arsenic thermodynamic data

19
Appendix C Arsenic Thermodynamic Data C.1 Introduction Italicized terms in the text of this appendix or words derived from the italicized terms are defined in the glossary of Appendix B. Table C.1 lists published thermodynamic data for arsenic, including: the more common elemental forms, selected compounds, and some aqueous and gaseous species. The table contains Gibbs free energy (G f ), enthalpy (H f ), entropy (S), and heat capacity (Cp) values at 1 bar pressure and mostly at 298.15 K (25 C). For thermodynamic data of chemical species not containing arsenic, extensive tables occur in geochemistry textbooks and other references, including: (Barin, 1995; Robie, Hemingway and Fisher, 1979; Wagman et al., 1982; Drever, 1997; Eby, 2004; Faure, 1998; Lide, 2007; Krauskopf and Bird, 1995). Thermodynamic data are important in examining the behavior of arsenic in mineral–water interactions, studying water quality issues, investigating the formation of ore deposits, developing and interpreting Eh-pH diagrams, and designing environmental remediation projects (Nordstrom and Archer, 2003, 1–2). Not all published and widely accepted thermodynamic values are reliable. Nordstrom and Archer (2003) provide a detailed review of the controversies, uncertainties, and problems related to thermodynamic data for arsenic and its compounds and aqueous species. Many of the data are contradictory and the methods that produce the data are sometimes questionable or have not been thoroughly documented. Too often, data in the literature have been passed from reference to reference without critical evaluations. Some of the data have high measurement errors, were produced under undefined or poorly defined laboratory conditions, and involved unrepresentative sampling (Matschullat 2000, 298; Nordstrom and Archer, 2003). Furthermore, other questionable data originate from obscure documents or are written in languages that many individuals cannot read and properly interpret. Therefore, thermodynamic results must be accepted with a certain amount of caution. The table in this appendix includes thermodynamic data from various sources, which provide users with some idea of their variability. Although sometimes unavoidable, users Arsenic Edited by Kevin R. Henke © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-02758-5

Upload: gabriel-pekarek

Post on 20-Jan-2016

82 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Arsenic Thermodynamic Data

Appendix C

Arsenic Thermodynamic Data

C.1 Introduction

Italicized terms in the text of this appendix or words derived from the italicized terms are defined in theglossary of Appendix B.

Table C.1 lists published thermodynamic data for arsenic, including: the more common elementalforms, selected compounds, and some aqueous and gaseous species. The table contains Gibbs free energy(�Gf ), enthalpy (�Hf ), entropy (S), and heat capacity (Cp) values at 1 bar pressure and mostly at298.15 K (25 ◦C). For thermodynamic data of chemical species not containing arsenic, extensive tablesoccur in geochemistry textbooks and other references, including: (Barin, 1995; Robie, Hemingway andFisher, 1979; Wagman et al., 1982; Drever, 1997; Eby, 2004; Faure, 1998; Lide, 2007; Krauskopf andBird, 1995). Thermodynamic data are important in examining the behavior of arsenic in mineral–waterinteractions, studying water quality issues, investigating the formation of ore deposits, developing andinterpreting Eh-pH diagrams, and designing environmental remediation projects (Nordstrom and Archer,2003, 1–2).

Not all published and widely accepted thermodynamic values are reliable. Nordstrom and Archer (2003)provide a detailed review of the controversies, uncertainties, and problems related to thermodynamic datafor arsenic and its compounds and aqueous species. Many of the data are contradictory and the methodsthat produce the data are sometimes questionable or have not been thoroughly documented. Too often,data in the literature have been passed from reference to reference without critical evaluations. Someof the data have high measurement errors, were produced under undefined or poorly defined laboratoryconditions, and involved unrepresentative sampling (Matschullat 2000, 298; Nordstrom and Archer, 2003).Furthermore, other questionable data originate from obscure documents or are written in languages thatmany individuals cannot read and properly interpret. Therefore, thermodynamic results must be acceptedwith a certain amount of caution. The table in this appendix includes thermodynamic data from varioussources, which provide users with some idea of their variability. Although sometimes unavoidable, users

Arse nic Edite d by K e vin R . He nke© 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-02758-5

Page 2: Arsenic Thermodynamic Data

476 Arsenic

are cautioned to avoid mixing data from different literature sources when performing calculations for areaction. Using data from multiple sources may introduce serious errors (Wagman et al., 1982; Eby, 2004,474).

C.2 Modeling applications with thermodynamic data

Once high-quality laboratory data are available, they may be used in geochemical computer models, suchas MINTEQA2 (Allison, Brown and Novo-Gradac, 1991) and PHREEQC (Parkhurst and Appelo, 1999).Langmuir (1997, 558–561) provides a brief review of the different types of geochemical models and theiradvantages and limitations. Geochemical models allow users to avoid tedious calculations. When properlyutilized, they may: (1) derive adsorption models, (2) identify probable aqueous species and estimate theiractivities, (3) model the effects of pH, reduction/oxidation (redox conditions), temperature, ionic strength,and other factors on arsenic chemistry, and/or (4) identify possible precipitates. However, as discussed inChapter 2, geochemical models are often incapable of accurately representing and predicting the complexbehavior of arsenic in natural environments. Specifically, the models typically fail to predict the presenceof metastable species, sluggish chemical reactions, and the effects of biological organisms.

C.3 Thermodynamic data

Page 3: Arsenic Thermodynamic Data

Arsenic Thermodynamic Data 477Ta

ble

C.1

Ther

mod

ynam

icda

tafo

rars

enic

,its

com

poun

ds,a

ndits

aque

ous

and

gase

ous

spec

ies

at1

barp

ress

ure.

Not

eth

atth

eun

itsof

Gi

and

Hi

are

1000

times

larg

erth

anS i

and

Cp i

.1kc

al=

4.18

4kJ

.◦C

=K

−273

.15.

(See

App

endi

xA

for

othe

run

itco

nver

sion

s).P

hase

sin

clud

e:am

orph

ous

(am

),aq

ueou

ssp

ecie

s(a

q),g

as,l

iqui

d(li

q),a

ndcr

ysta

lline

solid

s(x

ls).

Che

mic

alsp

ecie

sPh

ase

Tem

pera

ture

(K)

Gib

bsfr

eeen

ergy

(Gi)

(kJm

ol−1

)

Enth

alpy

(Hi)

(kJm

ol−1

)En

trop

y(S

i)(J

mol

−1·K

−1)

Hea

tCap

acity

(Cp i

)(J

mol

−1·K

−1)

Ref

eren

ce

Elem

enta

lA

s(0)

(ele

men

tala

rsen

ic,

rhom

bohe

dral

or‘g

ray’

)xl

s29

8.15

00

35.6

324

.43

Nor

dstr

oman

dA

rche

r(2

003)

As(

0)(e

lem

enta

lars

enic

,rh

ombo

hedr

alor

‘gra

y’)

xls

298.

150

035

.1—

Wag

man

etal

.(19

82)

As(

0)(e

lem

enta

lars

enic

,rh

ombo

hedr

alor

‘gra

y’)

xls

298.

150

035

.69

24.6

5R

obie

,Hem

ingw

ayan

dFi

sher

(197

9)A

s(0)

(ele

men

tala

rsen

ic,

rhom

bohe

dral

or‘g

ray’

)xl

s29

8.15

00

35.6

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)A

s(0)

(ele

men

tala

rsen

ic,

rhom

bohe

dral

or‘g

ray’

)xl

s29

8.15

00

35.7

0624

.652

Bar

in(1

995)

As(

0)(e

lem

enta

lars

enic

,rh

ombo

hedr

alor

‘gra

y’)

xls

400

00

43.0

425

.38

Rob

ie,H

emin

gway

and

Fish

er(1

979)

As(

0)(e

lem

enta

lars

enic

,rh

ombo

hedr

alor

‘gra

y’)

xls

400

00

43.0

6525

.388

Bar

in(1

995)

As(

0)(e

lem

enta

lars

enic

,rh

ombo

hedr

alor

‘gra

y’)

xls

500

00

48.7

725

.96

Rob

ie,H

emin

gway

,an

dFi

sher

(197

9)A

s(0)

(ele

men

tala

rsen

ic,

rhom

bohe

dral

or‘g

ray’

)xl

s50

00

048

.790

25.9

45B

arin

(199

5)

As(

0)(e

lem

enta

lars

enic

,rh

ombo

hedr

alor

‘gra

y’)

xls

600

00

53.5

526

.51

Rob

ie,H

emin

gway

and

Fish

er(1

979)

As(

0)(e

lem

enta

lars

enic

,rh

ombo

hedr

alor

‘gra

y’)

xls

600

00

53.5

6926

.501

Bar

in(1

995)

As(

0)(e

lem

enta

lars

enic

,rh

ombo

hedr

alor

‘gra

y’)

xls

700

00

57.6

827

.05

Rob

ie,H

emin

gway

and

Fish

er(1

979)

As(

0)(e

lem

enta

lars

enic

,rh

ombo

hedr

alor

‘gra

y’)

xls

700

00

57.6

9627

.054

Bar

in(1

995)

(con

tinue

dov

erle

af)

Page 4: Arsenic Thermodynamic Data

478 Arsenic

Tabl

eC

.1(c

ontin

ued)

Che

mic

alsp

ecie

sPh

ase

Tem

pera

ture

(K)

Gib

bsfr

eeen

ergy

(Gi)

(kJm

ol−1

)

Enth

alpy

(Hi)

(kJm

ol−1

)En

trop

y(S

i)(J

mol

−1·K

−1)

Hea

tCap

acity

(Cp i

)(J

mol

−1·K

−1)

Ref

eren

ce

As(

0)(e

lem

enta

lars

enic

,rh

ombo

hedr

alor

‘gra

y’)

xls

800

00

61.3

327

.60

Rob

ie,H

emin

gway

and

Fish

er(1

979)

As(

0)(e

lem

enta

lars

enic

,rh

ombo

hedr

alor

‘gra

y’)

xls

800

00

61.3

4427

.580

Bar

in(1

995)

As(

0)(e

lem

enta

lars

enic

,rh

ombo

hedr

alor

‘gra

y’)

xls

875

00

63.8

228

.03

Rob

ie,H

emin

gway

and

Fish

er(1

979)

As(

0)(e

lem

enta

lars

enic

,am

orph

ous

or‘b

lack

’)am

298.

15—

4.2

——

Wag

man

etal

.(19

82)

As(

0)(e

lem

enta

lars

enic

,am

orph

ous

or‘b

lack

’)am

298.

15—

13.6

——

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

As+

gas

298.

15—

1255

.6—

—W

agm

anet

al.(

1982

)A

s2+ga

s29

8.15

—30

59.8

——

Wag

man

etal

.(19

82)

As3+

gas

298.

15—

5801

.1—

—W

agm

anet

al.(

1982

)A

s4+ga

s29

8.15

—10

644

——

Wag

man

etal

.(19

82)

As5+

gas

298.

15—

1669

4—

—W

agm

anet

al.(

1982

)A

s6+ga

s29

8.15

—29

045

——

Wag

man

etal

.(19

82)

As 2

gas

298.

1517

1.9

222.

223

9.4

35.0

03W

agm

anet

al.(

1982

)A

s 2ga

s29

8.15

143

194

242.

2—

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

As 4

gas

298.

1592

.414

3.9

314

—W

agm

anet

al.(

1982

)A

s 4ga

s29

8.15

87.9

144

330

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)A

s 4ga

s29

8.15

98.2

6115

3.30

327.

4377

.208

Bar

in(1

995)

Gas

esan

daq

ueou

ssp

ecie

sof

arse

nic

com

poun

ds

Page 5: Arsenic Thermodynamic Data

Arsenic Thermodynamic Data 479

Ag 3

AsO

4xl

s29

8.15

−545

.39

−634

.29

275.

8317

3.86

Bar

in(1

995)

AlA

sxl

s29

8.15

—−1

16.3

——

Wag

man

etal

.(19

82)

AlA

sxl

s29

8.15

−115

.20

−116

.32

60.2

545

.80

Bar

in(1

995)

AlA

sO4

xls

298.

15−1

333.

1−1

431.

114

5.60

118.

34B

arin

(199

5)A

lAsO

4xl

s29

8.15

−128

0.8

——

—R

yuet

al.(

2002

)A

lAsO

4·2H

2O

(man

sfiel

dite

)xl

s29

8.15

−170

9—

——

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

AsB

r 3ga

s29

8.15

−161

.67

−132

.136

3.8

—Pa

nkra

tov

and

Uch

aeva

(200

0)A

sBr 3

gas

298.

15−1

59−1

3036

3.87

79.1

6W

agm

anet

al.(

1982

)A

sBr 3

gas

298.

15−1

59.8

0−1

30.0

036

3.99

78.9

92B

arin

(199

5)A

sCl 3

gas

298.

15−2

58.0

5−2

70.3

328.

8—

Pank

rato

van

dU

chae

va(2

000)

AsC

l 3ga

s29

8.15

−248

.9−2

61.5

327.

1775

.73

Wag

man

etal

.(19

82)

AsC

l 3ga

s29

8.15

−248

.66

−261

.50

327.

3075

.395

Bar

in(1

995)

AsC

l 3liq

298.

15−2

59.4

−305

.021

6.3

—W

agm

anet

al.(

1982

)A

sCl 3

liq29

8.15

−259

.08

−305

.01

216.

3113

3.47

Bar

in(1

995)

AsF

3ga

s29

8.15

−905

.67

−785

.828

9.0

—Pa

nkra

tov

and

Uch

aeva

(200

0)A

sF3

gas

298.

15−7

70.7

6−7

85.7

629

8.10

65.6

1W

agm

anet

al.(

1982

)A

sF3

gas

298.

15−7

70.6

5−7

85.7

628

9.22

64.6

84B

arin

(199

5)A

sF3

liq29

8.15

−774

.16

−821

.318

1.21

126.

57W

agm

anet

al.(

1982

)A

sF3

liq29

8.15

−774

.01

−821

.32

181.

2112

6.55

Bar

in(1

995)

AsF

5ga

s29

8.15

−117

2.5

−123

6.7

——

Pank

rato

van

dU

chae

va(2

000)

(con

tinue

dov

erle

af)

Page 6: Arsenic Thermodynamic Data

480 Arsenic

Tabl

eC

.1(c

ontin

ued)

Che

mic

alsp

ecie

sPh

ase

Tem

pera

ture

(K)

Gib

bsfr

eeen

ergy

(Gi)

(kJm

ol−1

)

Enth

alpy

(Hi)

(kJm

ol−1

)En

trop

y(S

i)(J

mol

−1·K

−1)

Hea

tCap

acity

(Cp i

)(J

mol

−1·K

−1)

Ref

eren

ce

AsF

5ga

s29

8.15

−116

9.0

−123

4.2

—87

.84

O’H

are

(199

3)A

sF5

gas

298.

15−1

169.

6−1

236.

831

7.26

97.5

41B

arin

(199

5)A

sH3

(ars

ine)

gas

298.

1568

.91

66.4

022

3.0

—Pa

nkra

tov

and

Uch

aeva

(200

0)A

sH3

(ars

ine)

gas

298.

1568

.93

66.4

422

2.78

38.0

7W

agm

anet

al.(

1982

)A

sH3

(ars

ine)

gas

298.

1568

.83

66.4

223

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)A

sH3

(ars

ine)

gas

298.

1569

.109

66.4

4222

2.78

38.0

72B

arin

(199

5)A

sI3

xls

298.

15−5

9.4

−58.

221

3.05

105.

77W

agm

anet

al.(

1982

)A

sI3

xls

298.

15−5

9.09

1−5

8.15

821

3.05

105.

77B

arin

(199

5)A

sI3

gas

298.

15—

—38

8.34

80.6

3W

agm

anet

al.(

1982

)A

sI3

gas

298.

15−1

5.32

138

.911

391.

8280

.960

Bar

in(1

995)

AsN

gas

298.

1516

7.97

196.

2722

5.6

30.4

2W

agm

anet

al.(

1982

)A

sOga

s29

8.15

−84.

715

−57.

287

230.

2732

.342

Bar

in(1

995)

As 2

O3

(ars

enol

ite,c

ubic

)xl

s29

8.15

−576

.34

−657

.27

107.

3896

.88

Nor

dstr

oman

dA

rche

r(2

003)

As 2

O3

(ars

enol

ite,c

ubic

)xl

s29

8.15

−576

−657

107.

4—

Rob

ie,H

emin

gway

and

Fish

er(1

979)

As 2

O3

(ars

enol

ite,c

ubic

)xl

s29

8.15

−588

.3−6

66.1

117

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)A

s 2O

3(a

rsen

olite

,cub

ic)

xls

298.

15−5

76.4

1—

——

Dav

iset

al.(

1996

)A

s 2O

3(a

rsen

olite

,cub

ic)

xls

298.

15−5

75.9

6−6

56.9

710

7.41

96.8

78B

arin

(199

5)A

s 2O

3(c

laud

etite

,m

onoc

linic

)xl

s29

8.15

−576

.53

−655

.67

113.

3796

.98

Nor

dstr

oman

dA

rche

r(2

003)

As 2

O3

(cla

udet

ite,

mon

oclin

ic)

xls

298.

15−5

76−6

5511

3.3

—R

obie

,Hem

ingw

ayan

dFi

sher

(197

9)A

s 2O

3(c

laud

etite

,m

onoc

linic

)xl

s29

8.15

−589

.1−6

64.0

127

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)

Page 7: Arsenic Thermodynamic Data

Arsenic Thermodynamic Data 481

As 2

O3

(cla

udet

ite,

mon

oclin

ic)

xls

298.

15−5

76.6

4−6

54.8

011

7.00

96.9

79B

arin

(199

5)

As 2

O3·SO

3xl

s29

8.15

—−1

194.

32—

—W

agm

anet

al.(

1982

)A

s 2O

5xl

s29

8.15

−774

.96

−917

.59

105.

4411

5.9

Nor

dstr

oman

dA

rche

r(2

003)

As 2

O5

xls

298.

15−7

82.0

−924

.710

5—

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

As 2

O5

xls

298.

15−7

82.7

8—

——

Dav

iset

al.(

1996

)A

s 2O

5xl

s29

8.15

−782

.3−9

24.8

710

5.4

116.

52W

agm

anet

al.(

1982

)A

s 2O

5xl

s29

8.15

−782

.09

−924

.87

105.

4011

6.54

Bar

in(1

995)

As 2

O5

xls

400

−733

.31

−924

.59

142.

6213

6.54

Bar

in(1

995)

As 2

O5

xls

500

−685

.66

−922

.93

174.

7715

1.78

Bar

in(1

995)

As 2

O5·4H

2O

xls

298.

15—

−210

4.6

——

Wag

man

etal

.(19

82)

As 2

O5·4H

2O

xls

298.

15−1

720

——

—Fa

ure

(199

8)(A

s 2O

5) 3

·5H2O

xls

298.

15—

−424

8.4

——

Wag

man

etal

.(19

82)

As 4

O6

gas

298.

15−1

092.

2−1

196.

240

9.35

173.

60B

arin

(199

5)A

sS(α

,rea

lgar

)xl

s29

8.15

−31.

3−3

1.8

62.9

47N

ords

trom

and

Arc

her

(200

3)A

sS(α

,rea

lgar

)xl

s29

8.15

−35

−36

63.5

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)A

sS(β

)xl

s29

8.15

−30.

9−3

1.0

63.5

47N

ords

trom

and

Arc

her

(200

3)A

sS(O

H)(S

H)−

aq29

8.15

−245

.11

——

—H

elz

etal

.(19

95)

As 2

S 3am

298.

15−7

6.8

−66.

920

0—

Nor

dstr

oman

dA

rche

r(2

003)

As 2

S 3(o

rpim

ent)

xls

298.

15−8

4.9

−85.

816

3.8

163

Nor

dstr

oman

dA

rche

r(2

003)

As 2

S 3(o

rpim

ent)

xls

298.

15−9

5.4

−96.

216

4—

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

As 3

S 4(S

H)− 2

aq29

8.15

−127

.19

——

—H

elz

etal

.(19

95)

(con

tinue

dov

erle

af)

Page 8: Arsenic Thermodynamic Data

482 Arsenic

Tabl

eC

.1(c

ontin

ued)

Che

mic

alsp

ecie

sPh

ase

Tem

pera

ture

(K)

Gib

bsfr

eeen

ergy

(Gi)

(kJm

ol−1

)

Enth

alpy

(Hi)

(kJm

ol−1

)En

trop

y(S

i)(J

mol

−1·K

−1)

Hea

tCap

acity

(Cp i

)(J

mol

−1·K

−1)

Ref

eren

ce

As 2

Se3

xls

298.

15−8

8.4

−86.

17.

8—

O’H

are

etal

.(19

90)

As 2

Se3

xls

298.

15—

−81.

1—

—O

’Har

e(1

993)

As 2

Se3

xls

298.

15−1

01.4

3−1

02.5

119

4.56

121.

39B

arin

(199

5)A

s 2Se

3am

298.

15—

−53.

1—

—O

’Har

e(1

993)

As 2

Te3

xls

298.

15−3

9.58

0−3

7.65

622

6.35

127.

49B

arin

(199

5)B

a 3(A

sO4) 2

xls

298.

15−3

113.

40—

——

Zhu

etal

.(20

05)

Ba 3

(AsO

4) 2

xls

298.

15−3

192.

2−3

421.

730

9.62

257.

21B

arin

(199

5)B

aHA

sO4·H

2O

xls

298.

15−1

544.

47—

——

Zhu

etal

.(20

05)

Be 3

(AsO

4) 2

xls

298.

15−2

525.

5−2

738.

120

7.28

232.

52B

arin

(199

5)B

iAsO

4xl

s29

8.15

−619

——

—W

agm

anet

al.(

1982

)B

iAsO

4xl

s29

8.15

−695

.43

−795

.21

168.

0712

1.12

Bar

in(1

995)

BiA

sO4

(roo

seve

ltite

)xl

s29

8.15

−613

.58

——

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)(C

H3) 3

As

gas

298.

15—

12—

—Pa

nkra

tov

and

Uch

aeva

(200

0)C

a(H

2A

sO4) 2

xls

298.

15−2

054

——

—R

yuet

al.(

2002

)C

a 2A

sO4O

Hxl

s29

8.15

−198

8—

——

Ryu

etal

.(20

02)

Ca 3

(AsO

4) 2

xls

298.

15−3

061

——

—R

yuet

al.(

2002

)C

a 3(A

sO4) 2

xls

298.

15−3

063.

1−3

298.

722

6.00

249.

79B

arin

(199

5)C

a 3(A

sO4) 2

xls

298.

15−3

063.

0−3

298.

722

6—

Wag

man

etal

.(19

82)

Ca 3

(AsO

4) 2

·2.25

H2O

xls

298.

15−3

611.

50—

——

Zhu

etal

.(20

06)

Ca 3

(AsO

4) 2

·3H2O

xls

298.

15−3

787.

87—

——

Zhu

etal

.(20

06)

Ca 3

(AsO

4) 2

·3.67

H2O

xls

296

−394

5—

——

Bot

hean

dB

row

n(1

999)

Ca 3

(AsO

4) 2

·4H2O

xls

298.

15−4

019

——

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)C

a 3(A

sO4) 2

·4.25

H2O

xls

296

−408

5—

——

Bot

hean

dB

row

n(1

999)

Page 9: Arsenic Thermodynamic Data

Arsenic Thermodynamic Data 483

Ca 3

(AsO

4) 2

·6H2O

xls

298.

15−2

732

——

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)C

a 3(A

sO4) 2

·8H2O

xls

298.

15−3

530

——

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)C

a 4(O

H) 2

(AsO

4) 2

·4H2O

xls

296

−494

1—

——

Bot

hean

dB

row

n(1

999)

Ca 4

(OH

) 2(A

sO4) 2

·4H2O

xls

298.

15−4

928.

86—

——

Zhu

etal

.(20

06)

Ca 5

(AsO

4) 3

OH

xls

296

−508

7—

——

Bot

hean

dB

row

n(1

999)

Ca 5

(AsO

4) 3

OH

xls

298.

15−5

096.

47—

——

Zhu

etal

.(20

06)

Ca 5

H2(A

sO4) 4

xls

298.

15−5

636.

7—

——

Ryu

etal

.(20

02)

Ca 5

H2(A

sO4) 4

·9H2O

(ferr

aris

ite)

xls

296

−780

8—

——

Bot

hean

dB

row

n(1

999)

Ca 5

H2(A

sO4) 4

·9H2O

(gue

rini

te)

xls

296

−780

3—

——

Bot

hean

dB

row

n(1

999)

CaH

(AsO

4)·H

2O

xls

296

−153

3—

——

Bot

hean

dB

row

n(1

999)

CaH

AsO

0 4aq

298.

15—

−144

6.0

——

Wag

man

etal

.(19

82)

Cd 3

(AsO

4) 2

xls

298.

15−1

716.

1—

——

Wag

man

etal

.(19

82)

Cd 3

(AsO

4) 2

xls

298.

15−1

712.

0−1

934.

330

1.71

258.

82B

arin

(199

5)C

d 3A

s 2xl

s29

8.15

—−4

1.8

——

Wag

man

etal

.(19

82)

Cd 3

As 2

xls

298.

15−3

5.88

5−4

1.84

020

6.83

125.

30B

arin

(199

5)C

dAs 2

xls

298.

15—

−17.

6—

—W

agm

anet

al.(

1982

)C

oAs

xls

298.

15—

−40.

6—

—W

agm

anet

al.(

1982

)C

oAs

(mod

deri

te)

xls

298.

15−4

9−5

159

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)C

oAs 2

xls

298.

15—

−61.

5—

—W

agm

anet

al.(

1982

)C

oAs 2

(saf

flori

te)

xls

298.

15−9

7−8

310

0—

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

(con

tinue

dov

erle

af)

Page 10: Arsenic Thermodynamic Data

484 Arsenic

Tabl

eC

.1(c

ontin

ued)

Che

mic

alsp

ecie

sPh

ase

Tem

pera

ture

(K)

Gib

bsfr

eeen

ergy

(Gi)

(kJm

ol−1

)

Enth

alpy

(Hi)

(kJm

ol−1

)En

trop

y(S

i)(J

mol

−1·K

−1)

Hea

tC

apac

ity(C

p i)(

Jm

ol−1

·K−1

)

Ref

eren

ce

Co 2

As

xls

298.

15—

−39.

7—

—W

agm

anet

al.(

1982

)C

o 2A

s 3xl

s29

8.15

—−9

7.5

——

Wag

man

etal

.(19

82)

Co 3

As 2

xls

298.

15—

−81.

2—

—W

agm

anet

al.(

1982

)C

o 5A

s 2xl

s29

8.15

—−7

9.5

——

Wag

man

etal

.(19

82)

Co 3

(AsO

4) 2

xls

298.

15−1

620.

8—

——

Wag

man

etal

.(19

82)

Co 3

(AsO

4) 2

xls

298.

15−1

671.

9−1

864.

333

7.02

264.

31B

arin

(199

5)C

rAsO

4xl

s29

8.15

−968

.36

−106

2.1

155.

3511

9.10

Bar

in(1

995)

Cr 3

(AsO

4) 2

xls

298.

15−2

027.

0−2

218.

232

1.42

261.

83B

arin

(199

5)C

s 3A

sO4

xls

298.

15−1

543.

9−1

668.

528

3.59

176.

22B

arin

(199

5)C

u 3A

sxl

s29

8.15

—−1

1.7

——

Wag

man

etal

.(19

82)

Cu 3

As

xls

298.

15−1

2.32

2−1

1.71

513

7.24

93.0

80B

arin

(199

5)C

u 3(A

sO4)

xls

298.

15−6

24.0

4−7

10.3

625

5.98

176.

36B

arin

(199

5)—

xls

298.

15−1

300.

7—

——

Wag

man

etal

.(19

82)

Cu 3

(AsO

4) 2

xls

298.

15−1

301.

32—

——

Dav

iset

al.(

1996

)C

u 3(A

sO4) 2

xls

298.

15−1

316.

0−1

522.

629

8.61

258.

21B

arin

(199

5)C

u 3(A

sO4) 2

·6H2O

xls

298.

15−2

733.

04—

——

Dav

iset

al.(

1996

)C

u 3A

sS4

(ena

rgite

)xl

s29

8.15

−206

.74

−179

.035

6.4

—C

astr

oan

dB

altie

rra

(200

5)an

dK

anta

r(2

002)

Cu 3

AsS

4(e

narg

ite)

xls

298.

15—

—25

7.6

190.

4Se

alet

al.(

1996

)C

u 3A

sS4

(ena

rgite

)xl

s29

8.15

−437

.26

——

—D

avis

etal

.(19

96)

Fe3(A

sO4) 2

xls

298.

15−1

753.

93—

——

Dav

iset

al.(

1996

)Fe

3(A

sO4) 2

·8H2O

(sym

ples

ite)

xls

298.

15−3

687.

26—

——

Dav

iset

al.(

1996

)

FeA

s(w

este

rvel

dite

)xl

s29

8.15

−43.

36−4

3.51

62.5

50.3

6Pe

rfet

tiet

al.(

2008

)Fe

As 2

(loel

lingi

te)

xls

298.

15−5

2.09

−43.

512

7N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)

Page 11: Arsenic Thermodynamic Data

Arsenic Thermodynamic Data 485

FeA

sO4

xls

298.

15−7

72.3

9−8

65.3

416

1.54

117.

05B

arin

(199

5)Fe

AsO

4xl

s29

8.15

−772

.62

——

—R

yuet

al.(

2002

)Fe

AsO

4·2H

2O

(sco

rodi

te)

xls

298.

15−1

280.

1—

——

Ryu

etal

.(20

02)

FeA

sO4·2H

2O

(sco

rodi

te)

xls

296

−127

9.2

——

—K

raus

ean

dEt

tel

(198

8)Fe

AsO

4·2H

2O

(sco

rodi

te)

xls

298.

15−1

267.

69—

——

Dav

iset

al.(

1996

)Fe

3(A

sO4) 2

xls

298.

15−1

766.

0−1

955.

033

9.91

264.

64B

arin

(199

5)Fe

AsS

(ars

enop

yrite

)xl

s29

8−1

36.4

5−1

44.3

668

.568

.44

Perf

etti

etal

.(20

08)

FeA

sS(a

rsen

opyr

ite)

xls

298

−141

.6—

——

Pokr

ovsk

i,K

ara

and

Rou

x(2

002)

FeA

sS(a

rsen

opyr

ite)

xls

298.

15−1

27.2

5—

——

Dav

iset

al.(

1996

)Fe

AsS

2(lo

ellin

gite

)xl

s29

8.15

−80.

23−8

5.77

80.1

70.8

3Pe

rfet

tiet

al.(

2008

)Fe

AsS

2(lo

ellin

gite

)xl

s29

8.15

−52.

116

——

—D

avis

etal

.(19

96)

GaA

s(g

alliu

mar

seni

de)

xls

298.

15−6

7.8

−71

64.1

846

.23

Wag

man

etal

.(19

82)

GaA

s(g

alliu

mar

seni

de)

xls

298.

15−7

0.37

4−7

4.05

764

.183

46.8

58B

arin

(199

5)G

aAs

(gal

lium

arse

nide

)xl

s29

8.15

−67.

8−7

164

.2—

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

GaA

sO4

xls

298.

15−9

01.8

5−1

002.

215

0.12

118.

26B

arin

(199

5)H

3A

sO0 3

aq29

8.15

−639

.8−7

37.3

212.

485

.0Pe

rfet

tiet

al.(

2008

)H

3A

sO0 3

aq29

8.15

−640

.03

−742

.36

195.

8—

Nor

dstr

oman

dA

rche

r(2

003)

H3A

sO0 3

aq29

8.15

−639

.78

−740

.82

200

197

Pokr

ovsk

iet

al.

(199

6)H

2A

sO− 3

aq29

8.15

−587

.13

−714

.79

110.

5—

Wag

man

etal

.(19

82)

H2A

sO− 3

aq29

8.15

−587

.66

−714

.74

112.

79—

Nor

dstr

oman

dA

rche

r(2

003)

HA

sO2− 3

aq29

8.15

−524

−689

−15

—D

ove

and

Rim

stid

t(1

985)

(con

tinue

dov

erle

af)

Page 12: Arsenic Thermodynamic Data

486 Arsenic

Tabl

eC

.1(c

ontin

ued)

Che

mic

alsp

ecie

sPh

ase

Tem

pera

ture

(K)

Gib

bsfr

eeen

ergy

(Gi)

(kJm

ol−1

)

Enth

alpy

(Hi)

(kJm

ol−1

)En

trop

y(S

i)(J

mol

−1·K

−1)

Hea

tCap

acity

(Cp i

)(J

mol

−1·K

−1)

Ref

eren

ce

HA

sO2− 3

aq29

8.15

−524

.3—

——

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

AsO

3− 3aq

298.

15−4

48−6

64−1

87—

Dov

ean

dR

imst

idt

(198

5)A

sO3− 3

aq29

8.15

−447

.7—

——

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

H3A

sO0 4

aq29

8.15

−766

.3−8

98.6

198.

310

5.0

Perf

etti

etal

.(20

08)

H3A

sO0 4

aq29

8.15

−766

.75

−903

.45

183.

07—

Nor

dstr

oman

dA

rche

r(2

003)

H2A

sO− 4

aq29

8.15

−753

.17

−909

.56

117

—W

agm

anet

al.(

1982

)H

2A

sO− 4

aq29

8.15

−753

.65

−911

.42

112.

38—

Nor

dstr

oman

dA

rche

r(2

003)

HA

sO2− 4

aq29

8.15

−713

.73

−908

.41

−11.

42—

Nor

dstr

oman

dA

rche

r(2

003)

HA

sO2− 4

aq29

8.15

−714

.60

−906

.34

——

Wag

man

etal

.(19

82)

AsO

3− 4aq

298.

15−6

46.3

6−8

90.2

1−1

76.3

1—

Nor

dstr

oman

dA

rche

r(2

003)

HA

sO3F−

aq29

8.15

−106

0.96

——

—W

agm

anet

al.(

1982

)A

sO3F2−

aq29

8.15

−102

7.45

——

—W

agm

anet

al.(

1982

)H

g 3(A

sO4) 2

xls

298.

15−1

033.

6−1

271.

032

3.47

261.

72B

arin

(199

5)In

As

(indi

umar

seni

de)

xls

298.

15−5

3.6

−58.

675

.747

.78

Wag

man

etal

.(19

82)

InA

s(in

dium

arse

nide

)xl

s29

8.15

−53.

286

−58.

601

75.7

0147

.780

Bar

in(1

995)

InA

s(in

dium

arse

nide

)xl

s29

8.15

−52.

7−5

7.7

75.7

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)In

AsO

4xl

s29

8.15

−874

.26

−978

.30

154.

8511

9.32

Bar

in(1

995)

KA

sxl

s29

8.15

—−1

02.9

——

Wag

man

etal

.(19

82)

Page 13: Arsenic Thermodynamic Data

Arsenic Thermodynamic Data 487

KA

s 2xl

s29

8.15

—−1

27.2

——

Wag

man

etal

.(19

82)

K3A

sxl

s29

8.15

—−1

86.2

——

Wag

man

etal

.(19

82)

K5A

s 4xl

s29

8.15

—−4

52.7

——

Wag

man

etal

.(19

82)

KH

2A

sO4

xls

298.

15−1

035.

9−1

180.

715

5.02

126.

73W

agm

anet

al.(

1982

)K

H2A

sO4

xls

298.

15−1

041.

6−1

186.

215

5—

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

K3(A

sO4)

xls

298.

15−1

548.

8−1

668.

723

7.82

172.

29B

arin

(199

5)K

UO

2A

sO4

xls

298.

15−2

021.

1—

——

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

LaA

sO4

xls

298.

15−1

455.

7−1

556.

916

3.47

117.

89B

arin

(199

5)Li

3(A

sO4)

xls

298.

15−1

595.

0−1

702.

417

3.13

161.

84B

arin

(199

5)M

gAs 4

xls

298.

15—

−126

——

Wag

man

etal

.(19

82)

Mg 3

As 2

xls

298.

15—

−371

.5—

—W

agm

anet

al.(

1982

)M

g 3(A

sO4) 2

xls

298.

15—

−309

2.8

——

Wag

man

etal

.(19

82)

Mg 3

(AsO

4) 2

xls

298.

15−2

775

——

—R

yuet

al.(

2002

)

(con

tinue

dov

erle

af)

Page 14: Arsenic Thermodynamic Data

488 Arsenic

Tabl

eC

.1(c

ontin

ued)

Che

mic

alsp

ecie

sPh

ase

Tem

pera

ture

(K)

Gib

bsfr

eeen

ergy

(Gi)

(kJm

ol−1

)

Enth

alpy

(Hi)

(kJm

ol−1

)En

trop

y(S

i)(J

mol

−1·K

−1)

Hea

tCap

acity

(Cp i

)(J

mol

−1·K

−1)

Ref

eren

ce

Mg 3

(AsO

4) 2

xls

298.

15−2

831.

7−3

059.

822

5.10

236.

31B

arin

(199

5)M

g 3(A

sO4) 2

·10H

2O

xls

298.

15−5

147.

2—

——

Ryu

etal

.(20

02)

MgH

AsO

4xl

s29

8.15

−118

7—

——

Ryu

etal

.(20

02)

MgH

AsO

4·7H

2O

(roe

ssle

rite

)xl

s29

8.15

−284

8—

——

Ryu

etal

.(20

02)

MgN

H4A

sO4·6H

2O

xls

298.

15—

−331

6.7

——

Wag

man

etal

.(19

82)

MnA

s(α

)xl

s29

8.15

−61.

636

−51.

861

107.

0071

.116

Bar

in(1

995)

MnA

s(β

)xl

s29

8.15

−59.

865

−53.

297

91.4

4270

.340

Bar

in(1

995)

MnA

s(γ

)xl

s29

8.15

−59.

691

−56.

902

77.0

6970

.164

Bar

in(1

995)

MnA

sxl

s29

8.15

—−5

9—

—W

agm

anet

al.(

1982

)M

nAs

(kan

eite

)xl

s29

8.15

−55.

2−5

7.3

60—

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

Mn 3

(AsO

4) 2

xls

298.

15−2

167.

4—

——

Ryu

etal

.(20

02)

Mn 3

(AsO

4) 2

xls

298.

15—

−214

5.6

——

Wag

man

etal

.(19

82)

Mn 3

(AsO

4) 2

xls

298.

15−2

167.

0−2

366.

331

9.62

261.

79B

arin

(199

5)M

n 3(A

sO4) 2

·8H2O

xls

298.

15−4

055

——

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)M

nHA

sO4

xls

298.

15—

−110

2.5

——

Wag

man

etal

.(19

82)

MoA

sO4

xls

298.

15−8

17.7

9−9

10.6

916

3.01

120.

06B

arin

(199

5)N

aAs

xls

298.

15−8

9.1

−96.

262

.8—

Wag

man

etal

.(19

82)

NaA

s 2xl

s29

8.15

−100

.4−1

06.7

100

—W

agm

anet

al.(

1982

)N

a 3A

sxl

s29

8.15

−187

.4−2

0513

0—

Wag

man

etal

.(19

82)

Na 3

As

xls

298.

15−1

87.1

0−2

05.0

213

0.00

97.7

69B

arin

(199

5)

Page 15: Arsenic Thermodynamic Data

Arsenic Thermodynamic Data 489

NaA

sO2

xls

298.

15—

−660

.53

——

Wag

man

etal

.(19

82)

NaU

O2A

sO4·4H

2O

xls

298.

15−2

944.

6—

——

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

Na 3

AsO

4xl

s29

8.15

—−1

540

——

Wag

man

etal

.(19

82)

Na 3

AsO

4xl

s29

8.15

−142

6.0

−154

0.0

217.

9417

0.13

Bar

in(1

995)

Na 3

AsO

4·12

H2O

xls

298.

15—

−509

2—

—W

agm

anet

al.(

1982

)N

iAs

(nic

kelin

e,ni

ccol

ite)

xls

298.

15—

—61

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)N

iAs

xls

298.

15−6

7.26

8−7

3.29

145

.380

56.0

01B

arin

(199

5)N

i 3(A

sO4) 2

xls

298.

15−1

579.

3—

——

Wag

man

etal

.(19

82)

Ni 3

(AsO

4) 2

xls

298.

15−1

659.

4−1

849.

234

4.80

265.

41B

arin

(199

5)N

i 3(A

sO4) 2

·8H2O

(Ann

aber

gite

)xl

s29

8.15

−348

2—

——

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

Ni 5

As 2

xls

298.

15−2

42.1

1−2

51.1

019

0.63

215.

98B

arin

(199

5)N

i 11A

s 8xl

s29

8.15

−762

.63

−774

.04

468.

8855

2.00

Bar

in(1

995)

NH

4H

2A

sO4

xls

298.

15−8

32.9

−105

9.8

172.

0515

1.17

Wag

man

etal

.(19

82)

(con

tinue

dov

erle

af)

Page 16: Arsenic Thermodynamic Data

490 Arsenic

Tabl

eC

.1(c

ontin

ued)

Che

mic

alsp

ecie

sPh

ase

Tem

pera

ture

(K)

Gib

bsfr

eeen

ergy

(Gi)

(kJm

ol−1

)

Enth

alpy

(Hi)

(kJm

ol−1

)En

trop

y(S

i)(J

mol

−1·K

−1)

Hea

tCap

acity

(Cp i

)(J

mol

−1·K

−1)

Ref

eren

ce

NH

4H

2A

sO4

xls

298.

15−8

37.3

4−1

064.

117

2—

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

(NH

4) 2

HA

sO4

xls

298.

15—

−118

1.6

——

Wag

man

etal

.(19

82)

(NH

4) 3

AsO

4xl

s29

8.15

—−1

286.

2—

—W

agm

anet

al.(

1982

)(N

H4) 3

AsO

4·3H

2O

xls

298.

15—

−216

6.9

——

Wag

man

etal

.(19

82)

Pb3(A

sO4) 2

xls

298.

15−1

553.

1−1

780.

232

4.60

258.

00B

arin

(199

5)Pb

3(A

sO4) 2

xls

298.

15−1

580.

01—

——

Dav

iset

al.(

1996

)Pb

3(A

sO4) 2

xls

298.

15−1

579.

3—

——

Nau

mov

,Ryz

henk

oan

dK

hoda

kovs

ky(1

974)

Pb5(A

sO4) 3

Cl(

mim

etite

)xl

s29

8.15

−261

6.25

——

—D

avis

etal

.(19

96)

Pb5(A

sO4) 3

OH

xls

298.

15−2

659

——

—Le

ean

dN

riag

u(2

007)

PbH

AsO

4xl

s29

8.15

−805

.66

——

—Le

ean

dN

riag

u(2

007)

Rb 3

(AsO

4)

xls

298.

15−1

547.

0−1

669.

026

7.06

175.

28B

arin

(199

5)R

e 3A

s 7xl

s29

8.15

−88.

624

−95.

395

336.

8124

8.64

Bar

in(1

995)

ReA

sO4

xls

298.

15−6

78.3

9−7

71.5

717

0.00

121.

37B

arin

(199

5)Sn

3(A

sO4) 2

xls

298.

15−1

564.

6−1

785.

830

3.93

259.

1B

arin

(199

5)Sr

3(A

sO4) 2

xls

298.

15−3

094.

4−3

317.

131

2.1

257.

6B

arin

(199

5)Ti

3(A

sO4) 2

xls

298.

15−2

547.

3−2

617.

333

9.4

264.

5B

arin

(199

5)

Page 17: Arsenic Thermodynamic Data

Arsenic Thermodynamic Data 491

TlA

sO4

xls

298.

15−8

85.8

1−9

48.5

629

9.74

145.

69B

arin

(199

5)Y

AsO

4xl

s29

8.15

−141

6.8

−151

5.1

160.

5412

0.75

Bar

in(1

995)

Zn 3

(AsO

4) 2

xls

298.

15−1

895.

91—

——

Dav

iset

al.(

1996

)Z

n 3(A

sO4) 2

xls

298.

15−1

895

——

—W

agm

anet

al.(

1982

)Z

n 3(A

sO4) 2

xls

298.

15−1

915.

6−2

134.

728

1.92

255.

28B

arin

(199

5)Z

n 3(A

sO4) 2

·2.5H

2O

(legr

andi

te)

xls

298.

15−2

611

——

—N

aum

ov,R

yzhe

nko

and

Kho

dako

vsky

(197

4)Z

nAs 2

xls

298.

15—

−41.

8—

—W

agm

anet

al.(

1982

)Z

n 3A

s 2xl

s29

8.15

−125

.46

−133

.89

168.

0412

5.23

Bar

in(1

995)

Zn 3

As 2

xls

298.

15—

−32.

2—

—W

agm

anet

al.(

1982

)

Page 18: Arsenic Thermodynamic Data

492 Arsenic

References

Allison, J.D., Brown, D.S. and Novo-Gradac, K.J. (1991) MINTEQA2/PRODEFA2: A Geochemical Assessment Modelfor Environmental Systems: Version 3.0 User’s Manual , U.S. Environmental Protection Agency, Washington, DC.

Barin, I. (1995) Thermochemical Data of Pure Substances: Parts 1 and II , 3rd edn. Weinheim, VCH Verlagsgesellschaft,1885 pp.

Bothe, J.V. Jr. and Brown, P.W. (1999) The stabilities of calcium arsenates at 23 ± 1 ◦C. Journal of HazardousMaterials , 69(2), 197–207.

Castro, S.H. and Baltierra, L. (2005) Study of the surface properties of enargite as a function of pH. InternationalJournal of Mineral Processing , 77(2), 104–15.

Davis, A., Ruby, M.V., Bloom, M. et al. (1996) Mineralogic constraints on the bioavailability of arsenic insmelter-impacted soils. Environmental Science and Technology , 30(2), 392–99.

Dove, P.M. and Rimstidt, J.D. (1985) The solubility and stability of scorodite, FeAsO4.2H2O. American Mineralogist ,70(7–8), 838–44.

Drever, J.I. (1997) The Geochemistry of Natural Waters: Surface and Groundwater Environments , Upper Saddle River,NJ, Prentice Hall, 436 pp.

Eby, G.N. (2004) Principles of Environmental Geochemistry , Brooks/Cole-Thomson Learning, Pacific Grove, CA,514 pp.

Faure, G. (1998) Principles and Applications of Geochemistry , 2nd edn. Prentice Hall, Upper Saddle River, NJ,600 pp.

Helz, G.R., Tossell, J.A., Charnock, J.M. et al. (1995) Oligomerization in As(III) sulfide solutions: theoretical con-straints and spectroscopic evidence. Geochimica et Cosmochimica Acta , 59(22), 4591–604.

Kantar, C. (2002) Solution and flotation chemistry of enargite. Colloids and Surfaces A: Physicochemical and Engi-neering Aspects , 210(1), 23–31.

Krause, E. and Ettel, V.A. (1988) Solubility and stability of scorodite, FeAsO4.2H2O: new data and further discussion.American Mineralogist , 73(7–8), 850–54.

Krauskopf, K.B. and Bird, D.K. (1995) Introduction to Geochemistry , 3rd edn. McGraw-Hill, Boston.Langmuir, D. (1997) Aqueous Environmental Geochemistry , Upper Saddle River, NJ, Prentice Hall, 600 pp.Lee, J.S. and Nriagu, J.O. (2007) Stability constants for metal arsenates. Environmental Chemistry , 4(2), 123–33.Lide, D.R. (ed) (2007) CRC Handbook of Chemistry and Physics , 88th edn. CRC Press, Boca Raton, FL.Matschullat, J. (2000) Arsenic in the geosphere –A review. Science of the Total Environment , 249(1–3), 297–312.Naumov, G.B., Ryzhenko, B.N. and Khodakovsky, I.L. (1974) Handbook of Thermodynamic Data, (English trans-

lation). PB 226 722, Report No. USGS-WRD-74-001, U.S. Geological Survey, Menlo Park California, NationalTechnical Information Service, Springfield, Virginia.

Nordstrom, D.K. and Archer, D.G. (2003) Arsenic thermodynamic data and environmental geochemistry, in Arsenicin Ground Water , (eds A.H. Welch and K.G. Stollenwerk), Kluwer Academic Publishers, Boston, pp. 1–25.

O’Hare, P.A.G. (1993) Calorimetric measurements of the specific energies of reaction of arsenic and of seleniumwith fluorine. Standard molar enthalpies of formation �fH

om at the temperature 2.98.15 K of AsF5, SeF6, As2Se3,

As4S4, and As2S3. Thermodynamic properties of AsF5 and SeF6 in the ideal-gas state. Critical assessment of �fHo

m

(AsF3, l)), and the dissociation enthalpies of As-F bonds. Journal of Chemical Thermodynamics , 25, 391–402.O’Hare, P.A.G., Lewis, B.M., Susman, S. and Volin, K.J. (1990) Standard molar enthalpies of formation and tran-

sition at the temperature 298.15 K and other thermodynamic properties of the crystalline and vitreous forms ofarsenic sesquiselenide (As2S3). Dissociation enthalpies of As-Se bonds. Journal of Chemical Thermodynamics , 22,1191–206.

Pankratov, A.N. and Uchaeva, I.M. (2000) A semiempirical quantum chemical testing of thermodynamic and molecularproperties of arsenic compounds. Journal of Molecular Structure (Theochem), 498, 247–54.

Parkhurst, D.L. and Appelo, C.A.J. (1999) User’s Guide to PHREEQC (Version 2): A Computer Program for Speci-ation, Batch-reaction, One-dimensional transport, and Inverse Geochemical Calculations. U.S. Geological SurveyWater-Resources Investigations Report 99-4259, 312 pp.

Page 19: Arsenic Thermodynamic Data

Arsenic Thermodynamic Data 493

Perfetti, E., Pokrovski, G.S., Ballerat-Busserolles, K. et al. (2008) Densities and heat capacities of aqueous arse-nious and arsenic acid solutions to 350 ◦C and 300 bar, and revised thermodynamic properties of As(OH)3

o(aq),AsO(OH)3

o(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta , 72(3), 713–31.Pokrovski, G., Gout, R., Schott, J. et al. (1996) Thermodynamic properties and stoichiometry of As(III) hydroxide

complexes at hydrothermal conditions. Geochimica et Cosmochimica Acta , 60(5), 737–49.Pokrovski, G.S., Kara, S. and Roux, J. (2002) Stability and solubility of arsenopyrite, FeAsS, in crustal fluids. Geochim-

ica et Cosmochimica Acta, 66(13), 2361–78.Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1979) Thermodynamic Properties of Minerals and Related Substances

at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures , Reprinted with corrections. GeologicalSurvey Bulletin 1452, United States Printing Office, Washington, DC, 456 pp.

Ryu, J-H., Gao, S., Dahlgren, R.A. and Zierenberg, R.A. (2002) Arsenic distribution, speciation and solubility inshallow groundwater of Owens Dry Lake, California. Geochimica et Cosmochimica Acta , 66(17), 2981–94.

Seal, R.R. II, Robie, R.A., Hemingway, B.S. and Evans, H.T. Jr (1996) Heat capacity and entropy at the temperatures5 K to 720 K and thermal expansion from the temperatures 298 K to 573 K of synthetic enargite (Cu3AsS4).Journal of Chemical Thermodynamics , 28(4), 405–12.

Wagman, D.D., Evans, W.H., Parker, V.B. et al. (1982) The NBS tables of chemical thermodynamic properties:selected values for inorganic and C1 and C2 organic substances in SI units. Journal of Physical and ChemicalReference Data , 11(2), 1–392.

Zhu, Y., Zhang, X., Xie, Q. et al. (2005) Solubility and stability of barium arsenate and barium hydrogen arsenate at25◦C. Journal of Hazardous Materials , 120(1-3), 37–44.

Zhu, Y.N., Zhang, X.H., Xie, Q.L. et al. (2006) Solubility and stability of calcium arsenates at 25◦C. Water, Air, andSoil Pollution, 169(1–4), 221–38.