asphalt pavement research trends€¦ · initial cost. future practice: focus on profit from...

34
Hussain U. Bahia & Carl M. Johnson University of WisconsinMadison 2009 Annual WAPA Conference December 12, 2009, Middleton, WI Asphalt Pavement Research Trends

Upload: others

Post on 14-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Hussain U. Bahia & Carl M. Johnson University of Wisconsin‐Madison 

2009 Annual WAPA Conference December 1‐2, 2009,  Middleton, WI

Asphalt Pavement  Research Trends 

Current / Future Focus Areas •

Mechanistic Design –

AASHTO MEPDG 

The Environment –

Energy, Emissions & Noise  

Safety –

Friction and tire‐surface interaction

Superior Materials  –

Modified Binders 

Micro‐mechanics, Imaging & Visualization to learn 

AASHTO MEPDG

Fully Integrated Design Software•Traffic•Environment•Structure •Mix Design •PG Grading•Pavement Distresses

You can enter changes in gradation, and  estimate changes in performance 

You can enter changes in PG grading, and  estimate changes in performance 

You can enter changes in subgrade and  base, and estimate changes in performance 

Performance CriteriaDistress 

Target

Distress 

Predicted

Reliability 

Predicted Acceptable

Terminal IRI (in/mi) 172 104.1 98.9 PassAC Bottom Up Cracking(Alligator Cracking) (%): 25 4.9 92.2 PassAC Thermal Fracture (Transverse Cracking) (ft/mi): 1000 74.8 99.9 PassPermanent Deformation‐

AC Only  (AC Only) (in): 0.25 0.21 71.1 FailPermanent Deformation – All Layers(Total Pavement) (in): 0.75 0.65 81.6 Fail

Output Example ‐

PG 64‐22

Performance CriteriaDistress 

Target

Distress 

Predicted

Reliability 

Predicted Acceptable

Terminal IRI (in/mi) 172 90 99.3 PassAC Bottom Up Cracking(Alligator Cracking) (%): 25 4.9 92.8 PassAC Thermal Fracture (Transverse Cracking) (ft/mi): 1000 74.8 99.9 PassPermanent Deformation‐

AC Only  (AC Only) (in): 0.25 0.17 90.6 PassPermanent Deformation – All Layers(Total Pavement) (in): 0.75 0.61 92.2 Pass

Output Example ‐

PG 76‐22

The Environment (Sustainable Roads) 

Asphalt is one of the most sustainable  construction materials  

The next few years will quantify this

for  designers and specifiers of roads

Increased recycling by design 

Reduce energy and emissions •

Warm mix practice 

Quiet roads by design of surface texture 

Distribution of Energy Consumption Asphalt Roads

Total Energy Consumed(%)

Material ExtractionManufacturingPlacement

91.7 %

1.8 % 6.7 %

Source: Image used courtesy of Payne & Dolan

Current Practice: Focus on materials’

initial costFuture Practice: Focus on profit from reduced energy and lower emissions

Evolving  Estimation & Analysis Tools 

Pavement Life‐cycle Assessment Test for Environment  and Economic Effects (PaLATE)

Plant Diagnostic  and Optimization Tool–

Pennsylvania Asphalt Pavement Association (PAPA)

Spreadsheet models for Energy and Emissions –

World Bank

Land Transport New Zealand

Existing Tools: PaLATE Pavement Life Cycle Analysis for Environment and 

Economic effects

Existing Tools: Plant Diagnostic Tool

Source: Pennsylvania Asphalt Pavement Association

The Promise: Production Impact  Less Energy + Less Impact on Environment   

Source: FHWA

Fuel

/To

nEm

issio

ns/T

on

Models: Fuel Consumption Estimate how much energy you can save 

0

0.5

1

1.5

2

2.5

100 150 200 250 300 350 400 450

Mix Temp (o

F)

Fuel

Con

sum

ptio

n (g

al /

ton

mix

)

0

50

100

150

200

250

300

350

400

3

5% Moisture

2% Moisture

O.25 Gallon Per 50 F

Opportunities for Asphalts 

Design for  superior safety

Selecting gradation to 

control texture spectrum 

Better water drainage 

results in lower skid risk 

and better visibility 

Specific surface texture 

can increase friction 

Design for less  noise 

Dense graded but 

selected texture 

spectrum 

Reduce noise generation 

Increase noise 

absorption 

Asphalt – Drainable Surface  Safety through better visibility and friction

Porous

Non-PorousSan Antonio Interstate Highway IH 35 before and after paving with Asphalt Rubber (RPA News, Vol 7, No.4, Spring 2004)

Macro‐texture/Laser Profilometer Work in collaboration ( University of Pisa) 

WavelengthProfile

Ampl

itude

Length

•Device •Sampling Rate

•Sampling Interval

•Vertical Resolution

•Measuring Speed

•Length of Profile

•Stationary Profilometer •16 kHz •0.1 mm •0.05 mm •Manual •750 mm

•Mobile Profilometer •16 kHz •1 mm •0.05 mm •20 km/h •unlimited

Example of Measurements  Wisconsin – WHRP Project  Mixes

Macrotexture Spectrum  To Reduce Tire/Road Noise

Optimize

“Texture level”

to generate less  noise

20

25

30

35

40

45

50

55

60

315

250

200

160

125

100

80.0

63.0

50.0

40.0

31.5

25.0

20.0

16.0

12.5

10.0

8.00

6.30

5.00

4.00

3.15

2.50

2.00

Lunghezza d'onda (mm)

Liv

ello

di T

essi

tura

(dB

rel

. 10

-6m

RM

S)

Texture Wavelength

(After Losa et al. 2009)

Noise Absorption Modeling Voids Structure (Losa et al. 2008/09)

DP

LP

LA

DA

PoreAperture

F = Microstructural Model

G = Theoretical Model

= F(DP, LP, DA, LA

)

(DP, LP, DA, LA

) = G(Composition Characteristics)

Noise Absorption Measurements

Absorption Coefficient (Alpha)

Micro‐texture (Friction)  Measurements 

• British Pendulum Skid Resistance Tester •

Friction measured by swinging the

pendulum.

•The loss of the kinetic energy as result of the interaction between the rubber and the sample surface is reported as the British Pendulum Number (BPN)

•Higher BPN values indicate higher surface microtexture and better skid resistance.

BPN – Friction Number As a function of Aggregate Gradation  

R² = 0.7509

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

BPN

Gradation (Beta Index)

Visualization and Imaging  UW‐

MSU Software 09

Will be proposed as an AASHTO Standard 

(1) Image 

processingprocessing

(2) Image 

analysisanalysis

12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(1) Image processingprocessing(2) Image analysisanalysis

Contact pointsContact points

OrientationOrientation

SegregationSegregation

Software Updates of ’09 Detail of two part process

G1

G2

G3

Harmonic Fit Parameters

A

Predominant angle, A= Severity of angle dispersion  

Effect of Compaction Method – Initial Analysis 

German Steel Sector

Superpave Gyratory

MarshallKneading Compactor

Compaction Method A

Kneading Compactor 126 2.78Marshall 125 2.76German Steel Sector 167 0.22Superpave Gyratory 90 5.54

: Indicates the predominant orientation angleA: represents the amplitude or severity of 

deviation from uniform (zero=uniform)

FHWA‐UW ‐‐ X‐Ray CT Imaging

Hot Mix Asphalt LCPC Mix compacted to 35 gyrations (~4% air voids)

LCPC Mix compacted to 160 gyrations (~1.5% air voids)

Images from Kutay et al. 2008

Future Highways in The USA – Will be built with Less Impact on Environment 

Low Energy, Low Emissions, and Low Noise  Asphalt, can deliver these in the NEAR future

31

• ~ 4.0 Million Miles• ~ 2.2 million Paved• ~ 93 % Asphalt • ~30 million tons/Y

• ~ 4-5 million Modified Asphalts

X

Future Highways in The USA – Will be built with Less Impact on Environment 

Low Energy, Low Emissions, and Low Noise  Asphalt, can deliver these in the NEAR future

UWMARC.ORG

Concluding Remarks •

The next 10 years, many opportunities 

Asphalt will not be the same , it will much improved  and more function specific 

–Opportunities for better role in pavement structure through 

MEPDG

–Opportunities for lower cost and less impact on environment 

–Less energy, less emissions, and less noise

–We will see more modified binders and mixtures

Thank You  for this 

Opportunity 

Questions !

Bahia -34