atm global environment efficiency goals for 2050

16
ATM Global Environment Efficiency Goals for 2050 civil air navigation services organisation

Upload: canso

Post on 23-Mar-2016

218 views

Category:

Documents


2 download

DESCRIPTION

The Global ATM system is already between 92% and 94% fuel efficient. CANSO aims to recover all the remaining inefficiency not subject to interdependencies by 2050, resulting in a global ATM system that will be between 95% and 98% efficient.

TRANSCRIPT

Page 1: ATM Global Environment Efficiency Goals for 2050

ATM Global Environment Efficiency Goals for 2050

civil air navigation services organisation

Page 2: ATM Global Environment Efficiency Goals for 2050

Contents

1_ Overview_p3

2_ Key Conclusions_p3

3_ Acknowledgements_p4

4_ Aspirational Goals for ATM efficiency improvement_p4

5_ Interdependencies_p4

6_ Baseline Efficiency_p8

6.1_Overview_p86.2_Breakdownandtotalinefficiencies_p86.3_ComparisonwithIPCCestimates_p9

7_ Summary of efficiency improvement measures_p9

7.1_Europe–FlightEfficiencyPlan_p9

7.1.1_Description_p97.2_Europe-SESAR_p10 7.2.1_Description_p10 7.2.2_Objectivesforenvironmentalimpactreduction_p10 7.2.3_Implementation_p107.3_USA-NextGen_p11 7.3.1_Description_p11 7.3.2_Objectivesforenvironmentalimpactreduction_p11 7.3.3_SelectedimplementationactivitiesrelatingtoATM fuelefficiency_p117.4_Asia-Pacific-Aspire_p14 7.4.1_Description_p14 7.4.2_Objectivesforenvironmentalimpactreduction_p14 7.4.3_AirservicesAustraliaselectedactivitiesrelatingto ATMfuelefficiency_p147.5_ComparisonwiththeCANSOgoals_p148_ Glossary_p159_ References_p15Appendix 1: Call for additional information_p15

©CANSO2012

Thispaperisforinformationpurposesonly.Whileeveryefforthasbeenmadetoensurethequalityandaccuracyofinformationinthispublication,itismadeavailablewithoutanywarrantyofanykind.

www.canso.org

Page 3: ATM Global Environment Efficiency Goals for 2050

1Overview

CANSOrecognisesthatitisimportantthattheairtrafficmanagementindustryhascleargoalstohelpdriveachievementandtomonitorprogress.AspartofCANSO’sImagine2010Programme,theCANSOGlobalEnvironmentWorkgroupisfocussedonthedevelopmentofmetricsandtargetsforenvironmentalimpactreductionfromAirTrafficManagement(ATM)tobedeliveredby2010.ThisworkhasnowbeenfurtheracceleratedtoassisttheICAOGIACCwithitsworkprogramme.ThisCANSOReportwillbeincorporatedintotheworkoftheaviationcrossindustrygroupformedtodevelopaspirationalgoalsforthereductionofglobalaviationCO2emissionstoprovidetotheICAOGIACC.

ATM’scontributiontoreducingclimatechangecanbestbeachievedbyincreasingfuelefficiencyforaircraftusingtheATMsystem.ThisReportpresentsCANSO’saspirationalgoalsforfuelefficiencyimprovementbasedonareviewofglobalinformation.IthasbeendevelopedbytheCANSOEnvironmentWorkgroupwithinputfromATMefficiencyexpertsaroundtheglobe.ThescopeofthereportislimitedtofuelefficiencyandthereforetheoptimisationofCO2emissions.Itaddressesotherissuesonlyasinterdependenciesandhowtheymayaffectfuelefficiency.

ThefiguresproducedinthisReportarebestestimatesgiventhedataavailableatthecurrenttime.CANSOintendstocontinuetodeveloptheworkfurthertoimproveglobalcoveragebysupplementingitwithinformationfromotherANSPsandStateswhenavailable.AccompanyingthispaperisatemplateforANSPsandStatestoprovidetheinformationnecessaryforCANSOtofurtherrefinethebaselineATMefficiencyestimate.

ATM Global EnvironmentEfficiency Goals for 2050

2Key Conclusions

TheresultsofthisReportleadtothefollowingconclusions:

– TheGlobalATMsystemisalreadybetween92%and94%fuelefficient;

– 100%ATMfuelefficiencyisnotachievableassomeinefficiencyisunrecoverableduetonecessaryoperatingconstraintsandinterdependencies,suchasSafety,Capacity,Weather,Noiseandfragmentationoftheairspace

– CANSOhasestimatedtheinterdependenciesrelatetohalfthetotalinefficienciesinthesystem

– TheCANSOgoalaimstorecoveralltheremaininginefficiencynotsubjecttointerdependenciesby2050,resultinginaglobalATMsystemthatwillbebetween95%and98%efficient.

– TheCANSOgoalrepresentssavingsof79milliontonsofCO2peryearby2050relativeto2005.

– Furtherefficiencyimprovementmaybepossiblebyreducingtheinterdependencies.

– ATMefficiencywilldecreasesignificantlywithincreasedcongestionbroughtaboutbytrafficgrowthunlessthereisacorrespondingincreaseinairportandairspacecapacity.TheCANSOgoalhasbeensetirrespectiveofanyincreaseincongestionandthereforetheeffectiveefficiencyimprovementsaremuchgreater.

– TheassessmentofcurrentATMefficiencyisconsistentwiththatpresentedbytheIPCCin1999.

– ATMefficiencyimprovementsmaybeachievedbyintroducingarangeofinitiatives.SomeofthesecanbedirectlyintroducedbyANSPs,suchasnewoperatingprocedures.However,manyrelyonotherparticipantsintheaviation

2_3ATM Global EnvironmentEfficiency Goals for 2050

Page 4: ATM Global Environment Efficiency Goals for 2050

3Acknowledgements

CANSOwouldliketoacknowledgetheeffortsoftheindividualsbelowincontributingtothisreport.DaveKnorrfromtheFAA,TomReynoldsfromCambridgeUniversity,StefanoMancinifromEurocontrolandthemembersoftheCANSOEnvironmentWorkgroup.

4Aspirational Goals for

ATM efficiency improvement

CANSOhasdeterminedthecurrentefficiencyoftheglobalATMsystembyconsolidatingregionalATMefficiencystudiesfromAustralia,EuropeandtheUSAusingthemethodologydescribedbelow.ThisshowsthattheATMsystemisalreadybetween92%and94%efficient.

system,suchasinstitutionalchangetoreduceairspacefragmentation;

– ATMefficiencyhasalreadyimprovedsince1999andplansareinplacetomoderniseregionalATMsystemsthatwillbringaboutfurtherefficiencyimprovementstoachievetheCANSOgoals.Workneedstoprogresstoidentifywaystoreducetheeffectofinterdependenciesonfuelefficiency.

Year Global ATM efficiency

Baseline 2005 Between 92% & 94%

Goal 1 2012 Between 92% & 95%

Goal 2 2020 Between 93% & 95%

Goal 3 2050 Between 95% & 98%

InthecontextofthisReport,100%efficiencyrepresentsaircraftflyingpointtopointviatheoptimumtrajectorysuchasthegreatcirclegroundtrackrouteatthemostfuelefficientaltitudeandspeed.Thereforeaflightthatuses2%morefuelthantheoptimumtrajectoryisconsidered98%efficient.Inpractice100%efficiencyisnotpossibleforanumberofreasonssuchassafety,(i.e.theneedtokeepaircraftseparatedbyacertaindistanceortime),weather,capacity,andnoise,allofwhichcanbeconsideredasinterdependenciesandareexplainedinsection5.However,efficiencyimprovementsarepossiblebymovingtowardsfueloptimalflightprocedureswithintheboundsofthecurrentinterdependencies.Improvementsarealsopossiblebyreducingtheeffectoftheinterdependenciessuchasincreasingcapacityandreducingnoiserestrictionsetc.

100%ATMefficiencyisnotreachableassomeefficiencyisreservedfortheinterdependenciessuchasSafety,Capacity,WeatherandNoise

TheamountofinefficiencyrelatedtotheinterdependencieshasbeenestimatedathalfofthetotalinefficiencyandCANSOhassettheATMindustrytheaspirationalgoalofrecoveringalloftheremainingrecoverableinefficiencyby2050,resultinginaGlobalATMsystemwhichisbetween95%and98%efficientatthattime.

Table1:CANSOATMEfficiencyAspirationalGoals

5Interdependencies

A100%efficientATMsystemwouldenableaircrafttoflypointtopointusingthefueloptimumroutebetweenairportsatalltimes.Inefficienciesareintroducedintothesystemwhenlessthanoptimalroutesareflownandthereareanumberofreasonswhythismaybethecase.Someoftheinefficiencymayberecoveredbychangingpractices,butsomewillremaintoenabletheATMsystemtocopewithanumberofinterdependencies,suchas:

Page 5: ATM Global Environment Efficiency Goals for 2050

ATM Global EnvironmentEfficiency Goals for 2050

 

 

Figure1:CANSOGoalsforATMEfficiencyATMefficiencyimprovementsmaybeachievedbyintroducingarangeofinitiatives.Fuelefficiency

improvementmeasuresthatareplannedaredescribedinsection7.Intermediategoalsfor2012and2020havebeendeterminedtakingintoaccounttheplannedtimeframesfortheimplementationoftheseinitiatives.

ItshouldbenotedthatcongestionplaysalargepartintheefficiencyoftheATMsystem.ATMefficiencywilldecreasesignificantlywithincreasedcongestionbroughtaboutbyforecasttrafficgrowthunlessthereisacorrespondingincreaseinairportandairspacecapacity.

Figure2:EffectofincreasedcongestiononATMfuelefficiency(conceptualonly)Short-termimprovementsinefficiencyto2012areexpectedtobeoffsetbythegrowthin

congestioncausedbytheprojectedincreaseinaircraftmovements.IftheindustrywastocontinuewiththeexistingoperationalenvironmentthenthecurrentlevelofglobalATMefficiencywilldecreaseasadditionaltrafficincreasescongestion.TheCANSOaspirationalgoalsaimtoachievethestatedATMefficiencyimprovementsdespitecurrentgrowthforecasts;theoverallimprovementsinefficiencyarethereforemuchgreaterasillustratedinFigure2.Further,theseimprovementscomeontopofefficiencyinitiativesalreadyimplementedintheATMsystempriorto2005.Assumingthatnootheraviationfuelefficienciesareachieved,theCANSOgoalsrepresenta4%increaseinATMfuelefficiencyto2050whilstairtrafficquadruplesdeliveringsavingsof79milliontonsofCO2peryear.

4_5

Page 6: ATM Global Environment Efficiency Goals for 2050

– Safety-aircraftwilldeviatefromtheoptimumrouteinordertoensureadequateseparationbetweenotheraircraftnearby.

– Weather-toensuresafeandsmoothflight,adverseweathersystemsmayneedtobeavoided.

– Capacity-toaccommodatecapacitylimitationseitherattheairportorwithinairspace,aircraftmayberequiredtoholdpriortoarrival,orwaitonthegroundpriortodeparture.ATMhasinfluenceovertheoptimisationofavailablecivilairspacecapacity,whereasithasnocontroloverairportcapacitybutisabletoinfluencehowitisaccommodated.Whentrafficdemandapproachesavailablecapacity,congestionincreasesreducingefficiencyasdiscussedabove.

– Noise-toreducenoiseimpactontheground,aircraftoperationsaroundtheairfieldaresubjecttonoiseabatementproceduresthatmayreducenoisebutmaycausetheaircrafttoflyalessefficientrouteoracceptsub-optimalaltitudes.

– AirlinePractices–flightplanningsystemsneedtohavetheflexibilitytobenefitfrommoreoptimalroutesthatmaybeavailable.

– Military-civilaircraftgenerallymustroutearoundmilitaryairspacezonesandothertypesofrestrictedairspaceincreasingfuelburn.ANSPscanactivelyseekcooperationfromthemilitarytoimplementandoptimisetheFlexibleUseofAirspace.

– Institutional-aircraftmaytakelessthanoptimalroutesduetofragmentedairspace.Differentregions/countriesmayhavedifferentoperatingprocedures,chargingmechanismsandrequirespecifichand-overprotocolsthatmayleadtolessthanoptimumfuel-efficientrouting.Thesemayberesolvedbypoliticalwill.

Asaresultoftheseinterdependencies,illustratedconceptuallyinFigure3(seepage7),itisnotpossibletoreach100%efficiency.EfficiencygainsmaybeachievedbyimprovingroutingsandATMpractices,butalsobyreducingtheeffectofinterdependenciesillustratedinFigure4(seepage7).

SomeoftheinterdependenciescanbedirectlyinfluencedbyANSPs,suchasnewoperatingprocedures.However,manyrelyonotherparticipantsintheaviationsystem,suchasairports,airlines,regulatorsandgovernmentstoreducefragmentationoftheairspaceforexample.

Changingtheinterdependenciesmaydeliverastepchangeintherecoverableefficiency,asillustratedinFigure4.OnesuchexampleisReducedVerticalSeparationMinima,RVSM.Priorto2002,aircraftflewinaltitudebandsseparatedby2000ftintervals.Becauseaircrafthaveanoptimalcruisealtitudethatminimisesfuelburn,the2000ftaltitudebandsmeantthatitwasnotalwayspossibletoflythemostoptimumroute.RVSMreducesthealtitudebandsto1000feetwithoutcompromisingsafety(asaresultofamoremodernaircraftfleetandnavigationalaids)andallowaircrafttoflyclosertotheiroptimalaltitudes.RVSMalonehasbeenestimatedtohaveimprovedfuelefficiencyby1.8%(Reference1,page15).

Inaddition,ithasincreasedairspacecapacityandreducescongestion,deliveringafurtherefficiencybenefit.

RVSMisanexamplewhereboththeSafetyandCapacityinterdependencyeffectwasreducedincreasingthepoolofrecoverableefficiency.WhilsttechniquessuchasRVSMreducetheinterdependencyitcannotbereducedtozero.

Anotherexampleisnoiserestrictions.Aircraftoperatingaroundairportsaregenerallysubjecttospecifiedroutingsdesignedtolimitnoiseexposureonthegroundwhichmayrequireaircrafttoflylongerthanoptimumroutes,reducingefficiency.Quieteraircraftreducesthenoiseinterdependency,whichcouldfreeupefficiencythatcouldberecoveredbyflyingmoredirectroutes.Aconsequenceofthiswillbeanincreaseinnoiseexposure.

Page 7: ATM Global Environment Efficiency Goals for 2050

6_7

 

Figure4:InterdependenciesandRecoverableEfficiency

 

Figure3:ATMefficiencycategorisation

 

Table2:ATMsystemefficiency

baseline2005

ATM Global EnvironmentEfficiency Goals for 2050

Page 8: ATM Global Environment Efficiency Goals for 2050

6Baseline Efficiency

6.1_Overview

InMay2008,theCANSOGlobalEnvironmentWorkgroupinitiatedaReporttoconsolidateregionalworkonATM’sinfluenceonAviation’sCO2emissions.TheobjectivesoftheReportwereto:

1. IdentifyATM’sglobalinfluenceonaviationCO2inrelationtotheIPCC’sestimated6to12%;

2. Identifythevaryingregionalcontributions:NorthAmerica,Europe,AsiaPacific,Africaetc.;

3. Identifytheefficiencygainspossiblethroughdesign,operationandefficiencyimprovements.

AdraftbaselinewascalculatedinAugust2008(Reference2,page15)andhassincebeensignificantlyupdatedforthispaper.Toestablishthebaseline,CANSOlookedatavailableATMefficiencystudiesfromAirservicesAustralia(Reference3,page15),EUROCONTROL(Reference4,page15)andtheFAA(Reference5,page15)fortheirrespectiveregionsduring2007.Allstudieswerebasedonfuelburnandestimatedtheamountoffuelburntinexcessofthatrequiredtoflythemostoptimumpointtopointgreatcircleroute.DatawasconsolidatedfromindividualstudiesandconvertedintoequivalentCO2emissionsforcomparison.RegionalemissionswerethencomparedtooverallaviationCO2andaglobalfigureforaviationof492MtCO2for2004determinedfromtheSAGEinventories(Reference6,page15).TheSAGEdatawasusedtodeterminetheglobalaviationpercentageforthethreeregions.Thethreestudiesrepresentatotalof66%ofglobalcivilaviation.

TheestimatedefficiencyoftheATMsystemisshowninTable2(seepage7),showingthatin2005theglobalATMefficiencywasbetween92%

and94%.Efficienciesfromtheindividualstudieswerenormalisedaccordingtothepercentageofglobalaviationintheregionandsummedtoprovideaglobalassessment.

ItshouldbenotedthattheEUROCONTROLReportincludesallflightspassingthroughCFMUcontrolwhereastheFAAdataisbasedondomesticscheduledaircraftoperationsonly,representingnearly90%ofallUSoperations.TheAustralianReportcoversallcommercialaviation.Whilstthesedatasetsutilisedifferentmethodologies,thereisnooverlapbetweenthemandthereforenodoublecounting.TheAustralianReporthasshownhigherATMefficiency,whichreflectstherelativelyuncongestedairspaceinthatregion.

Thestudiesreferredtorepresent66%ofglobalaviationandinordertocalculateaglobalefficiency,CANSOhasestimatedtheATMefficiencyoftherestoftheworldtobebetween94%and96%.ThisestimateisbasedonareviewofthethreeregionsandthefactthatthisairspaceisrelativelyuncongestedlikeAustraliabutwithoutsimilarinfrastructureandproceduresforincreasedflightefficiency.Furtherimprovementofthebaselinewillbepossiblebyconsolidatingadditionalstudiesfromotherpartsoftheworld.

OfparticularimportanceareChina,Canada,Brazil,Mexico,Japan,andIndia,whichwillsignificantlyreducetheinfluenceoftherestoftheworldestimate.

6.2_Breakdownoftotalinefficiencies

Toexplainthebaselineefficiencyfurther,theassessmentwassplitintodifferentflightphasestoshowwherethetotalinefficiencieslie.Forthethreeregionalstudiesonly,Table4(seepage12)showstheairborneandgroundbasedtotalinefficiencies.Groundbaseddelaycoversinefficienciesingroundmovementssuchasholdingattherunwaythresholdorinefficienttaxiprocedures.

Eachofthethreestudiesfurtherpartitionedtheairborneinefficienciesinto

– Horizontal-coveringenrouteinefficiencies;

Thisisacleartradeoffbetweenreducingnoiseimpactandreducingclimatechangeimpact.

CANSOstronglysupportsthecontinuedanalysisperformedbyANSPstobetterquantifytherecoverableinefficienciesrelatedtothecomplexinteractionsbetweenfuelefficiencyandsafety,weather,capacityandnoiseetc.

Page 9: ATM Global Environment Efficiency Goals for 2050

ATM Global EnvironmentEfficiency Goals for 2050

– Vertical-coveringtheinefficienciesofclimbingoutofanddescendingintoairportsand

– Terminalarea-coveringtheinefficienciesintheterminalmanoeuvringareasuchasdelaycausedbyholding;

Thisshowedthatwhilstasignificantproportionoftheinefficiencyisintheenroutephase,theterminalareaisjustasimportant.However,theairborneinefficienciesareallintricatelylinkedandtheoptimumflightprofileshouldbeconsideredacrossalltheairborneelementsratherthananyindividualelementinisolation.

Terminalareainefficiencyandgroundbaseddelayarelargelyinfluencedbyairportcapacity.ATM’sinfluenceovertheseinefficienciesislimitedtomanagingwherethedelayistakenintheflight,forexampleslowingaircraftenroutesothatthedelayistakenatahigheraltitudewherefuelburnratesarelower.Emissionscanalsobereducedbyholdingaircraftontheground.

6.3_ComparisonwithIPCCestimates

Inits1999Report(Reference7,page15),theIPCCestimatedthatforthecurrent(1998-1999),worldwideaircraftfleetoperations,improvementstotheATMsystemalonecouldreducefuelburnpertripby6-12%providedthenecessaryinstitutionalandregulatoryarrangementshavebeenputinplace.Thatis,theestimateassumesmodernisationoftheAirTrafficSystemandnoinfrastructureconstraints.Withaviationrepresentingapproximately2-3%ofglobalCO2emissions,thissuggeststhatATMhasaninfluenceovernomorethan0.3%ofglobalemissions.

TheCANSObenchmarkfor2005indicatesthatthetotalinefficiencyintheGlobalATMsystemisbetween6%and8%aftertheinterdependencieshavebeentakenintoaccount.ThisisconsistentwiththeIPCCfigureasshowninFigure7(seepage12).

8_9

TheCANSObenchmarkfor2005,representsanupdatetotheIPCC1999figurewhichtakesintoaccountimprovedATMfuelefficiencystudiesandATMefficiencyimprovementsintheinterveningperiod,suchasRVSM,whichamountsto4%.OftheremaininginefficiencyhalfisrelatedtotheinterdependenciesandtheCANSOgoalsaimtorecoveralloftheremaininginefficiency.

TheCANSOworkpresentedinthispaperisthereforeconsistentwiththeIPCC1999estimate.

7 Summary of efficiency improvement measures

Thissectionbrieflydescribesfuelefficiencyimprovementinitiatives.Ineachregionwehaveidentifiedaroughtimeframeforimplementationandusedthisinformationtophasetheglobalgoalsforefficiencyimprovement.Independentlyfromtheseprogrammes,individualANSPsareimplementingmanyefficiencyimprovementsatanationallevel.

7.1_Europe–FlightEfficiencyPlan7.1.1_Description

TheFlightEfficiencyPlan(Reference8,page15)isajointinitiativelaunchedbyEurocontrol,IATAandCANSOinSeptember2008todriveimmediateefficiencyimprovements.ThefiveactionpointsoftheFlightEfficiencyPlanare:

1. EnhancingEuropeanen-routeairspacedesignthroughannualimprovementsofEuropeanATSroutenetwork,highprioritybeinggivento:

– Implementationofacoherentpackageofannualimprovementsandofshorterroutes;

– Improvingefficiencyforthemostpenalisedcitypairs;

– ImplementationofadditionalConditionalRoutesformaintrafficflows;

– Supportinginitialimplementationoffreerouteairspace.

Page 10: ATM Global Environment Efficiency Goals for 2050

2. Improvingairspaceutilisationandroutenetworkavailabilitythrough:

– Activelysupportandinvolveaircraftoperatorsandthecomputerflightplanserviceprovidersinflightplanqualityimprovements;

– Graduallyapplyingrouteavailabilityrestrictionsonlywhereandwhenrequired;

– Improvingtheutilisationofcivil/militaryairspacestructures.

3. EfficientTMAsdesignandutilisation,through:

– Implementingadvancednavigationcapabilities

– ImplementingContinuousDescentApproaches(CDAs),improvedarrival/departureroutes,optimiseddepartureprofiles,etc

4. Optimisingairportoperations,through:– ImplementationofAirport

CollaborativeDecisionMaking5. Improvingawarenessonperformance.Theimplementationoftheimprovements

isexpectedtobringbenefitsofapproximately1.5MtCO2peryear,whichequatestojustover1%improvementoverthe2005baselineforEurope.TheFlightEfficiencyPlanindicatesthatthegreatestbenefitisinimprovedairspaceutilisation,intheterminalarea/airportoperationsandgoesontosaythatATMonitsowncanachievelittle.

7.2_Europe-SESAR

7.2.1_Description

TheSingleEuropeanSkyAirTrafficManagementResearch,SESAR,istheEuropeanUnion’s€30billionairtrafficmanagementmodernisationprogramme.

TheproposedSESARVisionistoachieveaperformancebasedEuropeanATMSystem,builtinpartnership,tobestsupporttheeverincreasingsocietalandStates’,includingmilitary,expectationsforairtransportwithrespecttothegrowingmobilityofbothcitizensandgoodsandallotheraviationactivities,inasafe,secure,environmentallysustainableandcost-effectivemanner.

Itcombinestechnological,economicandregulatoryaspectsandwillusetheSingleEuropeanSky(SES)legislationtosynchronisetheplansandactionsofthedifferentstakeholdersandbringtogetherresourcesforthedevelopmentandimplementationoftherequiredimprovementsthroughoutEurope,inbothairborneandgroundsystems.

7.2.2_Objectivesforenvironmentalimpactreduction

TheobjectivesaretoachieveafutureEuropeanATMSystemfor2020andbeyond,whichcan,relativetotoday’sperformance:

– Enablea3-foldincreaseincapacitywhichwillalsoreducedelays,bothonthegroundandintheair;

– Improvethesafetyperformancebyafactorof10;

– Enablea10%reductionintheeffectsflightshaveontheenvironmentand,

– ProvideATMservicesatacosttotheairspaceuserswhichisatleast50%less.

7.2.3_Implementation

ATMperformancecoversaverybroadspectrumofaspects,whicharerepresentedthroughelevenKeyPerformanceAreas(KPAs).

OneKPAisEnvironmentEfficiencywhichwilldeliveritsmaximumcontributiontotheenvironment.Asafirststeptowardsthepoliticalobjectivetoenablea10%reductionintheeffectsflightshaveontheenvironment:

– Achievetheimplicitemissionimprovementsthroughthereductionofgate-to-gateexcessfuelconsumptionaddressedintheKPAEfficiency.HowevernospecificseparatetargetcouldbedefinedatthisstagefortheATMcontributiontoatmosphericemissionreductions.

– Minimisenoiseemissionsandtheirimpactsforeachflighttothegreatestextentpossible.

Page 11: ATM Global Environment Efficiency Goals for 2050

ATM Global EnvironmentEfficiency Goals for 2050

– Minimiseotheradverseatmosphericeffectstothegreatestextentpossible.Suitableindicatorsareyettobedeveloped.

– TheaimisthatallproposedenvironmentallyrelatedATMconstraintswouldbesubjecttoatransparentassessmentwithanenvironmentandsocio-economicscope;and,followingthisassessmentthebestalternativesolutionsfromaEuropeanSustainabilityperspectiveareseentobeadopted.

– LocalenvironmentalrulesaffectingATMaretobe100%respected(e.g.aircrafttyperestrictions,nightmovementbans,noiseroutesandnoisequotas,etc.).Exceptionsareonlyallowedforsafetyorsecurityreasons.

MoreinformationaboutSESARcanbefoundathttp://www.sesar-consortium.aero/

7.3_USA-NextGen

7.3.1_Description

NextGenisawiderangingtransformationoftheentireUSairtrafficmanagementsystem.Itwillreplaceground-basedtechnologieswithnewandmoredynamicsatellitebasedtechnology.ItisacollaborativeeffortbetweentheFAAandpartnersfromtheairports,airlines,manufacturers,governmentagencies,state,localandforeigngovernments,universitiesandassociations.

7.3.2_Objectivesforenvironmentalimpactreduction

Establishthemostcost-effectiveapproachtoreducingsignificantimpactofaviationnoiseandemissionsinabsolutetermswhileenablingthefutureairtrafficsystemtohandlegrowthindemand.

Performancetargets,asdocumentedintheFAAFlightPlaninclude:

– Reducethenumberofpeopleexposedtosignificantnoiseby4%eachyear

10_11

throughFY2011,asmeasuredbyathree-yearmovingaverage,fromthethree-yearaveragefromcalendaryears2000-2002.

– Improveaviationfuelefficiencyperrevenueplane-mileby1%eachyearthroughFY2011,asmeasuredbyathree-yearmovingaverage,fromthethree-yearaveragefromcalendaryears2000-2002.

ForNextGenby2015:– Reducesignificantaviationnoise,

andlocalairqualityemissionsinabsolutetermsinacost-effectivewaythroughacombinationofnewvehicletechnologies,cleanerandquietoperations,betterlanduseandalternativefuels.

– Limitorreducetheimpactofaviationgreenhousegasemissionsonclimatechange.

– Documenteffectsofparticulatematterandglobalclimateimpactsunderstoodtolevelsthatallowappropriatemetricsandaction.

– Determineandmitigatesignificantwaterqualityimpacts.

7.3.3_SelectedimplementationactivitiesrelatingtoATMfuelefficiency

Seefigure8onpage13.Furtherdetailsoftheseinitiativesareavailableat

http://www.faa.gov/about/office_org/headquarters_offices/ato/publications/nextgenplan/

Page 12: ATM Global Environment Efficiency Goals for 2050

June 2010

Table4:ATMsystemtotalinefficiency

2007forEurope,USAandAustralia

 

Figure6:IPCCestimationof

AviationCO2influence

 

Figure7:Comparisonwith

IPCC1999estimate

 

Page 13: ATM Global Environment Efficiency Goals for 2050

ATM Global EnvironmentEfficiency Goals for 2050

 

12_13

 

Figure8

Figure9

Page 14: ATM Global Environment Efficiency Goals for 2050

– aprioritydeparturerouteoutofLosAngelesandunimpededclimbthroughtocruisealtitude;

– allowingittoreachitsoptimumcruisealtitudeasquicklyandefficientlyaspossible;

– auserpreferredrouteforthemostefficientpathtakingintoaccountwindsandaircraftweight;

– realtimeupdatesofcurrentweatherandwindconditionsthatallowtheflightcrewtomodifytheirflightpath;

– atailoredarrivalprocedureWithapproximately156flightsperweek

betweenAustralia,NewZealandandUnitedStatesandCanada,thepotentialannualsavingsofinitiativessuchastheASPIREProgrammeareinexcessof100,000tonnesofCO2emissions.MoreresearchisneededtodetermineiftheASPIREdemonstrationscanberealisedinmorecongestedregionsofairspace.

7.4.3_AirservicesAustraliaselectedactivitiesrelatingtoATMfuelefficiency

Seefigure9onpage13.

7.5_ComparisonwiththeCANSOgoals

ThetwomodernisationprogrammesSESARandNextGendescribedabovehavedevelopedaninitialsetofenvironmentaltargets.SESARhassetatargetofa10%reductioninenvironmentalimpactby2025relativeto2006.NextGenhasindicateda12%reductioninenvironmentalimpactby2025maybepossible.

ItshouldbenotedthattheenvironmentalgoalsofSESARandNextGenarenotdirectlycomparabletotheCANSOgoalspresentedinthispaperbecause:

– TheyrefertoenvironmentalimpactreductionandincludenoiseandairqualityimpactreductionsintheirgoalswhereasCANSOreferstoCO2efficiencyonly.

– ThemeasurestoreduceimpactincludeATMefficiencyimprovementsbutalsoairportcapacityincreasesandairframeimprovements.TheCANSOgoalstakeintoaccountATMimprovementsonly.

– ThegoalsareregionalcoveringEuropeandtheUSonly.TheCANSOgoalsareglobal.

7.4_Asia-Pacific-Aspire

7.4.1_Description

AsiaandSouthPacificInitiativetoReduceEmissions(ASPIRE)isapartnershipbetweentheFAA,AirservicesAustraliaandAirwaysNewZealand.TheASPIREAgreementwassignedonthe18February2008withongoingcollaborationleadingtothefirstASPIREflighttakingplaceinSeptember2008.

7.4.2_Objectivesforenvironmentalimpactreduction

Theaimistoworkcloselywithgovernments,airlinesandotherairnavigationserviceprovidersintheregionto:

– Acceleratethedevelopmentandimplementationofoperationalprocedurestoreducetheenvironmentalfootprintforallphasesofflightonanoperationbyoperationbasis,fromgatetogate;

– Facilitateworldwideinteroperabilityofenvironmentallyfriendlyproceduresandstandards;

– Capitaliseonexistingtechnologyandbestpractices;

– Developsharedperformancemetricstomeasureimprovementsintheenvironmentalperformanceoftheairtransportsystem;and

– Provideasystematicapproachtoensureappropriatemitigationactionswithshort,medium-andlong-termresults.

ASPIREpartnershavecommittedtomoveforwardtofosterimplementationoftheprogramalongkeyAsianandSouthPacificroutes.ASPIREbelievesaggressiveactiontomakerealnewconceptsofoperationandtakeadvantageofinnovationsinaircraftandairtrafficmanagementtechnologyarecrucialifaviationistoexerciseitsproperstewardshipoftheenvironment.

AseriesofflightshavetakenplacefromNewZealandandAustraliatoLosAngelesandSanFranciscousingfuelefficientprocedureswhichhavedemonstratedsavingsofmanytonsofCO2emissions.

TheseflightshavemadeuseoffuelefficientATMproceduressuchas

– priorityclearancefromairtrafficcontrolfortaxiinganddeparture;

Page 15: ATM Global Environment Efficiency Goals for 2050

Incontrast,theCANSOgoalsareglobal,limitedtoclimatechangeimpact(fuelefficiency)andtoATMefficiencyimprovementinitiativesandarethereforelowerthanthestatedgoalsoftheseprogrammes.

8Glossary

ANSP AirNavigationServiceProviderATM AirTrafficManagementCDA ContinuousDescentonApproach Anarrivalsprocedurethatreducesnoise andemissionsGIACC GrouponInternationalAviationand ClimateChange.Ahighlevelgroup formedbyICAOin2007toaccelerateits activitiesonCO2emissionsreduction.ICAO InternationalCivilAviationOrganisationIPCC IntergovernmentalPanelonClimate ChangeKPA KeyPerformanceArea,MtCO2 MilliontonsofCO2emissions.RVSM ReducedVerticalSeparationMinimaSAGE SystemforAssessingGlobalEmissionsTMA TerminalManoeuvringArea

9References

1. Assessmentoftheimpactofreducedverticalseparationonaircraft-relatedfuelburnandemissionsforthedomesticUnitedStates.AndrewMalwitz,TimothyYoder,SathyaBalasubramanian,GreggFleming,IanWaitz–November2007,report#PARTNER-COE-2007-002.

2. CO2GlobalBenchmarkReportdraft.CANSOEnvironmentWorkgroup,August2008.

3. PreliminaryEstimateofImprovementstoATMEfficiency.PaperpreparedfortheCANSOEnvironmentWorkgroup,RobertPorteousAirservicesAustralia,May2008.

4. PerformanceReviewReport2007.EUROCONTROL,availablefromwww.eurocontrol.int

5. EstimationofNASefficiency–workingdraftdated22-Sep-2008,presentationfromFAA.

6. SAGE,GlobalAviationEmissionsInventoriesfor2000through2004,publishedSeptember2005–Table11.

7. AviationandtheGlobalAtmosphere,IPCC1999,J.H.EllisN.R.P.Harris,D.H.Lister,J.E.Penner.

8. FlightEfficiencyPlan–fuelandemissionssavings,CANSO,IATAandEurocontrol,publishedAugust2008availablefromhttp://www.canso.org/NR/exeres/1917578A-E00A-45C8-B909-A06B46176121.htm

Appendix 1: Call for additional information

CANSOintendstorefinetheglobalefficiencyestimatesandgoalspresentedinthispaperbyincludingATMefficiencystudiesfromadditionalANSPsandStates.Thiswillreducetheeffectoftheassumptionsmadeinthepaperandprovideamorerobustassessment.BelowisalistofinformationthatANSPsneedtoprovideinordertoinputintothisprocess.FurtherguidanceisavailablebycontactingCANSO.

1. AnassessmentofATMefficiencyintheANSP’scontrolledairspace.

– Ideallythisshallbebasedonfuelburntobeconsistentwithotherinputsbutestimatesbasedontrackextensioncouldbeaccommodated.

– Similarlytheassessmentshouldbeforthe2005baselineoradifferentyearwithaprojectionofanysignificantchangeinefficiencyto2005.

– AnunderstandingofthescopeoftheReport,forexampleifitcoversdomesticaviationonly.

– TofacilitateanoverallassessmenttheefficiencyReportshouldbebrokenintotheelementsshowninsection6.2.

2. EstimateofCO2emissionsfromcivilaviationintheANSP’scontrolledairspace.ForcountriesidentifiedintheSAGE(6)reportthisinformationcanbeusedtobeconsistentwithotherinputs.

3. Atableofefficiencyimprovementinitiativesandwhentheyareexpectedtooccur,similartothoseshowninsection5ofthisreport.

4. Anycaveatsorrestrictionsovertheuseandpresentationofthedata.

14_15ATM Global EnvironmentEfficiency Goals for 2050

Page 16: ATM Global Environment Efficiency Goals for 2050

Full Members - 78—— Aeronautical—Radio—of—Thailand—(AEROTHAI)—— Aeroportos—de—Moçambique—— Air—Navigation—and—Weather—Services,——

CAA—(ANWS)—— Air—Navigation—Services—of—the—Czech—Republic—

(ANS—Czech—Republic)—— Air—Traffic—&—Navigation—Services—(ATNS)—— Airports—and—Aviation—Services—Limited—(AASL)—— Airports—Authority—of—India—(AAI)—— Airports—Fiji—Limited—— Airservices—Australia—— Airways—New—Zealand—— Angkasa—Pura—I—— Austro—Control—— Avinor—AS—— AZANS—Azerbaijan—— Belgocontrol—— Bulgarian—Air—Traffic—Services—Authority—

(BULATSA)—— CAA—Uganda—— Civil—Aviation—Authority—of—Bangladesh—(CAAB)—— Civil—Aviation—Authority—of—Botswana—— Civil—Aviation—Authority—of—Singapore—(CAAS)—— Civil—Aviation—Regulatory—Commission—(CARC)—— Department—of—Airspace—Control—(DECEA)—— Department—of—Civil—Aviation,—Republic—of—Cyprus—— DFS—Deutsche—Flugsicherung—GmbH—(DFS)—— Dirección—General—de—Control—de—Tránsito—Aéreo—

(DGCTA)—— DSNA—France—— Dutch—Caribbean—Air—Navigation—Service—Provider—

(DC-ANSP)—— ENANA-EP—ANGOLA—— ENAV—S.p.A:—Società—Nazionale—per—l’Assistenza—al—

Volo—— Entidad—Pública—Aeropuertos—Españoles—y—

Navegación—Aérea—(Aena)—— Estonian—Air—Navigation—Services—(EANS)—— Federal—Aviation—Administration—(FAA)—— Finavia—Corporation—— GCAA—United—Arab—Emirates—— General—Authority—of—Civil—Aviation—(GACA)—— Hellenic—Civil—Aviation—Authority—(HCAA)—— HungaroControl—Pte.—Ltd.—Co.—— Israel—Airports—Authority—(IAA)—— Iran—Airports—Co—— Irish—Aviation—Authority—(IAA)—— ISAVIA—Ltd—— Japan—Civil—Aviation—Bureau—(JCAB)—— Kazaeronavigatsia—— Kenya—Civil—Aviation—Authority—(KCAA)—— Latvijas—Gaisa—Satiksme—(LGS)—— Letové—prevádzkové—Služby—Slovenskej—

Republiky,—Štátny—Podnik

Lighter—areas—represent—airspace—covered—by—CANSO—Members

CANSO Members

Correct—as—of—11—April—2013.—For—the—most—up-to-date—list—and—organisation—profiles—go—to—www.canso.org/cansomembers

—— Luchtverkeersleiding—Nederland—(LVNL)—— Luxembourg—ANA—— Maldives—Airports—Company—Limited—(MACL)—— Malta—Air—Traffic—Services—(MATS)—— NATA—Albania—— National—Airports—Corporation—Ltd.—— National—Air—Navigation—Services—Company—

(NANSC)—— NATS—UK—— NAV—CANADA—— NAV—Portugal—— Naviair—— Nigerian—Airspace—Management—Agency—(NAMA)—— Office—de—l’Aviation—Civile—et—des—Aeroports—

(OACA)—— ORO—NAVIGACIJA,—Lithuania—— PNG—Air—Services—Limited—(PNGASL)—— Polish—Air—Navigation—Services—Agency—(PANSA)—— PIA—“Adem—Jashari”—-—Air—Control—J.S.C.—— PT—Angkasa—Pura—II—(Persero)—— ROMATSA—— Sakaeronavigatsia—Ltd—— S.E.—MoldATSA—— SENEAM—— Serbia—and—Montenegro—Air—Traffic—Services—

Agency—(SMATSA)—— Serco—— skyguide—— Slovenia—Control—— State—Airports—Authority—&—ANSP—(DHMI)—— State—ATM—Corporation—— Tanzania—Civil—Aviation—Authority—— The—LFV—Group—— Ukrainian—Air—Traffic—Service—Enterprise—

(UkSATSE)—— U.S.—DoD—Policy—Board—on—Federal—Aviation

Gold Associate Members - 14—— Abu—Dhabi—Airports—Company—— Airbus—ProSky—— Boeing—— BT—Plc—— FREQUENTIS—AG—— GE—Air—Traffic—Optimization—Services—— GroupEAD—Europe—S.L.—— ITT—Exelis—— Lockheed—Martin—— Metron—Aviation—— Raytheon—— SELEX—Sistemi—Integrati—S.p.A.—— Telephonics—Corporation,—ESD—— Thales—

Silver Associate Members - 62

—— Adacel—Inc.—— ARINC—— ATCA—–—Japan—— ATECH—Negócios—em—Tecnologia—S/A—— Aviation—Advocacy—Sarl—— Avibit—Data—Processing—GmbH—— Avitech—AG—— AZIMUT—JSC—— Barco—Orthogon—GmbH—— Booz—Allen—Hamilton,—Inc.—— Brüel—&—Kjaer—EMS—— Comsoft—GmbH—— CGH—Technologies,—Inc—— Abu—Dhabi—Department—of—Transport—— Dubai—Airports—— EADS—Cassidian—— EIZO—Technologies—GmbH—— European—Satellite—Services—Provider—(ESSP—SAS)—— Emirates—— Entry—Point—North—— Era—Corporation—— Etihad—Airways—— Guntermann—&—Drunck—GmbH—— Harris—Corporation—— Helios—— Honeywell—International—Inc.—/—Aerospace—— IDS—–—Ingegneria—Dei—Sistemi—S.p.A.—— Indra—Navia—AS—— Indra—Sistemas—— INECO—— Inmarsat—Global—Limited—— Integra—A/S—— Intelcan—Technosystems—Inc.—— International—Aeronavigation—Systems—(IANS)—— Iridium—Communications—Inc.—— Jeppesen—— JMA—Solutions—— LAIC—Aktiengesellschaft—— LEMZ—R&P—Corporation—— LFV—Aviation—Consulting—AB—— Micro—Nav—Ltd—— The—MITRE—Corporation—–—CAASD—— MovingDot—— New—Mexico—State—University—Physical—Science—Lab—— NLR—— Northrop—Grumman—— NTT—Data—Corporation—— Project—Boost——— Quintiq—— Rockwell—Collins,—Inc.—— Rohde—&—Schwarz—GmbH—&—Co.—KG—— RTCA,—Inc.—— Saab—AB—— Saab—Sensis—Corporation—— Saudi—Arabian—Airlines—— SENASA—— SITA—— STR-SpeechTech—Ltd.—— TASC,—Inc.—— Tetra—Tech—AMT—— Washington—Consulting—Group—— WIDE

CANSO—–—The—Civil—Air—Navigation—Services—Organisation—–—is—the—global—voice—of—the—companies—that—provide—air—traffic—control,—and—represents—the—interests—of—Air—Navigation—Services—Providers—worldwide.—

CANSO—members—are—responsible—for—supporting—over—85%—of—world—air—traffic,—and—through—our—Workgroups,—members—share—information—and—develop—new—policies,—with—the—ultimate—aim—of—improving—air—navigation—services—on—the—ground—and—in—the—air.—CANSO—also—represents—its—members’—views—in—major—regulatory—and—industry—forums,—including—at—ICAO,—where—we—have—official—Observer—status.—For—more—information—on—joining—CANSO,—visit—www.canso.org/joiningcanso.—