assessment of radiation shielding materials for protection of space crews using cr-39 plastic...

17
Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1 , E. R. Benton 1 , Y. Uchihori 2 , N. Yasuda 2 , E. V. Benton 3 , and A. L. Frank 3 1 Dept. of Physics, Oklahoma State University, Stillwater, OK 74078 USA 2 National Institute of Radiological Sciences, Chiba, Japan 3 Dept. of Physics, University of San Francisco, San Francisco, CA 94117 USA

Upload: beverley-goodman

Post on 18-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector

J. M. DeWitt1, E. R. Benton1, Y. Uchihori2, N. Yasuda2,E. V. Benton3, and A. L. Frank3

1Dept. of Physics, Oklahoma State University, Stillwater, OK 74078 USA

2National Institute of Radiological Sciences, Chiba, Japan3Dept. of Physics, University of San Francisco,

San Francisco, CA 94117 USA

Page 2: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

1. Provide data to validate existing transport models

2. Test new multi-functional materials

3. Systematically develop a method…

a. Using baseline materials (Al, Cu, PE, etc.)

b. Using appropriate ions and energies

c. Using ground-based testing and modeling components

d. Use the method to produce a weighted Figure of Merit

Motivation

21-5 September 2008 24th ICNTS 2008, Bologna, Italy

Page 3: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

Limitation

•We can’t expose test materials to the whole of the space radiation environment

•We can expose test materials on the ground with beams of fixed Z and E

•This provides information for particles of similar Z and E, but we are limited by what the accelerators can give us

Solution

•Develop a method to combine results from accelerator exposures to a limited—but representative—set of beams

Figure of Merit (1)

31-5 September 2008 24th ICNTS 2008, Bologna, Italy

Page 4: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

Figure of Merit (2)

41-5 September 2008 24th ICNTS 2008, Bologna, Italy

Solution (cont.)

Results should be weighted so as to reflect the relative abundances in the GCR spectrum

ReflectsLET

Page 5: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

Figure of Merit (3)

51-5 September 2008 24th ICNTS 2008, Bologna, Italy

1 GeV protons and 1 GeV/n heavy ions is well-representative; add lower-E protons (e.g. 150 MeV) to simulate SPEs

Solution (cont.)

Page 6: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

Figure of Merit (3)

61-5 September 2008 24th ICNTS 2008, Bologna, Italy

Solution (cont.)

• Since CR-39 is not sensitive to protons > 12 MeV, use Al2O3:C Optically Stimulated Luminescence Detectors (OSLDs) to measure this dose contribution

• The goal (and challenge) is to generate a single Figure of Merit that characterizes a given test material’s shielding efficacy relative to a series of baseline materials (PE and Al in particular)

Page 7: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

The Space Radiation Environment

71-5 September 2008 24th ICNTS 2008, Bologna, Italy

Page 8: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

Detector Exposures

• Simulate the SRE using 1H, 4He, 12C, 16O, 20Ne, 28Si, 56Fe, etc.

• 1 GeV/n for heavy ions; lower energies for protons and alphas

• BNL NSRL (AGS Booster), HIMAC, etc.

• Shielding targets: baseline (Al, Cu, PE, etc.) and multi-functional (carbon composite, Kevlar composite, etc.)

81-5 September 2008 24th ICNTS 2008, Bologna, Italy

Page 9: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

Target-Detector Configuration

Mono-Energetic

ParticleBeam

(5000/cm2)

Front CR-39Detector Back CR-39

Detector

Shielding Target(e.g. Al, Cu, PE, etc.)

91-5 September 2008 24th ICNTS 2008, Bologna, Italy

e.g. 28Si, 56Fe

Page 10: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

Detector Processing and Read-Out

• Chemically etch…

“low ” (6.25 N NaOH at 50° C)

“slow” (7 days)

• Bulk etch is determined using the Henke-Benton method

• Optical read-out is done semi-automatically using the Samaica system (Heinrich et. al)

101-5 September 2008 24th ICNTS 2008, Bologna, Italy

Page 11: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

LETH2O (keV/m)

40 80 120 160 200 240 280 320

Nor

mal

ized

Diff

eren

tial F

luen

ce (c

m-2

ion-1

)

10-4

10-3

10-2

No target30 g/cm2 Cu

Differential LET Fluence Spectra in CR-39 PNTD 956 MeV/n 56Fe at BNL NSRL

No target and behind 30 g/cm2 copper

1.) Primary ionization peak shifts to higher LET

3.) Passage through the absorber leads to range straggling and broadens the peak

2.) Nuclear interaction

s produce projectile

fragments

111-5 September 2008 24th ICNTS 2008, Bologna, Italy

Page 12: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

Differential LET Fluence Spectra in CR-39 PNTD 956 MeV/n 56Fe at BNL NSRL

0–30 g/cm2 aluminum

LETH2O (keV/m)

40 80 120 160 200 240 280 320 360 400 440 480 520

Nor

mal

ized

Diff

eren

tial F

luen

ce (c

m-2

ion-1

)

10-4

10-3

10-2

10-1

No target5 g/cm2 Al10 g/cm2 Al15 g/cm2 Al20 g/cm2 Al30 g/cm2 Al

121-5 September 2008 24th ICNTS 2008, Bologna, Italy

Page 13: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

LETH2O (keV/m)

10 15 20 25 30 35 40 45 50 55 60

Nor

mal

ized

Diff

eren

tial F

luen

ce (c

m-2

ion-1

)

10-4

10-3

10-2

10-1

Differential LET Fluence Spectra in CR-39 PNTD 975 MeV/n 28Si at BNL NSRL

10 g/cm2 polyethylene

Z = 14

13121110

9

131-5 September 2008 24th ICNTS 2008, Bologna, Italy

Page 14: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

Depth (g/cm2)

0 5 10 15 20 25 30 35

Nor

mal

ized

Dos

e (

Gy/

ion)

0.000

0.005

0.010

0.015

0.020

0.025

0.030AlCuPE

Depth (g/cm2)

0 5 10 15 20 25 30 35N

orm

aliz

ed D

ose

Equi

vale

nt (

Sv/i

on)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Dose-Depth Profiles (1)

Range of 975 MeV/n 28Si in aluminum: 56.3 g/cm2

copper: 64.8 g/cm2

polyethylene: 47.8 g/cm2

141-5 September 2008 24th ICNTS 2008, Bologna, Italy

Page 15: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

Depth (g/cm2)

0 5 10 15 20 25 30 35

Nor

mal

ized

Dos

e (

Gy/

ion)

0.04

0.05

0.06

0.07

0.08

0.09

0.10AlCuPE

Depth (g/cm2)

0 5 10 15 20 25 30 35N

orm

aliz

ed D

ose

Equi

vale

nt (

Sv/i

on)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Dose-Depth Profiles (2)

151-5 September 2008 24th ICNTS 2008, Bologna, Italy

Range of 956 MeV/n 56Fe in aluminum: 31.5 g/cm2

copper: 36.2 g/cm2

polyethylene: 26.6 g/cm2

Page 16: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

Depth (g/cm2)

0 5 10 15 20 25 30 35

% F

ragm

ente

d

0

10

20

30

40

50

60

70

80

90

100AlCuPE

Percent of Primaries Fragmented: 956 MeV/n 56Fe

161-5 September 2008 24th ICNTS 2008, Bologna, Italy

Page 17: Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector J. M. DeWitt 1, E. R. Benton 1, Y

Conclusions and Future Work

• A systematic way of assessing space radiation shielding performance

• Do this by varying beam Z and E, along with target composition and depth

• Develop using baseline materials; test using multi-functional materials

• Compliment these tests using a computer model (e.g. FLUKA)

• Major Emphasis: Use the developed method to produce a weighted Figure of Merit for a given material

• Pragmatic approach; can say little about physics involved

171-5 September 2008 24th ICNTS 2008, Bologna, Italy