of distilled water was added to the above mixture

The obtained mixture was further sonicated to make a well dispersed slurry This slurry (10

μL) was deposited onto a glassy carbon surface (3 mm diameter) and dried for 3 hours at

room temperature A Nafion solution (25 μL) was deposited onto the sample surface and the

modified electrode was then dried for 1 hour at room temperature

In addition in order to further investigate the quality loaded on the glassy carbon electrode

(GCE) surface in this work is accurate two experiments of compound 4 as an example which

shows the best capacitance performance have been done On the one hand the CV (5 mV s-1)

and GCD (2 A g-1) measurements have been repeated by carbon cloth (CC) as shown in

Figure S25 The result indicates that the capacitance performance of CC is similar with GCE

though higher current through loading more active materials The tiny differences of

capacitance performance between them could be contributed to the disperse problem of slurry

on CC because of its poor hydrophobicity although it has been handed in HNO3 On the other

hand many parallel experiments loading with the same slurry (6 μL or 8 μL) on GCE have

been done as shown in Figure S26 The results that the CV curves of the two groups (total 10

experiments) are nearly identical for the 6 μL and 8 μL slurry respectively

X Electrochemical measurements All electrochemical tests were measured with a

8

CHI760E electrochemical workstation (Shanghai CH Instruments Inc) at room temperature

The three-electrode tests were conducted in 1 M H2SO4 Pt and AgAgCl were used as counter

and reference electrodes respectively Cyclic voltammetry (CV) tests were carried out with

sweep rates from 5 to 100 mV s-1 in a voltage range (vs AgAgCl) from 01 to -06 V for

compounds 1-3 from -005 to 055 V for compound 4 and from -005 to 045 V for compound

5 Electrochemical impedance spectroscopy (EIS) measurements were conducted from 100

kHz to 01 Hz with the amplitude of 5 mV referring to the open-circuit potential

Galvanostatic charge-discharge (GCD) tests were carried out at different current densities in

the range 2 to 20 A g-1 The specific gravimetric capacitance value can be calculated from the

following equations C= I times ∆ tmtimes ∆ V where C (F g-1) represents the specific capacitance I (A)

represents the discharge current ∆ V (V) represents the potential change within the discharge

time ∆ t (s) and m (g) corresponds to the amount of active material on the electrode The

cycling stabilities were evaluated by carrying out multiple chargedischarge cycles

Additionally in order to demonstrate the effects of different electrolytes on the

electrochemical performances compound 4 which shows the best capacitance performance

among the title compounds has been measured through cyclic voltammetry (CV) and

galvanostatic chargedischarge (GCD) at two kinds of additional electrolytes namely 1M HCl

and 1M HNO3 As a result compound 4 exhibits the similar electrochemical performance in

different electrolytes of 1M H2SO4 1M HCl and 1M HNO3 as shown in Figure S27

9

SECTION 2 RESULTS AND DISCUSSION

Figure S1 The formula unit of compound 1 (similar for 4) Hydrogen atoms and

crystallization water molecules are omitted for clarity)

Figure S2 The formula unit of compound 2 (similar for 5) Hydrogen atoms and

crystallization water molecules are omitted for clarity

10

Figure S3 The formula unit of compound 3 Hydrogen atoms and crystallization water

molecules are omitted for clarit)

Figure S4 The space-filling view of title compounds 1-5

Figure S5 A scheme of pseudo-rotaxane structure molecular ldquostringsrdquo (Cu4-btx chains)

11

thread molecular ldquoloopsrdquo (Cu1-btx-Cu2-POM) to form an unusual pseudo-rotaxane

structure in compound 2 and 5 Green and blue spheres represent Cu1 and Cu2 atoms purple

spheres represent POMs

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3

Figure S7 The 3D framework of compound 3 showing the channels along the c axis

12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for 0 24 48 and 96 h

13

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 7: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

confirmed by comparing IR spectra between the obtained powder and btx ligand

VIII Single crystal X-ray crystallography and the microscopic morphology High-quality

crystals of compounds 1-5 were selected from their mother liquors and sealed in a capillary

tube for data collection Their intensity were collected on a Bruker Apex CCD diffractometer

with graphite-monochromated Mo Kα radiation (λ = 071073 Aring) at 298 K These structures

were determined by direct methods and refined by means of full-matrix least-squares on F2

using the SHELXTL-97 program package[3 4] All the crystal data have been tried to refine

however there are still some mistakes for the crystal structures Nevertheless these mistakes

are common in polyoxometalate chemistry since the large unit cell volumes and the existence

of a large number of heavy metal atoms (such as W or Mo atoms) in polyoxometalates which

makes the refinement difficult Fortunately the mistakes do not affect the crystal structure

analyses Meanwhile all the mistakes of Alert level A and B can be reasonably explained and

the explanations are listed in cif data and checkCIFPLATON reports Additionally these

bulk crystals are easy to pick up under the optical microscope which could be used

conveniently to characterize microscopic morphology of title compounds as shown in Figure

S24

IX Preparation of the working electrodes Considering the convenience and the accuracy

glassy carbon electrodes have been employed as the working electrodes as shown in latest

literatures[5-7]

The glassy carbon (GCE) working electrode was polished before each experiment with 1 03

and 005 mm alumina power on chamois leather respectively rinsed thoroughly with DI

water between each polishing step

7

In general the POMs possess many surface oxygen atoms with high negative charges and the

metal atoms in MOF possess unoccupied orbital and thus POMs and MOFs are easily to

coordinate together which alleviates the solubility of POMs To prepare the working

electrodes for the three-electrode systems a mixture of 25 mg of the corresponding

compound and 25 mg of acetylene black were mixed and ground together by agate mortar to

achieve a uniform mixture Then 05 mL of distilled water was added to the above mixture

The obtained mixture was further sonicated to make a well dispersed slurry This slurry (10

μL) was deposited onto a glassy carbon surface (3 mm diameter) and dried for 3 hours at

room temperature A Nafion solution (25 μL) was deposited onto the sample surface and the

modified electrode was then dried for 1 hour at room temperature

In addition in order to further investigate the quality loaded on the glassy carbon electrode

(GCE) surface in this work is accurate two experiments of compound 4 as an example which

shows the best capacitance performance have been done On the one hand the CV (5 mV s-1)

and GCD (2 A g-1) measurements have been repeated by carbon cloth (CC) as shown in

Figure S25 The result indicates that the capacitance performance of CC is similar with GCE

though higher current through loading more active materials The tiny differences of

capacitance performance between them could be contributed to the disperse problem of slurry

on CC because of its poor hydrophobicity although it has been handed in HNO3 On the other

hand many parallel experiments loading with the same slurry (6 μL or 8 μL) on GCE have

been done as shown in Figure S26 The results that the CV curves of the two groups (total 10

experiments) are nearly identical for the 6 μL and 8 μL slurry respectively

X Electrochemical measurements All electrochemical tests were measured with a

8

CHI760E electrochemical workstation (Shanghai CH Instruments Inc) at room temperature

The three-electrode tests were conducted in 1 M H2SO4 Pt and AgAgCl were used as counter

and reference electrodes respectively Cyclic voltammetry (CV) tests were carried out with

sweep rates from 5 to 100 mV s-1 in a voltage range (vs AgAgCl) from 01 to -06 V for

compounds 1-3 from -005 to 055 V for compound 4 and from -005 to 045 V for compound

5 Electrochemical impedance spectroscopy (EIS) measurements were conducted from 100

kHz to 01 Hz with the amplitude of 5 mV referring to the open-circuit potential

Galvanostatic charge-discharge (GCD) tests were carried out at different current densities in

the range 2 to 20 A g-1 The specific gravimetric capacitance value can be calculated from the

following equations C= I times ∆ tmtimes ∆ V where C (F g-1) represents the specific capacitance I (A)

represents the discharge current ∆ V (V) represents the potential change within the discharge

time ∆ t (s) and m (g) corresponds to the amount of active material on the electrode The

cycling stabilities were evaluated by carrying out multiple chargedischarge cycles

Additionally in order to demonstrate the effects of different electrolytes on the

electrochemical performances compound 4 which shows the best capacitance performance

among the title compounds has been measured through cyclic voltammetry (CV) and

galvanostatic chargedischarge (GCD) at two kinds of additional electrolytes namely 1M HCl

and 1M HNO3 As a result compound 4 exhibits the similar electrochemical performance in

different electrolytes of 1M H2SO4 1M HCl and 1M HNO3 as shown in Figure S27

9

SECTION 2 RESULTS AND DISCUSSION

Figure S1 The formula unit of compound 1 (similar for 4) Hydrogen atoms and

crystallization water molecules are omitted for clarity)

Figure S2 The formula unit of compound 2 (similar for 5) Hydrogen atoms and

crystallization water molecules are omitted for clarity

10

Figure S3 The formula unit of compound 3 Hydrogen atoms and crystallization water

molecules are omitted for clarit)

Figure S4 The space-filling view of title compounds 1-5

Figure S5 A scheme of pseudo-rotaxane structure molecular ldquostringsrdquo (Cu4-btx chains)

11

thread molecular ldquoloopsrdquo (Cu1-btx-Cu2-POM) to form an unusual pseudo-rotaxane

structure in compound 2 and 5 Green and blue spheres represent Cu1 and Cu2 atoms purple

spheres represent POMs

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3

Figure S7 The 3D framework of compound 3 showing the channels along the c axis

12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for 0 24 48 and 96 h

13

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 8: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

In general the POMs possess many surface oxygen atoms with high negative charges and the

metal atoms in MOF possess unoccupied orbital and thus POMs and MOFs are easily to

coordinate together which alleviates the solubility of POMs To prepare the working

electrodes for the three-electrode systems a mixture of 25 mg of the corresponding

compound and 25 mg of acetylene black were mixed and ground together by agate mortar to

achieve a uniform mixture Then 05 mL of distilled water was added to the above mixture

The obtained mixture was further sonicated to make a well dispersed slurry This slurry (10

μL) was deposited onto a glassy carbon surface (3 mm diameter) and dried for 3 hours at

room temperature A Nafion solution (25 μL) was deposited onto the sample surface and the

modified electrode was then dried for 1 hour at room temperature

In addition in order to further investigate the quality loaded on the glassy carbon electrode

(GCE) surface in this work is accurate two experiments of compound 4 as an example which

shows the best capacitance performance have been done On the one hand the CV (5 mV s-1)

and GCD (2 A g-1) measurements have been repeated by carbon cloth (CC) as shown in

Figure S25 The result indicates that the capacitance performance of CC is similar with GCE

though higher current through loading more active materials The tiny differences of

capacitance performance between them could be contributed to the disperse problem of slurry

on CC because of its poor hydrophobicity although it has been handed in HNO3 On the other

hand many parallel experiments loading with the same slurry (6 μL or 8 μL) on GCE have

been done as shown in Figure S26 The results that the CV curves of the two groups (total 10

experiments) are nearly identical for the 6 μL and 8 μL slurry respectively

X Electrochemical measurements All electrochemical tests were measured with a

8

CHI760E electrochemical workstation (Shanghai CH Instruments Inc) at room temperature

The three-electrode tests were conducted in 1 M H2SO4 Pt and AgAgCl were used as counter

and reference electrodes respectively Cyclic voltammetry (CV) tests were carried out with

sweep rates from 5 to 100 mV s-1 in a voltage range (vs AgAgCl) from 01 to -06 V for

compounds 1-3 from -005 to 055 V for compound 4 and from -005 to 045 V for compound

5 Electrochemical impedance spectroscopy (EIS) measurements were conducted from 100

kHz to 01 Hz with the amplitude of 5 mV referring to the open-circuit potential

Galvanostatic charge-discharge (GCD) tests were carried out at different current densities in

the range 2 to 20 A g-1 The specific gravimetric capacitance value can be calculated from the

following equations C= I times ∆ tmtimes ∆ V where C (F g-1) represents the specific capacitance I (A)

represents the discharge current ∆ V (V) represents the potential change within the discharge

time ∆ t (s) and m (g) corresponds to the amount of active material on the electrode The

cycling stabilities were evaluated by carrying out multiple chargedischarge cycles

Additionally in order to demonstrate the effects of different electrolytes on the

electrochemical performances compound 4 which shows the best capacitance performance

among the title compounds has been measured through cyclic voltammetry (CV) and

galvanostatic chargedischarge (GCD) at two kinds of additional electrolytes namely 1M HCl

and 1M HNO3 As a result compound 4 exhibits the similar electrochemical performance in

different electrolytes of 1M H2SO4 1M HCl and 1M HNO3 as shown in Figure S27

9

SECTION 2 RESULTS AND DISCUSSION

Figure S1 The formula unit of compound 1 (similar for 4) Hydrogen atoms and

crystallization water molecules are omitted for clarity)

Figure S2 The formula unit of compound 2 (similar for 5) Hydrogen atoms and

crystallization water molecules are omitted for clarity

10

Figure S3 The formula unit of compound 3 Hydrogen atoms and crystallization water

molecules are omitted for clarit)

Figure S4 The space-filling view of title compounds 1-5

Figure S5 A scheme of pseudo-rotaxane structure molecular ldquostringsrdquo (Cu4-btx chains)

11

thread molecular ldquoloopsrdquo (Cu1-btx-Cu2-POM) to form an unusual pseudo-rotaxane

structure in compound 2 and 5 Green and blue spheres represent Cu1 and Cu2 atoms purple

spheres represent POMs

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3

Figure S7 The 3D framework of compound 3 showing the channels along the c axis

12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for 0 24 48 and 96 h

13

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 9: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

CHI760E electrochemical workstation (Shanghai CH Instruments Inc) at room temperature

The three-electrode tests were conducted in 1 M H2SO4 Pt and AgAgCl were used as counter

and reference electrodes respectively Cyclic voltammetry (CV) tests were carried out with

sweep rates from 5 to 100 mV s-1 in a voltage range (vs AgAgCl) from 01 to -06 V for

compounds 1-3 from -005 to 055 V for compound 4 and from -005 to 045 V for compound

5 Electrochemical impedance spectroscopy (EIS) measurements were conducted from 100

kHz to 01 Hz with the amplitude of 5 mV referring to the open-circuit potential

Galvanostatic charge-discharge (GCD) tests were carried out at different current densities in

the range 2 to 20 A g-1 The specific gravimetric capacitance value can be calculated from the

following equations C= I times ∆ tmtimes ∆ V where C (F g-1) represents the specific capacitance I (A)

represents the discharge current ∆ V (V) represents the potential change within the discharge

time ∆ t (s) and m (g) corresponds to the amount of active material on the electrode The

cycling stabilities were evaluated by carrying out multiple chargedischarge cycles

Additionally in order to demonstrate the effects of different electrolytes on the

electrochemical performances compound 4 which shows the best capacitance performance

among the title compounds has been measured through cyclic voltammetry (CV) and

galvanostatic chargedischarge (GCD) at two kinds of additional electrolytes namely 1M HCl

and 1M HNO3 As a result compound 4 exhibits the similar electrochemical performance in

different electrolytes of 1M H2SO4 1M HCl and 1M HNO3 as shown in Figure S27

9

SECTION 2 RESULTS AND DISCUSSION

Figure S1 The formula unit of compound 1 (similar for 4) Hydrogen atoms and

crystallization water molecules are omitted for clarity)

Figure S2 The formula unit of compound 2 (similar for 5) Hydrogen atoms and

crystallization water molecules are omitted for clarity

10

Figure S3 The formula unit of compound 3 Hydrogen atoms and crystallization water

molecules are omitted for clarit)

Figure S4 The space-filling view of title compounds 1-5

Figure S5 A scheme of pseudo-rotaxane structure molecular ldquostringsrdquo (Cu4-btx chains)

11

thread molecular ldquoloopsrdquo (Cu1-btx-Cu2-POM) to form an unusual pseudo-rotaxane

structure in compound 2 and 5 Green and blue spheres represent Cu1 and Cu2 atoms purple

spheres represent POMs

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3

Figure S7 The 3D framework of compound 3 showing the channels along the c axis

12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for 0 24 48 and 96 h

13

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 10: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

SECTION 2 RESULTS AND DISCUSSION

Figure S1 The formula unit of compound 1 (similar for 4) Hydrogen atoms and

crystallization water molecules are omitted for clarity)

Figure S2 The formula unit of compound 2 (similar for 5) Hydrogen atoms and

crystallization water molecules are omitted for clarity

10

Figure S3 The formula unit of compound 3 Hydrogen atoms and crystallization water

molecules are omitted for clarit)

Figure S4 The space-filling view of title compounds 1-5

Figure S5 A scheme of pseudo-rotaxane structure molecular ldquostringsrdquo (Cu4-btx chains)

11

thread molecular ldquoloopsrdquo (Cu1-btx-Cu2-POM) to form an unusual pseudo-rotaxane

structure in compound 2 and 5 Green and blue spheres represent Cu1 and Cu2 atoms purple

spheres represent POMs

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3

Figure S7 The 3D framework of compound 3 showing the channels along the c axis

12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for 0 24 48 and 96 h

13

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 11: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Figure S3 The formula unit of compound 3 Hydrogen atoms and crystallization water

molecules are omitted for clarit)

Figure S4 The space-filling view of title compounds 1-5

Figure S5 A scheme of pseudo-rotaxane structure molecular ldquostringsrdquo (Cu4-btx chains)

11

thread molecular ldquoloopsrdquo (Cu1-btx-Cu2-POM) to form an unusual pseudo-rotaxane

structure in compound 2 and 5 Green and blue spheres represent Cu1 and Cu2 atoms purple

spheres represent POMs

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3

Figure S7 The 3D framework of compound 3 showing the channels along the c axis

12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for 0 24 48 and 96 h

13

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 12: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

thread molecular ldquoloopsrdquo (Cu1-btx-Cu2-POM) to form an unusual pseudo-rotaxane

structure in compound 2 and 5 Green and blue spheres represent Cu1 and Cu2 atoms purple

spheres represent POMs

Figure S6 Coordination of Cu2 and Cu3 to the PW12 anions in compound 3

Figure S7 The 3D framework of compound 3 showing the channels along the c axis

12

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for 0 24 48 and 96 h

13

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 13: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Figure S8 The eight Cu atoms linked to each PW12 polyoxoanion in compound 3

Figure S9 FT-IR spectra of five samples immersed in H2SO4 for 0 24 48 and 96 h

13

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 14: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Figure S10 Experimental (black lines) and simulated (red lines) XRPD patterns of

compounds 1-5

Figure S11 The cathodic peak currents of 4 (a) and 5 (b) against scan rates

Possible mechanism

We speculate the reason of excellent electrochemical performance is mainly related to the

14

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 15: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

redox capacity of POMs and the microstructures of POMOFs And the order of capacitance

performance is 4 gt 5 gt 1 gt 2 gt 3 for title POMOFs A possible mechanism is as follows

Firstly the electrochemical performances of the title POMOF-based electrode materials are

determined by the redox capacity of POMs The higher redox capacity Keggin POMs possess

the more excellent capacitance performance title POMOF-based electrode materials shows

with ease Compound 1 where the metal atoms are fully oxidized (WVI12) shows higher

capacitance performance than their partially reduced derivatives (WVI10WV

2 in 2 and WVI9WV

3

in 3) Therefore the order of capacitance performance is 1 gt 2 gt 3 Meanwhile compounds 4

and 5 contain PMo12 and SiMo12 respectively It has been reported that oxidative ability

decreases in the order PMo12 gt SiMo12 gt PW12 [8] thus the order of capacitance performance

for title POMOFs is 4 gt 5 gt 1 gt 2 gt 3

Secondly the microstructures of electrode materials also play a key role to influence the

capacitance performance As shown in manuscript compounds 1~3 all consist of the same

component (CubtxPW12) but different structures which show 2D brick-wall like layer

1D+3D pseudo-rotaxane structure and 3D open framework inserted by 2D guest sheets

respectively Meanwhile according to the method of literatures [9 10] the electrochemical

active surface area (ECSA) have been estimated through the double layer capacitances (Cdl) of

compounds 1~3 and the Cdl is decided by the slope of current density against scan rate

Herein the CV tests of compounds 1~3 were conducted in a potential window from 03 to 04

V vs AgAgCl as shown in Figure S12 The experiment results indicate compound 1 owns

the biggest slope which represents the biggest Cdl and the biggest ECSA And the order of

ECSA consists with the order of the values of capacitance (1 gt 2 gt 3) Additionally

15

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 16: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

compound 4 owns the same microstructure with compound 1 and thus compound 4 also has

higher capacitance than compound 5 Thus 2D brick-wall like layer structure owns the higher

capacitance performance than others compounds This experimental result can be also

understood that the free btx ligands among the 2D brick-wall like layer structure play a key

role on electron transfer due to that there are numerous hydrogen bonds between guest btx

ligands and host POMOF which is convenient for the electron transfer during the

chargedischarge processes

Figure S12 The CV curves of compounds 1~3 (a~c) and the plot of current density against

scan rate (d) at 10 20 40 60 80 100 120 150 and 200 mV s-1

Additionally the redox reactions of title compounds are attributed to the redox reaction of

POMs And the mechanism of redox reaction for POMs are as following Compounds 1 2

and 3 in the potential range from -06 to 01 V vs AgAgCl correspond to the one one and

16

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 17: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

two electron redox processes of W center in PW12 subunit (α-PW12O403- + e- = α-PW12O40

4- α-

PW12O404- + e- = α-PW12O40

5-and α-PW12O405- + 2e- + H+ = α-HPW12O40

6-) [11 12]

respectively Compounds 4 and 5 in the potential range from -06 to 01 V and from -005 to

045 V vs AgAgCl correspond to three two electron redox processes of Mo center in PMo12

or SiMo12 subunit (PMo12O403- + 2e- + 2H+ = H2PMo12O40

3- H2PMo12O403- + 2e- + 2H+ =

H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ = H6PMo12O403- as well as SiMo12O40

3- + 2e- + 2H+

= H2PMo12O403- H2PMo12O40

3- + 2e- + 2H+ = H4PMo12O403- and H4PMo12O40

3- + 2e- + 2H+ =

H6PMo12O403-) [11 13 14]

Rc CPEdl

Rct W

Element Freedom Value Error Error Rc Free(+) 4583 NA NACPEdl-T Fixed(X) 0 NA NACPEdl-P Fixed(X) 1 NA NARct Fixed(X) 7786E09 NA NAW-R Fixed(X) 0 NA NAW-T Fixed(X) 5748E-05 NA NAW-P Fixed(X) 093273 NA NA

Data FileCircuit Model File CUsersLenovoDesktopCdl WomdlMode Run Simulation Freq Range (0001 - 1000000)Maximum Iterations 100Optimization Iterations 0Type of Fitting ComplexType of Weighting Calc-Modulus

Figure S13 The proposed equivalent circuit for the electrochemical capacitor (Rc reflects the

resistance of electrolyte and Rct reflects the charge-transfer process)

17

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 18: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Figure S14 Cycling stabilities of compounds 2 (black) 3 (red) and 5 (blue) based electrodes

during 1000 cycles at a current density of 10 A g-1

Figure S15 FT-IR spectra of five samples for origin (black line) and after electrochemical

test (red line) (The new peaks ab 1135 and 1220 cm-1 could be attributed to Nafion)

The SEM morphologies and elements mapping

The SEM of compound 4 as an example has been done to study the morphologies due to its

best capacitance performance among the prepared compounds Additionally elements

mapping could prove the 4-based electrode material containing compound 4 although

compound 4 were encapsulated absolutely by acetylene black The detailed SEM studies are

as follows

The morphology of the compound 4 (triturated crystal sample) and the compound 4-based

electrode material (before and after 1000 cycle chargedischarge electrochemical

18

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 19: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

measurements) have been studied by SEM Firstly it can be seen from the magnified SEM

image that the triturated crystal sample of compound 4 has irregular shape (Figure S16) and

the elements mapping demonstrates that it consists of C N O P Cu and Mo elements with

uniform (Figure S17) Secondly the SEM images of the 4-based electrode material before and

after electrochemical measurements (1000 cycle chargedischage processes) are given in

Figure S18 and S20 respectively It can be seen that before and after 1000 cycles the

morphologies (Figure S18 and S20) and elements mapping images (Figure S19 and S21) of 4-

based electrode material are similar Thus there is little change in morphology after long

cycle chargedischarge processes Additionally all the characteristic peaks in FT-IR spectra

are nearly coincident before and after 1000 cycles chargedischarge processes (Figures S22)

which indicates that 4-based electrode material prefers stable without structural degradation

Additionally according to the suggestion the morphology studies of the prepared samples

including the SEM have been added in the revised manuscript

Figure S16 SEM images of compound 4 (triturated crystal sample)

19

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 20: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Figure S17 The EDS micro-analysis of compound 4 (triturated crystal sample)

Figure S18 The SEM images of the fresh prepared compound 4-based electrode material

(before electrochemical test)

Figure S19 The EDS micro-analysis of the fresh prepared compound 4-based electrode

material (before electrochemical test)

20

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 21: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Figure S20 The SEM images of the electrode material (after electrochemical test)

Figure S21 The EDS micro-analysis of the electrode material (after electrochemical test)

Figure S22 FT-IR spectra of compounds 1-5 in the 4000-400 cm-1 range

21

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 22: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Figure S23 IR spectra of the btx ligand and Cu-MOF compound (inset optics images of

corresponding btx ligand and Cu-MOF compound

Figure S24 The images of optical microscope of the five compounds (the magnification of

optical microscope is 02 mm times 40)

22

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 23: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Figure S25 Repeating CV curves at 5 mV s-1 (a) and GCD curves at 2 A g-1 (b) of compound

4 loading on carbon cloth (black line) and GCE (red line)

Figure S26 Two groups (total 10 experiments) of CV curves when 6 μL (a) and 8 μL (b)

slurry were respectively deposited onto five glassy carbon electrode surface at 50 mV s-1

23

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 24: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Figure S27 Compound 4 based electrode at 100 mV s-1 of CV curves (a) and 2 A g-1 of GCD

curves (b) in different electrolytes of 1M H2SO4 1M HCl and 1M HNO3

24

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 25: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Table S1 Crystal data and structure refinement for compounds [CuI4H2(btx)5(PW12O40)2]middot2H2O (1)

[CuIICuI3(H2O)2(btx)5(PWVI

10WV2O40)]middot2H2O (2) [CuI

6(btx)6(PWVI9WV

3O40)]middot2H2O (3) [CuI

4H2(btx)5(PMo12O40)2]middot2H2O (4) and [CuIICuI3(btx)5(SiMoVI

11MoVO40)]middot4H2O (5)

1 2 3 4 5

empirical

formula

formula weight

T K

crystal system

space group

a Aring

b Aring

c Aring

α deg

β deg

γ deg

V Aring3

Z

μ mm-1

F(000)

limiting indices

Rint

GOF on F2

R1a wR2b-

[I gt2σ (I)]

R1a wR2b-

(all data)

C60H66N30P2-

Cu4W24O82

724761

298

triclinic

P-1

117944(9)

154446(11)

187733(14)

100731(2)

99751(2)

107529(2)

31098(4)

1

22684

3208

-15 le h le 15

-20 le k le 20

-17 le l le 25

00423

1055

00653

01301

01018

01439

C60H68N30P-

Cu4W12O44

440460

298

triclinic

P-1

132381(4)

134004(4)

146492(5)

108492(3)

92529(3)

97260(3)

243496(14)

1

15074

1993

-15 le h le 15

-15 le k le 15

-17 le l le 17

00518

1060

00600

01498

00724

01568

C72H76N36P-

Cu6W12O42

473592

298

triclinic

P-1

140898(5)

143928(5)

153691(5)

87958(3)

62953(3)

72239(3)

262397(17)

1

14266

2169

-16 le h le 16

-17 le k le 17

-18 le l le 18

00392

1051

00343

00777

00411

00805

C60H66N30P2-

Cu4Mo24O82

513801

298

triclinic

P-1

118004(3)

154306(4)

186763(4)

101017(2)

99986(2)

107310(3)

308913(15)

1

3127

2440

-14 le h le 14

-19 le k le 19

-23 le l le 23

00477

1042

00421

00838

00566

00894

C60H68N30Si-

Cu4Mo12O44

334691

298

triclinic

P1

13126(2)

13321(2)

14537(2)

108382(4)

92714(4)

96899(4)

23847(7)

1

2506

1614

-15 le h le 15

-15 le k le 15

-17 le l le 17

00413

1054

00967

02025

01554

02436aR1 = sumFoFcsumFo b wR2 = sum[w(Fo

2Fc2)2]sum[w(Fo

2)2]12

Table S2 Selected bonds lengths (Aring) and angles (deg) for compound 1

25

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 26: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Compound 1

P(1)-O(1C) 147(2) W(6)-O(17) 1677(13) Cu(2)-N(7) 1873(16)

P(1)-O(1C)1 147(2) W(6)-O(4) 1860(17) C(1)-N(2) 129(3)

P(1)-O(1D)1 153(2) W(6)-O(18) 1870(16) C(1)-N(1) 133(3)

P(1)-O(1D) 153(2) W(6)-O(16) 1877(17) C(2)-N(3) 132(3)

P(1)-O(1B)1 154(2) W(6)-O(14) 1915(16) C(2)-N(1) 133(2)

P(1)-O(1B) 154(2) W(12)-O(36) 1667(14) C(3)-N(3) 143(2)

P(1)-O(1A) 156(2) W(12)-O(21) 1832(18) C(3)-C(4) 149(3)

P(1)-O(1A)1 156(2) W(12)-O(26)2 1891(19) C(4)-C(5) 140(3)

W(1)-O(1) 1676(14) W(12)-O(31) 1892(17) C(4)-C(6) 142(3)

W(1)-O(2) 1882(14) W(12)-O(35) 1938(14) C(5)-C(6)3 134(3)

W(1)-O(3) 1893(17) Cu(1)-N(1) 1864(16) C(6)-C(5)3 134(3)

W(1)-O(5) 1900(14) Cu(1)-N(4) 1864(15) C(24)-C(23)4 137(3)

W(1)-O(4) 1929(15) Cu(2)-N(10) 1864(16) C(29)-C(30)5 136(4)

O(1)-W(1)-O(2) 1026(8) N(3)-C(2)-N(1) 1107(17)

O(1)-W(1)-O(3) 1025(9) N(3)-C(3)-C(4) 1138(18)

O(2)-W(1)-O(3) 883(8) C(5)-C(4)-C(6) 118(2)

O(1)-W(1)-O(5) 1038(7) C(5)-C(4)-C(3) 120(2)

O(2)-W(1)-O(5) 884(6) C(6)-C(4)-C(3) 1219(19)

O(3)-W(1)-O(5) 1536(8) C(6)3-C(5)-C(4) 121(2)

O(1)-W(1)-O(4) 1022(9) C(5)3-C(6)-C(4) 121(2)

O(2)-W(1)-O(4) 1552(9) N(5)-C(7)-N(4) 1124(18)

O(3)-W(1)-O(4) 855(7) N(6)-C(8)-N(4) 117(2)

O(5)-W(1)-O(4) 865(7) N(5)-C(9)-C(10) 1164(16)

N(1)-Cu(1)-N(4) 1750(8) C(22)-C(23)-C(24)4 122(2)

N(10)-Cu(2)-N(7) 1762(8) C(22)-C(24)-C(23)4 119(2)

N(2)-C(1)-N(1) 1144(17) C(30)5-C(29)-C(28) 120(3)

Symmetry transformations used to generate equivalent atoms 1 -x+1-y+1-z+2 2 -x-y+2-

z+1 3 -x+1-y+3-z+1 4 -x-y-z+2 5 -x+1-y+2-z+2

Table S3 Selected bonds lengths (Aring) and angles (deg) for compound 2Compound 2

P-O(1D)1 1477(19) W(1)-O(2) 1914(12) Cu(4)-Cu(4)5 1777(18)

26

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 27: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

P-O(1D) 1477(19) W(1)-O(3) 1917(12) Cu(4)-N(15) 1825(10)

P-O(1C)1 149(2) Cu(1)-N(7)2 1995(8) Cu(4)-C(25)5 2317(13)

P-O(1C) 149(2) Cu(1)-N(7) 1995(7) Cu(4)-

N(15)5

2468(13)

P-O(1A)1 153(2) Cu(1)-N(1)2 2039(8) C(17)-C(18)6 143(3)

P-O(1A) 153(2) Cu(1)-N(1) 2039(6) C(18)-C(17)6 143(3)

P-O(1B) 162(2) Cu(1)-O(14)2 2398(12) C(20)-N(10) 129(2)

P-O(1B)1 162(2) Cu(2)-N(6) 1877(8) C(23)-C(24)7 138(3)

W(1)-O(1) 1693(14) Cu(2)-N(6)3 1877(10) C(24)-C(23)7 138(3)

W(1)-O(5) 1894(12) Cu(3)-N(12)4 1893(8) C(29)-C(30)8 136(4)

W(1)-O(4) 1902(12) Cu(3)-N(12) 1893(7) C(30)-C(29)8 136(4)

O(1)-W(1)-O(5) 1023(7) N(7)2-Cu(1)-N(7) 18000(19)

O(1)-W(1)-O(4) 1012(7) N(7)2-Cu(1)-N(1)2 907(3)

O(5)-W(1)-O(4) 874(6) N(7)-Cu(1)-N(1)2 893(3)

O(1)-W(1)-O(2) 1018(7) N(7)2-Cu(1)-N(1) 893(3)

O(5)-W(1)-O(2) 1559(7) N(7)-Cu(1)-N(1) 907(3)

O(4)-W(1)-O(2) 880(5) N(1)2-Cu(1)-N(1) 1800(4)

O(1)-W(1)-O(3) 1022(7) N(7)2-Cu(1)-O(14)2 927(4)

O(5)-W(1)-O(3) 872(5) N(7)-Cu(1)-O(14)2 873(4)

O(4)-W(1)-O(3) 1566(7) N(1)2-Cu(1)-O(14)2 908(4)

O(2)-W(1)-O(3) 877(6) N(1)-Cu(1)-O(14)2 892(4)

C(28)-C(29)-C(30)8 126(3) N(7)2-Cu(1)-O(14) 873(4)

N(1)-Cu(1)-O(14) 908(4) N(7)-Cu(1)-O(14) 927(4)

O(14)2-Cu(1)-O(14) 1800(6) N(1)2-Cu(1)-O(14) 892(4)

Symmetry transformations used to generate equivalent atoms 1 -x-y+2-z+1 2 -x-y+2-z

3 -x+2-y+3-z+1 4 -x+1-y+2-z+1 5 -x+1-y+1-z 6 -x-y+1-z 7 -x+1-y+3-z+1 8

-x+1-y+2-z

Table S4 Selected bonds lengths (Aring) and angles (deg) for compound 3Compound 3

27

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 28: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

P(1)-O(1D)1 1502(12) Cu(1)-N(1) 1875(10) C(5)-C(6)2 1365(18)

P(1)-O(1D) 1502(12) Cu(1)-N(4) 1898(10) C(6)-C(5)2 1365(18)

P(1)-O(1C)1 1521(11) Cu(2)-N(7) 1877(10) C(11)-C(12)3 1359(18)

P(1)-O(1C) 1521(11) Cu(2)-N(10) 1883(10) C(12)-C(11)3 1359(18)

P(1)-O(1A) 1529(11) Cu(3)-N(13) 1870(9) C(19)-C(20) 1374(15)

P(1)-O(1A)1 1529(11) Cu(3)-N(16) 1892(10) C(19)-

C(36)4

1516(19)

P(1)-O(1B) 1548(11) C(1)-N(3) 1308(14) C(36)-

C(19)5

1515(19)

P(1)-O(1B)1 1548(11) C(1)-N(1) 1329(15) N(2)-N(3) 1349(14)

W(1)-O(1) 1676(7) C(2)-N(2) 1306(18) N(5)-N(6) 1349(15)

W(1)-O(3) 1891(9) C(2)-N(1) 1365(19) N(8)-N(9) 1354(13)

W(1)-O(2) 1891(8) C(3)-N(3) 1466(14) N(11)-N(12) 1356(13)

W(1)-O(4) 1900(8) C(3)-C(4) 1494(17) N(14)-N(15) 1345(13)

W(1)-O(5) 1903(7) C(4)-C(5) 1383(17) N(17)-N(18) 1351(15)

O(1)-W(1)-O(3) 1032(4) O(18)-W(6)-O(14) 1030(4)

O(1)-W(1)-O(2) 1029(4) O(18)-W(6)-O(17) 1019(4)

O(3)-W(1)-O(2) 880(4) O(14)-W(6)-O(17) 884(3)

O(1)-W(1)-O(4) 1011(5) O(18)-W(6)-O(2)1 1013(4)

O(3)-W(1)-O(4) 877(4) O(14)-W(6)-O(2)1 892(4)

O(2)-W(1)-O(4) 1560(5) O(17)-W(6)-O(2)1 1566(5)

O(1)-W(1)-O(5) 1005(4) O(18)-W(6)-O(7)1 1006(4)

O(3)-W(1)-O(5) 1562(4) O(14)-W(6)-O(7)1 1564(5)

O(2)-W(1)-O(5) 872(3) O(17)-W(6)-O(7)1 865(4)

O(4)-W(1)-O(5) 872(4) O(2)1-W(6)-O(7)1 864(3)

N(1)-Cu(1)-N(4) 1748(5) C(18)-C(19)-C(36)4 1221(12)

N(7)-Cu(2)-N(10) 1751(5) C(20)-C(19)-C(36)4 1199(12)

N(13)-Cu(3)-N(16) 1790(5) N(17)-C(36)-C(19)5 1119(10)

Symmetry transformations used to generate equivalent atoms 1 -x-y+1-z+1 2 -x+1-y+2-

z+1 3 -x-y+1-z+2 4 x-1y+1z-1 5 x+1y-1z+1

Table S5 Selected bonds lengths (Aring) and angles (deg) for compound 4

28

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 29: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

Compound 4

Mo(1)-O(1) 1665(5) Cu(1)-N(1) 1879(5) C(6)-C(5)3 1379(10)

Mo(1)-O(9)1 1839(5) Cu(1)-N(4) 1887(5) C(23)-

C(24)4

1386(10)

Mo(1)-O(3) 1884(5) Cu(2)-N(10) 1870(5) C(28)-C(29) 1358(11)

Mo(1)-O(11)1 1911(6) Cu(2)-N(9) 1881(5) C(28)-C(30) 1373(11)

Mo(1)-O(2) 1949(5) C(1)-N(3) 1310(8) C(29)-

C(30)5

1382(12)

Mo(2)-O(4) 1651(4) C(1)-N(1) 1330(9) C(24)-

C(23)4

1386(10)

Mo(2)-O(2) 1857(5) C(2)-N(2) 1305(8) C(30)-

C(29)5

1382(12)

Mo(2)-O(17)1 1894(5) C(2)-N(1) 1350(9) C(29)-

C(30)5

1382(12

Mo(2)-O(5) 1909(5) C(3)-N(3) 1450(8) N(2)-N(3) 1363(8)

Mo(2)-O(6) 1938(5) C(3)-C(4) 1509(10) N(5)-N(6) 1360(8)

O(18)-Mo(3)1 1896(5) C(4)-C(5) 1382(9) N(7)-N(8) 1358(7)

O(20)-Mo(12)2 1824(5) C(4)-C(6) 1387(9) N(11)-N(12) 1361(7)

O(27)-Mo(8)2 1997(5) C(5)-C(6)3 1379(10) N(13)-N(14) 1351(9)

O(1)-Mo(1)-O(9)1 1019(3) N(1)-Cu(1)-N(4) 1748(3)

O(1)-Mo(1)-O(3) 1018(3) N(10)-Cu(2)-N(9) 1771(3)

O(9)1-Mo(1)-O(3) 912(3) N(3)-C(1)-N(1) 1097(6)

O(1)-Mo(1)-O(11)1 1007(3) N(3)-C(1)-H(1) 1252

O(9)1-Mo(1)-O(11)1 891(2) N(1)-C(1)-H(1) 1252

O(3)-Mo(1)-O(11)1 1569(3) N(2)-C(2)-N(1) 1146(7)

O(1)-Mo(1)-O(2) 1006(3) N(2)-C(2)-H(2) 1227

O(9)1-Mo(1)-O(2) 1574(3) N(1)-C(2)-H(2) 1227

O(3)-Mo(1)-O(2) 860(2) N(3)-C(3)-C(4) 1129(6)

O(11)1-Mo(1)-O(2) 848(3) C(26)-N(13)-C(27) 1305(8)

O(1)-Mo(1)-O(1A) 1591(3) N(14)-N(13)-C(27) 1195(7)

O(9)1-Mo(1)-O(1A) 644(3) C(25)-N(14)-N(13) 1042(7)

29

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 30: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

O(3)-Mo(1)-O(1A) 945(3) C(26)-N(15)-C(25) 1045(7)

Symmetry transformations used to generate equivalent atoms 1 -x+2-y-z+2 2 -x+1-y+1-

z+1 3 -x+1-y-1-z+2 4 -x+2-y+2-z+1 5 -x+2-y+1-z+2

Table S6 Selected bonds lengths (Aring) and angles (deg) for compound 5Compound 5

Mo(1)-O(39) 170(3) Cu(1)-N(16) 196(2) N(7)-C(12) 132(4)

Mo(1)-O(12) 188(3) Cu(1)-N(1) 190(2) N(7)-C(11) 137(4)

Mo(1)-O(33) 195(4) Cu(1)-N(4) 1951(19) N(8)-C(11) 116(5)

Mo(1)-O(24) 191(3) Cu(1)-N(7) 208(3) N(8)-N(9) 135(4)

Mo(1)-O(11) 191(4) Cu(1)-O(6) 241(3) N(9)-C(12) 127(4)

Mo(1)-O(29) 2385(19) Cu(2)-N(12) 1792(19) N(9)-C(13) 160(6)

Mo(2)-O(19) 173(3) Cu(2)-N(13) 194(3) N(14)-C(23) 129(4)

Mo(2)-O(34) 182(2) Si(1)-O(29) 157(2) N(14)-N(15) 133(4)

Mo(2)-O(33) 187(4) Si(1)-O(27) 158(2) N(14)-

C(10)2

156(5)

Mo(2)-O(10) 197(3) Si(1)-O(26) 163(2) N(15)-C(24) 127(5)

Mo(2)-O(32) 203(3) Si(1)-O(21) 1660(19) C(10)-

N(14)3

156(5)

Mo(2)-O(27) 2367(18) N(13)-C(24) 145(4) C(36)-N(3)4 149(12)

N(10)-C(20) 1398(19) N(13)-C(23) 142(4) C(46)-C(39)4 137(5)

O(39)-Mo(1)-O(12) 1033(16) O(24)-Mo(1)-O(29) 708(13)

O(39)-Mo(1)-O(33) 989(18) O(11)-Mo(1)-O(29) 704(12)

O(12)-Mo(1)-O(33) 869(13) N(16)-Cu(1)-N(1) 1783(17)

O(39)-Mo(1)-O(24) 997(17) N(16)-Cu(1)-N(4) 882(13)

O(12)-Mo(1)-O(24) 1568(16) N(1)-Cu(1)-N(4) 902(13)

O(33)-Mo(1)-O(24) 874(14) N(16)-Cu(1)-N(7) 906(14)

O(39)-Mo(1)-O(11) 996(17) N(1)-Cu(1)-N(7) 911(14)

O(12)-Mo(1)-O(11) 918(14) N(4)-Cu(1)-N(7) 1786(16)

O(33)-Mo(1)-O(11) 1613(18) N(16)-Cu(1)-O(6) 864(12)

O(24)-Mo(1)-O(11) 865(13) N(1)-Cu(1)-O(6) 937(11)

O(39)-Mo(1)-O(29) 1662(13) N(4)-Cu(1)-O(6) 913(11)

30

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 31: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

O(12)-Mo(1)-O(29) 868(11) N(7)-Cu(1)-O(6) 893(10)

O(33)-Mo(1)-O(29) 909(14) N(12)-Cu(2)-N(13) 1767(18)

Symmetry transformations used to generate equivalent atoms 1 xy+1z 2 x+2y+1z+1 3

x-2y-1z-1 4 xy-1z

Table S7 Summary of the typical MOF-based and POM-based supercapacitor electrodes (3-electrode configuration)

No

Electrode Curren

t

density

Specific

capacitanc

e

Electrolyte

membrane

Ref

1 MC-Al 1 A g-1 1736 F g-1 30 KOH solution Appl Surf Sci

308 (2014) 306-

310

2 porous Fe3O4carbon

composite

2 A g-1 95 F g-1 1 M KOH Nano Energy 8

(2014) 133-140

3 ZIF-8-NPC 1 A g-1 201 F g-1 1 M H2SO4 Chem

Commun 53

(2017) 1751-

1754

4 Ni-MOF-24 05 A g-1 1127 F g-1 6 M KOH J Mater Chem

A 2 (2014)

16640-16644

5 ZIF-8 ZIF-67 ZIF-8ZIF-

67

2 A g-1 239 119

270 F g-1

NEt4BF4 J Am Chem

Soc 137 (2015)

1572-1580

6 Co-MOF film 06 A g-1 20676 F g-1 1 M LiOH Micropor

Mesopor Mat

153 (2012) 163-

165

7 BNPC 1 A g-1 22671 F g-1 05 M NaCl solution J Mater Chem

A 4 (2016)

31

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 32: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

10858-10868

8 MOF-5 005 A

g-1

90 F g-1 1 M KOH ACS Appl

Mater

Interfaces 7

(2015) 3655-

3664

9 bulk CoSNC 2D CoSNC 15 A g-1 106 3601

F g-1

2 M KOH J Am Chem

Soc 138 (2016)

6924-6927

10 HT-RGO-PMo12 (HT-RGO) 1 A g-1 276 (215) F

g-1

1 M H2SO4 Phys Chem

Chem Phys 16

(2014) 20411-

20414

11 ACPMo12O40 2 A g-1 183 F g-1 1 M H2SO4 Electrochem

Commun 24

(2012) 35-38

12 CNTsPDDA[P2VW17-O62]8- 02 A g-1 82 F g-1 05 M H2SO4 J Solid State

Electr 17

(2013) 1631-

1640

13 HPWRGO 2 A g-1 1538 F g-1 5 M H2SO4 Compos Part

B-Eng 121

(2017) 75-82

14 PPy-PMo12rGO 2 A g-1 252 F g-1 05 M H2SO4 Chem

Commun 51

(2015) 12377-

12380

15 ACPMo12O40 1 mV s-1 223 F g-1 1 M [Bmim]HSO4 J Power

Sources 326

(2016) 569-574

32

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 33: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

16 MWCNT-PMo12 25 mV

s-1

1069 F cm-

3

1 M H2SO4 Electrochem

Commun 43

(2014) 60-62

17 Na6V10O28 2 A g-1 143 F g-1 1 M LiClO4PC ChemPhysChe

m 15 (2014)

2162-2169

18 PEDOT[PV2Mo10O40]

PEDOT[PMo12O40]

100 mV

s-1

70 140 F g-

1

01 M H2SO4 Electrochim

Acta 49 (2004)

861-865

19 Compound 4 2 A g-1 237 F g-1 1 M H2SO4 This work

20 Self-made (Cu-MOF) 2 A-1 151 F g-1 1 M H2SO4 This work

Table R8 The calculated values of Rc and Rct through the proposed equivalent circuitCompounds Rc (Ω) Rct (Ω)

1 508 660

2 530 1407

3 549 1605

4 457 458

5 492 399

33

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 34: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

References

[1] X Meng Y Song H Hou H Han B Xiao Y Fan Y Zhu Hydrothermal Syntheses

Crystal Structures and Characteristics of a Series of Cdminusbtx Coordination Polymers (btx =

14-Bis(triazol-1-ylmethyl)benzene) Inorg Chem 43 (2004) 3528-3536

[2] K Hayashi M Takahashi K Nomiya Novel TindashOndashTi bonding species constructed in a

metal-oxide cluster Dalton transactions (2005) 3751-3756

[3] GM Sheldrick SHELX-97 Program for Crystal Structure Refinement SHELX-97

Program for Crystal Structure Refinement University of Goumlttingen Germany (1997)

[4] GM Sheldrick SHELXS-97 Program for Crystal Structure Solution SHELXS-97

Program for Crystal Structure Solution University of Goumlttingen Germany (1997)

[5] M Zhou Y Lu H Chen X Ju F Xiang Excellent durable supercapacitor performance

of hierarchical porous carbon spheres with macro hollow cores Journal of Energy Storage 19

(2018) 35-40

[6] DV Zhuzhelskii EG Tolstopjatova SN Eliseeva AV Ivanov S Miao VV

Kondratiev Electrochemical properties of PEDOTWO3 composite films for high

performance supercapacitor application Electrochim Acta 299 (2019) 182-190

[7] B Tang R Gondosiswanto DB Hibbert C Zhao Critical assessment of superbase-

derived protic ionic liquids as electrolytes for electrochemical applications Electrochim Acta

298 (2019) 413-420

[8] M Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and

Tungsten Catal Rev 29 (1987) 269-321

34

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35

Page 35: ars.els-cdn.com · Web viewFT-IR spectra of five samples for origin (black line) and after electrochemical test (red line). (The new peaks ab. 1135 and 1220 cm-1 could be attributed

[9] H Sun X Ji Y Qiu Y Zhang Z Ma G-g Gao P Hu Poor crystalline MoS2 with

highly exposed active sites for the improved hydrogen evolution reaction performance J

Alloy Compd 777 (2019) 514-523

[10] J Lin Z Zhong H Wang X Zheng Y Wang J Qi J Cao W Fei Y Huang J Feng

Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type

electrode for high-performance supercapattery J Power Sources 407 (2018) 6-13

[11] M Sadakane E Steckhan Electrochemical Properties of Polyoxometalates as

Electrocatalysts Chem Rev 98 (1998) 219-237

[12] D Martel M Gross Electrochemical study of multilayer films built on glassy carbon

electrode with polyoxometalate anions and two multi-charged molecular cationic species J

Solid State Electr 11 (2007) 421-429

[13] T Akter K Hu K Lian Investigations of multilayer polyoxometalates-modified carbon

nanotubes for electrochemical capacitors Electrochim Acta 56 (2011) 4966-4971

[14] TA Gurvinder Bajwa and Keryn Lian Polyoxometalates Modified Carbon Nanotubes

for Electrochemical Capacitors ECS Trans 35 (2011) 31-37

35