atmospheric environment characterization in support of the esa exomars mission intercomparison lmd...

29
Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models Bertrand, S. Rafkin, F. Forget, A. Spiga, E. Millo

Upload: eleanore-preston

Post on 24-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Atmospheric Environment Characterization in Support of the ESA ExoMars MissionIntercomparison LMD – SwRI models

T. Bertrand, S. Rafkin, F. Forget, A. Spiga, E. Millour

Page 2: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Project statusNovember – start

• Phase 1 : LMD built 1D version for SWRI for radiative transfer synchronisation

• LMD sent reference profiles

December • First SWRI profiles received • Solving reference time issues (bug, LTST vs LMST, UT

versus LT) • Investigation on surface temperature disagreement

Problem of shortwave flow LMD found a bug in SWRI latitude

• Tuning the right options in both model (philosophy: LMD fit SWRI)

Page 3: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Project statusJanuary

• Comparison of 1D reference profiles with dust opacities at 0.2, 1, 5

• LMD tries to match SWRI dust radiative effects and radiative models by tuning:

1. Dust opacity 2. Dust visible single scaterring albedo

("brightness of the dust") 3. Dust thermal infrared opacity vs visible

opacity

Page 4: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Radiative transfer setting – 1D configuration

Note : the radiative transfer model used by SWRI (NASA Ames) is known to underestimate dust heating rates. They partly compensate that by using "dark" dust radiative properties.

1D Run parameters – 6 cases:

Comparison LMD – SwRI without tunning

Comparison LMD – SwRI with tunning of dust properties

Page 5: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Comparison LMD – SwRI without tunningSurface flux SW

Page 6: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Comparison LMD – SwRI without tunningSurface flux LW

Page 7: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Comparison LMD – SwRI without tunningSurface temperature

Page 8: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Comparison LMD – SwRI without tunningTemperature profiles

Page 9: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Comparison LMD – SwRI without tunningTemperature profiles

Page 10: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Comparison LMD – SwRI without tunningTemperature profiles

Page 11: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Comparison LMD – SwRI without tunningTemperature profiles

Page 12: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Comparison LMD – SwRI without tunningTemperature profiles

Page 13: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Comparison LMD – SwRI without tunningTemperature profiles

Page 14: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Sensibility to dust opacity Temperature profiles

Page 15: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Sensibility to dust opacity Temperature profiles

Page 16: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Sensibility to dust opacity Temperature profiles

Page 17: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Sensibility to dust brightnessTemperature profiles

Page 18: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Sensibility to dust brightnessTemperature profiles

Page 19: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Sensibility to dust brightnessTemperature profiles

Page 20: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Sensibility to ratio dust thermal IR vs VIS opacityTemperature profiles

Page 21: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Fitting C1 case with the three parametersTemperature profiles

Page 22: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

BEST FITS – Case A1Temperature profiles

Page 23: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

BEST FITS – Case A1Surface temperature

Page 24: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

BEST FITS – Case B1Temperature profiles

Page 25: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

BEST FITS – Case B1Surface temperature

Page 26: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

BEST FITS – Case C1Temperature profiles

Page 27: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

BEST FITS – Case C1Surface temperature

Page 28: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

/

Many plots available on:

http://www.lmd.jussieu.fr/~tblmd/Intercomparison/1D_plots

Page 29: Atmospheric Environment Characterization in Support of the ESA ExoMars Mission Intercomparison LMD – SwRI models T. Bertrand, S. Rafkin, F. Forget, A

Conclusion

• 1D comparisons are globally ok

• Turbulent diffusion scheme in the boundary layer: fundamental model differences that should be kept in the intercomparison ?

• Green light has been given to SwRI to start running GCM, Mesoscale and LES models.