atomistic, mesoscopic and continuum...

70
Atomistic, mesoscopic and continuum hydrodynamics coupling liquid models with different resolution Rafael Delgado-Buscalioni Departamento de Fisica Teorica de la Materia Condensada Universidad Autonoma de Madrid Cantoblanco, Madrid E-28049, Spain [email protected]

Upload: others

Post on 24-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Atomistic, mesoscopic andcontinuum hydrodynamics

    coupling liquid models with different resolution

    Rafael Delgado-Buscalioni

    Departamento de Fisica Teorica de la Materia Condensada UniversidadAutonoma de Madrid Cantoblanco, Madrid E-28049, Spain

    [email protected]

    1

  • Domain decomposition

    Interfacing models with different degrees offreedom

    parti

    cle m

    odels

    MD

    DPD

    FH

    CFD

    Open boundary conditions:OUTSIDE WORLD

    steady state, thermodynamic reservoir

    degrees of freedomco

    ntinu

    um m

    odels

    OPEN B.C.

    2

  • Scales and models

    with hydrodynamics

    atomsmolecules

    blobs

    DPD SPHMDParticles

    A nm µm mfs ps ns µs s

    FH CFD

    fluctuating hydrodynamics

    deterministichydrodynamics

    Continuum

    length

    time

    themodynamic statesteady state

    lumps

    MODELS

    SCALESmind the

    CG

    MD

    degrees of freedom (DoF)

    3

  • Multiscale modelling: Motivation. Applications.

    • Multiscale models: predicted as a scientific milestone in near future by the 2020 ScienceGroup. [Nature 440 (7083): 383 (2006)]

    • Complex fluids near interfaces: microfluidics, slip of liquid flow past surfaces.• Fluid-fluid or soft interfaces (e.g., Rayleigh-Taylor instability, membrane’s dynamics)• Macromolecules-sound interaction (proteins) [Science, 309:1096, 2005.]• Crystal growth from liquid phase.• Wetting phenomena: microscopic treatment of the wetting front. Lubrication• Confined systems: driven to chemical equilibrium, osmosis driven flows through

    membranes, thin films, water between membranes, clays,

    • etc...

    C

    P massmomentum

    energy

    4

  • Coworkers• MD-CG-continuum.

    – Kurt Kremer, Max-Plank Institute for Polymer Research (Mainz, Germany).– Matej Praprotnik, Max-Plank Institute for Polymer Research.

    • MD-continuum hydrodynamics– Gianni De Fabritiis, U. Pompeu Fabra (Barcelona)– Peter Coveney, UCL (London)

    • Open boundaries for Fluctuating hydrodynamics– Anne Dejoan, CIEMAT (Madrid)

    • Coarse-graining with proper dynamics.– Pep Español, UNED (Madrid).

    5

  • Outline of the talk

    RDB, M. Praprotnik, K. Kremer JCP (2008)

    E. Flekkoy, RDB, P. Coveney, PRE (2005)

    Imposing fluxes in open MDA

    B

    C

    G. De Fabritiis, RDB, P. Coveney, PRL (2006) RDB, G. De Fabritiis, PRE (2007)

    Particle-continuum coupling: HybridMD

    MD FH

    H

    MD CFDCFD

    H

    xHYBxCG

    BB

    Molecular dynamics - fluctuating hydrodynamics

    MD OPEN BOUNDARY

    Flux boundary conditions for particle simulations

    Triple scale model: AdResS-HybridMDCombining Adaptive Resolution and Hybrid MD

    particle - particle-continuum

    MD CG CFD

    H

    reservoir

    open MD

    B

    Fi

    ext

    JHe

    JHg

    WORKstress, pressure

    HEAT

    6

  • Outline of the talk (cont.)

    D

    Open Fluctuating Hydrodynamics

    RDB, A. Dejoan, PRE , 78, 046708 (2008)

    FH OPEN BOUNDARY

    FHCFD

    E

    Non-reflecting boundary conditions for Fluctuating Hydrodynamics

    M. Praprotnik, L. Delle Site, K. Kremer, JCP (2005)

    MDDPD

    particle - particle

    Adaptive coarse Graining: AdResSChanging the degrees of freedom, "on the fly"

    AINdomain interior domain exterior

    open boundary

    incoming wave(unknown)needs to be

    modeled

    outgoing wave(known)

    AOUT

    x

    (previous talk)

    (probably not today)

    7

  • MD-CFD: Hybrid schemes depending upon theexchanged information

    • Coupling through variables:

    – Schwartz scheme: steady state, closed system (only shear), nofluctuations.

    – Constraint particle dynamics (velocity imposition): unsteady, closed(only shear), no fluctuations.

    • Coupling through fluxes (of momentum and energy)

    – Unsteady flows– Open molecular dynamics: grand canonical ensemble, generalized

    ensembles for MD.– Shear, sound and heat transfers (avoid finite size effect)– Fluctuations included (MD-Fluctuating hydrodynamics)

    8

  • Open molecular dynamicsFlux boundary conditions for molecular dynamics

    H

    Bu

    ffer

    open MD

    B

    Fi

    ext

    Je

    JpWORK

    pressure tensor

    HEAT FLUX

    particles are free to cross H

    buffer-end

    n

    interface of area A

    Fexti =giA∑i∈B gi

    Jp · n 'A

    NB(P n + T · n)

    P pressure, T shear stress tensor.

    9

  • Flux boundary conditions for MDFlekkoy, RDB, Coveney, PRE 72, 026703 (2005)

    Energy flux Je and momentum flux Jp imposed into MD across H

    Momentum over ∆t JpA∆t =∑

    i∈B Fexti ∆t +

    ∑i′ ∆(mvi′)

    Energy over ∆t JeA∆t︸ ︷︷ ︸Total input

    =∑i∈B

    Fexti · vi∆t︸ ︷︷ ︸External force

    +∑

    i′

    ∆�i′︸ ︷︷ ︸Particle insertion/removal

    External forces: Fexti = 〈Fexti 〉+ F̃exti (particle i ∈ B)

    Momentum: introduced by the mean external force 〈Fi〉

    〈Fext〉 = ANB

    j̃p where j̃p ≡ Jp −∑

    i′ ∆(mvi′)A dt

    .

    Energy: introduced by the fluctuating force F̃exti via dissipative work.

    F̃exti =Av′i∑NBi=1 v

    ′2i

    [j̃e − j̃p · 〈v〉

    ]with j̃e ≡ Je −

    ∑i′ ∆�i′Adt

    .

    10

  • Open MD enables several ensembles

    Flekkoy, RDB, Coveney, PRE, 72, 026703 (2005)

    Grand canonicalµBVT

    Dynamics of confinedsystems

    Isobaric ensembleJp = P n̂.

    Constant enthalpyJe = M〈v〉 · F = −p∆V∆N = 0∆E + p∆V = ∆H = 0

    Joule-Thompson, MD-calorimeter

    Constant heat flux, QJe = Q (melting dynamics,

    growth of solid phase-ice-, heat exchange atcomplex surfaces...)

    11

  • Mass fluctuations: grand canonical ensemble

    Var[ρ] = kBTρ/(V c2T ) with c2T = (∂p/∂ρ)T

    0.0 0.5 1.0 1.5 2.0 2.5p

    0.25

    0.50

    0.75

    1.00

    <∆

    Ν2>

    /(Ν

    −Μ

    )

    0.2 0.4 0.6 0.8 1mass density (gr/mol)

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    Std

    (ρ)/

    ρ

    Ideal gasGrand-Canonical (from EOS)Hybrid: MD cellOpen MD

    0 100 200 300 400 500 600 700 800z coordinate (Amstrongs)

    0.626

    0.628

    0.63

    0.632

    0.634

    0.636

    den

    sit

    y (

    gr/m

    ol)

    Grand Canonical result

    MD

    Soft-particlesDPD-like

    Liquid argon Water (T=300 K)

    pressure density cell-coordinate

    Flux particle BC´s are thermodynamically consistent

    GC

    with the Grand Canonical ensemble

    12

  • The particle buffer

    • How to distribute the external force to the particles.

    Fexti =g(xi)AJp∑

    i g(xi)

    (NB: to allow energy exchange one need g(xi) = 1)

    • Control the average buffer mass to a fixed value 〈NB〉Use a simple relaxation algorithm:

    ∆NB∆t

    =1τB

    (〈NB〉 −NB)

    with τB ' [10− 100]fs (faster than any hydrodynamic time).

    • Open system: Particle insertion

    – Delete particle: ∆NB < 0 or if leaving the buffer-end.– Insert particle: ∆NB > 0 usher algorithm [J. Chem. Phys,

    119, 978 (2003)]

    13

  • Force distribution at the buffer

    Momentum flux across H: JH · eHAH is the area of the interfase H

    F exti =g(xi)∑

    i∈B g(xi)AHJH · eH

    x (normal to interface)

    ρ(x)/ρo

    1

    0

    density profile

    x (normal to interface)

    RDB and P. Coveney, PRE, (2002)

    Flekkoy et al. EPL, (2000)

    RDB et al., PRE (2007)

    Werder and Koumoutsakos, J. Comp. Phys. (2005)

    g(x)

    1

    0 H

    Buffer H

    bulk

    14

  • usher energy controlled molecule insertionJ. Chem. Phys 119, 978 (2003); J. Chem. Phys. 121, 12139 (2004) (water)

    • Objective: Insert a new molecule at target potential energy ET .

    • Method: Newton-Raphson-like search in the potential energy landscape.Succesful insertion |∆E/ET | < 0.01 where ∆E = ET − E(n)i

    Translation of the centre of

    mass along force direction F

    rn+1cm = rncm +

    FncmFncm

    δr δr = min(∆E/F, ∆Rmax);∆Rmax ' half distance of firstpeak of radial distribution

    Rotation around the torque

    axis: (water)

    rn+1cm,i = R(n)δθ r

    ncm,i δθ = min(∆E/τ,∆Θmax)

    the maximum rotation allowed

    is ∆Θmax ∼ 45o

    Thermodynamically controllable process: Local energy, temperature andpressure and are kept at the proper equation of state values.

    Negligible insertion cost:LJ particles (ρ < 0.85) < 1% total CPUWater into water ∼ 3% total CPU

    Insertions done at the mean energy/molecule contribution ET = 2Ueos

    15

  • usher: fast and controlled particle insertion

    J. Chem. Phys 119, 978 (2003); J. Chem. Phys. 121, 12139 (2004)(water)

    Applications: Constant chemical potential simulations, unfolding of proteins via water

    insertion (Goodfellow), water insertion in confined systems (e.g. proteins).

    numb

    er of

    iterat

    ions

    -15 -10 -5 0 5 1010

    1

    103

    104

    106

    107

    E (Kcal/mol)

    Insertion of a water molecule in liquid waterat a potential energy E

    Random insertion

    USHER algorithmfor water

    chemical potential @ T=300K

    average energy, @ T=300K

    102

    105

    16

  • usher has limitations

    H

    open MD for complex molecules

    B

    Buffer

    Je

    Jp

    big particles cannot easily be inserted

    17

  • particle - continuum

    MD FH

    18

  • MD-FH: Domain decompositionCoupling molecular dynamics (MD)and fluctuating hydrodynamics (FH)

    General issues concerning particle-continuum coupling

    Particle buffer B Maxwell daemons or External forces

    End of particles box open / closed

    Continuity at interface H - imposed to P / imposed to C - continuity in fluctuations

    Fluctuations Deterministic CFD or Fluctuating Hydrodynamics (FH)

    Information exchanged variables / fluxes

    Time dependenceSteady / Unsteady

    19

  • Continuum fluid dynamics

    • Conservation law conserved quantity per unit volume Φ

    ∂Φ/∂t = −∇ · Jφ

    mass Φ = ρ Jρ = ρumomentum Φ = g ≡ ρu(r, t) Jg = ρuu + Penergy ρe Je = ρue + P : u + Q

    • Closure relationsEquation of state p = p(ρ)

    Constitutive relations

    Pressure tensor P = p1 + Π + Π̃Viscous tensor Π = −η

    (∇u +∇uT

    )+ (2η/3− ξ)∇ · u

    Conduction heat flux Q = −κ∇T + Q̃Fluctuating heat and stress a la Landau

    Stress fluctuations 〈Π̃(r1, t)Π̃(r2, 0)〉 = 2kBTCαβγδδ(r2 − r1)δ(t)Cαβγδ =

    [η(δαδδβγ + δαγδβδ + (ζ − 23η)δαβδδγ

    ]Heat flux fluctuations Q̃

    20

  • The finite volume schemeFinite volume schemes for fluctuating hydrodynamics

    • FH for argon and water: G. De Fabritiis et al PRE, 75 026307 (2007)• Open BC for FH: RDB and A. Dejoan, PRE ,78 046708 (2008)• Staggered grid for FH: RDB and A. Dejoan, (preprint)

    ∫Vc

    ∂Φ/∂t = −∮

    Jφ · ds

    Vc∆Φc∆t

    = −∑

    f=faces

    AfJφf · ef (explicit Euler scheme)

    mass Φ = ρ Jρ = ρumomentum Φ = g ≡ ρu(r, t) Jg = ρuu + Penergy ρe Je = ρue + P : u + Q

    21

  • Finite volume scheme

    c c+1

    ff-1 f+1

    c-1

    Φc+1Φc

    Jc+1Φ

    JcΦ+( ( 2Jf

    Φ=

    JcΦ

    Jc+1Φ

    22

  • MD-FH: hybridMD scheme

    C P

    Hf-1 f+1

    ΦP

    JCΦ

    JPΦ

    +( ( 2=JHΦ

    JCΦ

    JPΦ

    P+1C-1

    FH MD

    ΦC

    23

  • MD-FH: Local P variables

    C P

    Hf-1 f+1

    ΦP

    JCΦ

    JPΦ

    +( ( 2=JHΦ

    JCΦ

    JPΦ

    P+1C-1

    FH MD

    ΦC

    Σi@P

    miφiVP

    1

    24

  • MD-FH: Local P fluxes

    C P

    Hf-1 f+1

    ΦP

    JCΦ

    JPΦ

    +( ( 2=JHΦ JC

    ΦJP

    Φ

    P+1C-1

    FH MD

    ΦC

    Irving-Kirwood (micro)

    Const. relation (meso)

    or

    25

  • MD-FH: Imposing fluxes into MD

    P

    Hf-1f+1

    ΦP

    JPΦ

    +( ( 2=JHΦ

    JCΦ

    JPΦ

    P+1C-1

    FH MD

    B

    Fi

    ext

    flux correction

    only momentumand energy fluxare imposed to P

    26

  • MD-FH: flux balance

    C P

    Hf-1 f+1

    ΦP

    JCΦ

    JPΦ

    +( ( 2=JHΦ

    JCΦ

    JPΦ

    P+1C-1

    FH MD

    ∆ΦP

    ΦC

    measured

    27

  • MD-FH: flux balance: conservative scheme

    C P

    Hf-1 f+1

    ΦP

    JCΦ

    JPΦ

    +( ( 2=JHΦ JC

    ΦJP

    Φ

    P+1C-1

    FH MD

    ∆ΦP

    ΦC

    −∆ΦP

    imposed(via relaxation)

    measured

    conservative scheme

    28

  • MD-FH: Time coupling in flux based scheme

    1

    42

    3

    MD

    FHtime

    t = 0

    ∆tc = nMD δt

    δt

    ∆tc = nFH ∆t

    δtS sampling time

    coupling time

    29

  • MD-FH: Coupling time and stress fluctuations

    Green-Kubo relations

    • Molecular dynamics: decorrelation time τc ∼ 100fs (simple liquids)

    〈J2MD〉 =ηkBT

    V τcwith, τc ≡

    ∫∞0〈J(t)J(0)〉dt〈J(0)2〉

    • Fluctuating hydrodynamics: decorrelation time ∆tFH/2,

    〈J2FH〉 =2ηkBTV ∆tFH

    Thus, to balance the stress fluctuations, 〈J2MD〉 = 〈J2FH〉 :

    ∆tFH = 2τc = δtS Sampling time = twice MD decorrelation time

    Coupling time, in general, ∆tc = nFH∆tFH = Nsδts

    30

  • MD-FH Setup for tests

    Water against a lipid layer at T = 300K[G.Fabritiis,RDB, Coveney PRL, 97 (2006)].

    −25 −20 −15 −10 −5 0 50

    0.01

    0.02

    0.03

    0.04

    n (A

    −3 )

    z (A)

    B P

    H

    Multiscale modellingEmbedding molecular dynamics within fluctuating hydrodynamics

    water density profile

    Hybrid MD-FHsetup

    DMPC (lipid layer)

    PRL, 97, 134501 (2006)

    PRE, 76, 036709 (2007)

    31

  • MD-FH Equilibrium

    Equation of state p = p(ρ) for argon and water TIP3P, T = 300K[G.Fabritiis et al. PRE, 76 (2007)].

    open MD can be used to measure p = p(ρ)

    0 0.2 0.4 0.6 0.8 1mass density (gr/mol/A

    3)

    0

    1000

    2000

    3000

    4000

    5000

    Pres

    sure

    (bar

    ) Equation of stateMD cellFH cell

    argon (LJ) water (TIP3P)

    32

  • MD-FH Velocity and stress fluctuations

    Standard deviation of velocity (kinetic temperature)liquid argon @ T = 300K [RDB and G.Fabritiis et al. PRE, 76 (2007)].

    0 10 20 30 40 50 60 70z (nm)

    80

    81

    82

    83

    84

    85

    Std

    [P

    ress

    ure

    ] (b

    ar)

    JxyJxzJyz

    (b)

    0 20 40 60 80 100z (nm)

    80

    85

    90

    95

    100

    Std

    [p

    ress

    ure

    ] (b

    ar) Jzz

    Jxy

    (a)

    0 20 40 60 80 100z (nm)

    0.06

    0.08

    0.1

    0.12

    Std

    velo

    city

    (A

    /ps)

    0 20 40 60 80 100z (nm)

    vz

    vx

    vy

    STD velocity

    STD Stress tensor components

    positionposition

    MDFH FH

    33

  • MD-FH Density fluctuations

    Standard deviation of densityargon at several densities, T = 300K

    RDB and G.Fabritiis et al. PRE, 76 (2007)

    0 0.2 0.4 0.6 0.8 1mass density (gr/mol/A

    3)

    0

    0.005

    0.01

    0.015

    0.02

    Std(

    ρ)

    MD (Hybrid)FHGrand-Canonical Ideal gas limit

    (a)

    0 0.2 0.4 0.6 0.8mass density (gr/mol/A

    3)

    0

    0.005

    0.01

    0.015

    0.02

    Std(

    ρ)

    Full MD (LJ)Ideal gas limitGC limit

    (b)

    full MD

    HybridMDFH

    Grand canonical

    34

  • MD-FH Shear flow

    0 50 100 150 200z (A)

    0

    0.5

    1

    x-V

    eloci

    ty (

    A/p

    s)

    y = -0.00810 + 0.004649 zy = -0.18874 + 0.006546 z y = -0.27141 + 0.006607z

    hybridMD as a rheometer

    Couette flowsteady solution

    viscosity calibration

    γMD ηMD = γFHηFH(guess)

    35

  • MD-FH Unsteady shear

    5 10 15 20 25 30x (σ)

    -2

    0

    2

    4

    6

    8

    10

    y ve

    loci

    ty (

    σ/τ)

    t = 463

    t = 4

    34t =

    413

    t = 4

    25P C

    Stokes flow

    PC CPLennard-Jones fluid Finite Volume method

    Osc

    illat

    ory

    wal

    l

    Start-up Couette Oscillatory shear

    36

  • MD-FH Sound waves

    0.625

    0.63

    0.635

    0.64

    0.645

    0.65

    0.655

    0 20 40 60 80

    100

    200

    300

    400

    500

    600

    700

    t (ps)

    z (A

    )

    MD

    FH

    FH

    g/mol/A3

    (a)

    liquid argonwater

    37

  • MD-FH Sound waves: time resolution ∼ 0.02 ns

    Fluctuating hydrodynamics

    Hybrid MD-FH

    Deterministic hydrodynamics

    0 0.1 0.2 0.3 0.4 0.5 0.6

    time (ns)

    0.6

    0.65

    0.7

    0.75d

    ensi

    ty (

    gr/

    mo

    l)

    38

  • MD-FH Sound - (soft) mattter interaction

    RDB et al, J. Mech. Engineering Sci. (2008)

    10 15 20 25time (ps)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    r(t)

    Lipid layer Purely reflecting wall

    0 10 20 30 40 50time (ps)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    ∆z

    e(t

    ) (

    A)

    lower densitylarger density

    water density lipids’ tail displacement

    Reflection coefficient

    rigid walllipid wall

    velocity

    time time

    posi

    tion

    time

    39

  • particle - particle

    MD DPD

    40

  • Coupling MD to DPD

    Adaptive Resolution Scheme (AdResS)M. Praprotnik, L. DelleSite and K.Kremer, J. Chem.Phys 123 224106

    (2005), Ann. Rev. Phys. Chem. 59 545 (2008)

    MDexplicit

    atomistic model

    transition regionhybrid particles

    DPDcoarse grained

    model

    degrees of freedom

    spatial coordinate

    41

  • Coupling MD to “DPD”

    Adaptive Resolution Scheme

    miαΣiα

    viα

    Vα=

    Fatom

    Fc.m.

    X

    w(x)1

    0

    center of mass

    αβmiα

    Σiα

    miαF

    c.m.

    αβ

    miαΣiα

    riα

    Rα=

    Fαβ = w(xα)w(xβ)∑iαjβ

    Fatomiαjβ + [1− w(xα)w(xβ)]Fc.m.αβ

    Fatomiαjβ = −∂Uatom

    ∂riαjβAtomistic

    Fc.m.αβ = −∂U c.m.

    ∂RαβCoarse−Grained

    (1)

    42

  • Coupling MD to DPD

    Effective potential for c.m. interaction

    • The effective pair potential U c.m. is determined so as to match the centerof mass radial distribution function of the explicit atomistic model,gexcm(r).

    • This can be done using the iterative Bolzmann inversion [J.Comput. Chem. 241624 (2003)], which starts from the Potential ofMean Force as initial guess (k = 0).

    U cmk+1(r) = Ucmk (r) + T log

    gcgk (r)gexcm(r)

    (2)

    • Small correction ∆U cm = U0(1− r/rc) to equilibribrate pressures.

    43

  • Coupling MD and DPD

    Matching liquid structure and pressure

    Tetraedral fluidkT = 1; ρ=0.175

    Radial distr. func. pressure eos density profile

    44

  • Coupling MD and DPD

    Dynamics: self-diffusion across interfasePosition dependent Langevin thermostat

    using Γ(x)

    self-d

    iffuss

    ion co

    ef.fri

    ction

    coef.

    Γ

    midvidt

    = Fi −miΓ(xi)vi + Wi(xi, t)

    〈Wi(x, 0)〉 = 0〈Wi(x, τ)Wj(x, 0)〉 = 2Γ(x)kTδ(τ)δij

    The thermostat at the “DPD” region is also needed to equilibrate the removed

    /added degrees of freedom (i.e. to add / remove the latent heat of transition).

    45

  • Coupling MD and DPD

    Dynamics: self-diffusion across interfase

    coarse-grain transition all-atom

    46

  • Coupling MD and DPD

    AdResSpros

    • Reduction of degrees of freedom for the liquid outside the region ofinterest.

    • Conserves momentum (3rd Newton Law by construction)

    • Recovers the fluid structure and pressure in the coarse-grained domain

    • Self-diffusion of atomistic and coarse-grained domains can be somehowmatched (a first-principles theory is lacking in the literature).

    47

  • Coupling MD and DPD

    AdResScons

    • It does not conserves energy =⇒ heat transfer is not described.

    • Substantial work to pre-evaluate the effective potential U cm usingiterative Bolzmann inversion for:

    – Both cg and hyb models.– Each thermodynamic state considered

    • Dynamically restricted to homogenous, or near equilibrium states

    • Pressure fits required for cg and hyb models

    • Viscosity mismatch between coarse-grained and atomistic models =⇒incorrect shear transfer.

    48

  • particle - particle-continuum

    MD DPD CFD

    49

  • MD-DPD-CFD

    Triple scale coupling

    RDB, K. Kremer, M. Praprotnik, J. Chem. Phys, 128 114110, (2008)

    General motivationComplex molecules

    • Technical issues

    – Generalize the (MD-DPD) AdResS scheme to include hydrodynamics– Solve the insertion of larger molecules in hybridMD

    • Applications

    – Phenomena involving flow-matter interaction at multiple length scalescomplex fluids near surfaces, lubrication, macromolecules in flow,...

    – Grand canonical molecular dynamics involving complex moleculesconfined systems

    50

  • MD-DPD-CFD Two possible setups

    RDB, K. Kremer, M. Praprotnik, J. Chem. Phys, 128 114110, (2008)

    Heterogeneous model buffer

    H H

    particle domaincontinuum continuum

    B B

    Homogeneous (CG) buffer

    PP

    H

    particle domaincontinuum continuum

    B B

    H

    P P

    51

  • MD-DPD-CFD: Two possible setups

    RDB, K. Kremer, M. Praprotnik, J. Chem. Phys, 128 114110, (2008)

    • Homogeneous buffer

    – con: Requires fine tunning of CG model∗ Viscosity or molecular diffusion coefficient

    Transversal DPD C. Junghans, et al., Soft Matter 4, 156 (2008)∗ Equation of state

    – pro: Requires smaller buffer size– pro: Permits to introduce CG molecular information into the MD

    (explicit) region (structure, diffusion rates, etc...)

    • Heterogeneous buffer

    – con: Larger buffer size– pro: Fully atomistic MD region: proper viscosity, EOS, fluctuations.– pro: Does not requires fine tunning of CG model and HYB models– pro: Enables energy exchange, as the MD region is fully explicit.

    52

  • MD-DPD-CFD: Equilibrium

    liquid structure around the hybrid interface

    high density tetraedral liquidRadial distribution function

    0 1 2 3 4 5 6r (σ)

    0

    0.5

    1

    1.5

    2

    RD

    F

    ex+hyb (HybridMD)ex+hyb+cg (HybridMD)ex (PBC)

    53

  • MD-DPD-CFD: Equilibrium: grand canonical

    Mass fluctuations

    • Scaled standard deviation of mass σ2N/V = ρkBT(

    ∂p∂ρ

    )−2T

    ρ simulation Grand canonical0.1 0.2 0.17

    0.175 0.1 0.07

    • Standard deviation number of particles in one cell, V = 15× 15× 3σ3similar values within error bars

    Coarse Grained hyb atomistic13.9 14.2 14.5

    54

  • MD-DPD-CFD: Shear flow

    15 20 25 30x(σ)

    -0.2

    -0.1

    0

    0.1

    0.2

    velo

    city

    (σ/

    τ)

    ex hyb cghybcgcg cg

    B

    HH

    B

    Homogeneous bufferhigh density tetraedral liquid under shear

    density and velocity profiles

    55

  • MD-DPD-CFD: Shear flow

    5 10 15 20x(σ)

    -0.6-0.4-0.2

    00.20.40.6

    cghyb

    exex

    B

    HH

    B

    Heterogeneous bufferhigh density tetraedral liquid under shear

    density and velocity profiles

    56

  • MD-DPD-CFD: Unsteady flows

    Stokes flow (oscillatory shear)

    P P CC

    H H

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

    x

    16

    wall wall

    cell #10

    cell #6

    cell #8

    0 500 1000 1500time

    -0.2

    -0.1

    0

    0.1

    0.2

    -0.2

    -0.1

    0

    0.1

    0.2

    0 500 1000 1500time

    -0.2

    -0.1

    0

    0.1

    0.2

    0 500 1000 1500time

    -0.2

    -0.1

    0

    0.1

    0.2

    0 500 1000 1500time

    cell #5

    57

  • Triple scale for waterusing an heterogeneous buffer

    RDB, Praprotnik, Kremer, (to be submitted)

    U cmicU cm

    r

    U

    21.510.5

    9

    6

    3

    0

    -3

    hybw=1/2(PBC)cg(PBC)ex(PBC)

    r

    RD

    F

    32.521.510.50

    3

    2.5

    2

    1.5

    1

    0.5

    0

    H

    MD CFDCFD

    H

    xHYBxCG

    BB

    no-slip BC

    58

  • The heterogeneous bufferdoes not require accurate fits

    for the CG and HYB models

    1 1.5 2 2.5r/σ

    1

    1.5

    2

    2.5

    3

    g cm

    (r)

    explicit water model (PBC)coarse-grained model (PBC)MD region (triple-scale run)

    η=20CGη=45EX

    Viscosities (oxigen-LJ units)

    Flexible TIP3P water model

    Radial distribution funcions (center of masses)

    Mass fluctuationVolume = 10.5x6.18x11.2σ-3

    Var[ρ] = 0.0108, ThermodynamicsVar[ρ]=0.011(2), 3-S simulations

    59

  • Triple scale for water

    0 50 100 150 200 250 300time (τ)

    -0.5

    0

    0.5

    velo

    city

    (σ/

    τ)

    0 10 20time (τ)

    -0.4-0.2

    00.20.4

    stokes flow

    start-up Couette flow

    η=20CG η=45EXViscosities (oxigen-LJ units)

    Flexible TIP3P water model

    60

  • Concluding remarks

    • Multiscale modeling based on domain decomposition

    – HybridMD: MD-Fluctuating hydrodynamics.∗ Sound, heat and energy transfer∗ Open molecular dynamics (grand canonical µV T and other

    ensembles)– Adaptive coarse-graining: MD-CG∗ Proper coarse-grained structure and pressure∗ Diffusive (mass) transport across hybrid interface can be matched

    – Triple scale model: MD-CG-continuum∗ Coarse-grained (DPD like) intermediate model∗ Proper hydrodynamics on shear and isothermal sound transport (not

    heat)∗ Solves insertion of complex molecules in hybrid schemes∗ Heterogeneous buffer: more flexible and robust.

    – Open boundaries for fluctuating hydrodynamics:∗ Evacuation of sound waves.∗ Can be generalized to energy and vorticity.

    61

  • Non-reflecting boundary conditions for fluctuating hydrodynamics

    OPENBOUNDARYFH

    RDB, Anne Dejoan, Phys Rev E. (in press)

    62

  • Non-reflecting boundary conditions for CFD: set-up

    AINdomain interior domain exterior

    open boundary

    incoming wave(unknown)needs to be

    modeled

    outgoing wave(known)

    AOUT

    x

    63

  • Implementation of non-reflecting boundary conditions.

    density :∂ρ

    ∂x= 0

    velocity :∂u

    ∂t+

    12ρec

    (LOUT − LIN) = 0

    Closure models for the incoming waves

    LOUT = λOUT

    „∂P

    ∂x+ ρc

    ∂u

    ∂x

    «Evaluated at the interior domain

    LIN = 0 cons: ill posed, overall pressure drift

    LIN = K(p − peq) K =σc

    Lcons: reflection of low freqs.

    LIN = K(ρcAIN) =K2 (δp − ρecδu)

    pros: Wave masking.Enables fluctuation-dissipation balance.

    64

  • NRBC for FH: Fluctuation-dissipation balance for incoming waves

    • Stochastic eq. for incoming wave amplitude:

    dAIN(xb)

    dt+ KAIN(xb) = F (t)

    • Fluctuating stress: F (t) ≡1

    ∆xρe

    »Π̃xx(xb +

    ∆x

    2)− Π̃xx(xb −

    ∆x

    2)

    〈F (t)F (0)〉 = 2Φδ(t) =4kBTηL

    ∆x2ρ2eVcδ(t)

    • Stochastic boundary dynamics: 〈AIN(t)AIN(0)〉 =Φ

    Kexp(−Kt).

    〈AIN〉 = 0 and 〈A2IN〉 =Φ

    K.

    • Sound amplitude variance, thermodynamics, AIN = (1/2)(cδρ/ρe − δu).

    〈A2IN〉 =1

    2

    kBT

    ρeVc

    • Relaxation rate: K =νL

    (δR∆x)2with δ

    (theor)R = 0.5

    65

  • Mean density fluctuation at equilibrium: grand canonical ensemble,

    〈(δρ̄)2〉 = kBTc2V

    0.1 1δ

    R

    10-3

    10-2

    Std m

    ean d

    ensit

    y (gr

    /cm3 )

    nx=98, dens=0.8

    thermodynamic value

    δR

    1.726

    δR

    (num)

    = 0.4

    Sound power spectral density within the system interior

    66

  • Comparsison between Non-reflecting boundaries (NRBC), periodic (PBC)and rigid walls

    NRBC PBC Rigid walls

    wavelength wavelength wavelength

    67

  • Comparison with PBC and Rigid walls:PSD of waves within the system

    10 100 1000 λ (nm)

    10-3

    10-2

    10-1

    dens

    ity

    pow

    er s

    pect

    ra NRBC

    PBC

    Rigid walls

    box size

    68

  • Forced waves: evacuation of sound

    NRBC PBC

    wave source

    A1

    A5

    69

  • Reflection coefficient

    r ' 10−3(f∆x)1.5

    1 10 100f (GHz)

    0.001

    0.01

    0.1

    1

    r

    liquid argonwater

    f1.5

    70