astronomy 340 fall 2007

31
29 NOVEMBER 2007 CLASS #25 Astronomy 340 Fall 2007

Upload: jania

Post on 23-Feb-2016

37 views

Category:

Documents


0 download

DESCRIPTION

Astronomy 340 Fall 2007. 29 November 2007 Class # 25. Review. Pluto system Odd orbit, 3 moons Possible collision? Triton Neptune’s large moon Retrograde orbit  likely gravitationally captured. A Little History. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Astronomy 340 Fall  2007

29 NOVEMBER 2007CLASS #25

Astronomy 340Fall 2007

Page 2: Astronomy 340 Fall  2007

Review

Pluto system Odd orbit, 3 moons Possible collision?

Triton Neptune’s large moon Retrograde orbit

likely gravitationally captured

Page 3: Astronomy 340 Fall  2007

A Little History

Gerard Kuiper and Kenneth Edgeworth “predicted” a distribution of small bodies in the outer solar system – 1940s

Real surveys began in early ’90s 70,000 KBOs w/ d > 100 km (estimated) 30 AU < a < 50 AU Range of inclination/eccentricity

1st KBO is really Pluto!

Page 4: Astronomy 340 Fall  2007
Page 5: Astronomy 340 Fall  2007

Bernstein et al 2004

Page 6: Astronomy 340 Fall  2007

Properties of TNOs

Green stars scattered population

Red squares classical KBOs

Lines are different power law fits

Surface density best fit by two power laws

Page 7: Astronomy 340 Fall  2007

Basic Orbital Properties

“Classical” Low eccentricity, low inclination 40 AU < a < 47 AU

“Resonant” Occupying various resonances with Neptune 3:2,

4:3, 2:1 etc a ~ 40 AU

“Scattered” High eccentricity, high inclination

Page 8: Astronomy 340 Fall  2007

Distribution of TNOs

Page 9: Astronomy 340 Fall  2007

Population

Total mass ~ 0.5 Earth massesTotal number unknown

> 1500 detected via surveysColors (Tegler et al 2003 ApJ 599 L49)

~100 KBOs with photometry “classical” KBOs are “red” (B-R > 1.5) “scattered” KBOs are “grey”

Largely colorless (flat spectrum) Primordial?

Page 10: Astronomy 340 Fall  2007

Classical KBOs

Mostly between42 and 48 AU

Formed via “quiet accretion”

Page 11: Astronomy 340 Fall  2007

Orbital PopulationsReflect dynamical

history of the outer solar system Hahn & Malhotra

(2005 AJ 130 2392) N-body simulation Neptune migration

previously heated disk Populates the 5:2

resonance with Neptune

“scattered” KBOs largely affected by planet migration

Page 12: Astronomy 340 Fall  2007
Page 13: Astronomy 340 Fall  2007

Orbital Populations

Hahn & Mulhatra

Page 14: Astronomy 340 Fall  2007

Scattered KBOs - orbitsTrujillo, Jewitt, Luu 2000 ApJ 529 L103

Page 15: Astronomy 340 Fall  2007

Populations (Hahn & Malhotra 2005)

Page 16: Astronomy 340 Fall  2007

Explanation for Colors?

Neptune migrates from 25 AU to 40 AUScatters objectsObjects at 40 AU are relatively unperturbed

surfaces reflect methane ice

Page 17: Astronomy 340 Fall  2007

KBO colors

Page 18: Astronomy 340 Fall  2007

KBO Colors vs Dynamics

Page 19: Astronomy 340 Fall  2007

Centaurs (Horner, Evans, Bailey 2004)

Eccentricity e = 0.2-0.6Perihelia

4 < q < 6.6 AU 6.6 < q < 12.0 AU 12.0 < q < 22.5 AU

Aphelia 6.6 60 AU

Mean diameters ~ few hundred km

Page 20: Astronomy 340 Fall  2007

Centaurs – Dynamical Evolution

Dynamical lifetimes Orbital decay rate N = N0 e-λt (λ = 0.693/T1/2) T1/2 ~ 2-3 Myr scattered via interaction with giant

planets No correlation with color

Page 21: Astronomy 340 Fall  2007

Centaurs – Dynamical Evolution

Dynamical lifetimes Orbital decay rate N

= N0 e-λt (λ = 0.693/T1/2)

T1/2 ~ 2-3 Myr scattered via interaction with giant planets

No correlation with color

Origin? “scattered” TNOs

scattered inwardHahn & Mulhatra

Page 22: Astronomy 340 Fall  2007

Sedna

Page 23: Astronomy 340 Fall  2007

SednaHow do you measure

the diameter? Best fit orbit

R = 90.32 AU a = 480 AU e = 0.84 i = 11.927 Perihelion ~ 76 AU in

2075

Page 24: Astronomy 340 Fall  2007

Sedna

Page 25: Astronomy 340 Fall  2007

Quaoar

Page 26: Astronomy 340 Fall  2007

Quaoar

Page 27: Astronomy 340 Fall  2007

Quaor spectroscopy (Jewitt & Luu)

Looks a bit like water ice

Page 28: Astronomy 340 Fall  2007

2003 UB313

16 years worth of data Orbital properties

a = 67.9 AU, e = 0.4378, i = 43.99 Aphelion at 97.5 AU, perihelion at 38.2 AU (2257)

Page 29: Astronomy 340 Fall  2007

But are they really planets?

Page 30: Astronomy 340 Fall  2007

Eris - Spectroscopy

Big circles = broadband colors

Broad absorption = solid methane

Approximate diameter = Pluto’s

Hey, the thing has a moon….

Page 31: Astronomy 340 Fall  2007

Moons, moons everywhere….