attributes and design of composable and modular smart grid

52
3/13/2014 1 Energy Systems Research Laboratory, FIU Prof. O. A. Mohammed Attributes and design of composable and modular smart grid test beds Energy Systems Research Laboratory Department of Electrical & Computer Engineering Florida International University Miami, Florida [email protected] Professor O. A. Mohammed March,13, 2014 Energy Systems Research Laboratory, FIU Prof. O. A. Mohammed Basics for developing a state of the art smart grid test bed Test bed Scientific theories Computational tools New technology Experimentation As Development environment Proof of concept Replicable Safe and shielded from hazards of testing Transparent Rigorous Expandable

Upload: others

Post on 02-Jan-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Attributes and design of composable and modular smart grid

3/13/2014

1

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Attributes and design of composable and modular smart grid test beds

Energy Systems Research LaboratoryDepartment of Electrical & Computer Engineering

Florida International UniversityMiami, Florida

[email protected]

Professor O. A. Mohammed

March,13, 2014

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Basics for developing a state of the art smart grid test bed

Test bed

Scientific theories

Computational tools

New technology

ExperimentationAs Development environment

Proof of  concept

Replicable

Safe and shielded from hazards of testing

Transparent

Rigorous

Expandable

Page 2: Attributes and design of composable and modular smart grid

3/13/2014

2

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Attributes Our main objective here is to use composable modules for developing a smart

grid test bed smart grid in a laboratory environment.

In general a well developed test bed laboratory will provide the following abilities:

– Achieve full potential for testing practical issues in smart grid research

– Investigate and validate the performance in an isolated platform

– Characterize the components, equipment's and systems in flexible

architectures

– Develop, integrate and verify new ideas and techniques

– Capabilities to practically use, test and enhance modern standards

– Provide an environment and interface for related fields such as market

analysis

– Enable remote operation (i.e. online or off campus accessibility)

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Attributes

– Abilities of the Test Bed from a technical point of view:

– Develop a communication infrastructure

– Develop real time monitoring of the hybrid system

– Implement a variety of architectures and connectivity to emulate

different systems and microgrids.

– Involve trainees in the development and building the various test bed

components

– Develop and evaluate hardware/software solutions by hand and

experiment with it.

– Study Cyber Physical Systems by developing measures for data

handling and real-time control

Page 3: Attributes and design of composable and modular smart grid

3/13/2014

3

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Attributes

– Abilities of the Test Bed from a technical point of view:

– Develop and implement wide area Protection System.

– Study important issues such as real-time voltage stability

– Develop monitoring and operation strategies using Synchorophasors

– Conduct experiments on EMS for smart grids including alternate and

sustainable sources

– Integrate embedded architecture and distributed control through

intelligent agents

– Perform market analysis, economic studies and social behavior.

– Link to other Infrastructures

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Consequently:The Test bed needs to have the following components in an integrated platform to provide several capabilities. 

Phasor measurement Units monitoring, protection, and control

Distributed and renewable energy sources wind, solar, Fuel cells, etc.

New operational schemes protective digital relaying Wide Area Protection

Intelligent protection schemes and their application for Prevent cascading outages Islanding situations Grid blackout

Emulation of Plug-In-Hybrid and Electric Vehicles (PHEVs) and (PEVs) Energy Storage systems, SOC and SOH for batteries

Integration of Hybrid AC-DC systems micro grid solutions for residential and industrial applications. Enhancement of Energy Efficiency and EMS

Integration of Multi Agent in an embedded platform Smart meters, HIL

Page 4: Attributes and design of composable and modular smart grid

3/13/2014

4

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Overview of composable modules integrated in the test bed

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Composing a smart grid test bed at the laboratory scale

• AC Grid Components• Bus

• Synchronizer

• Generation stations

• Dynamic brake

• Transmission line

• Communication platform

• Software Platform– SCADA 

– Protection module

– Online monitoring

– Generation control

– Data base and archiving

– Power System analysis

• Loads

Page 5: Attributes and design of composable and modular smart grid

3/13/2014

5

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Composing a smart grid test bed at the laboratory scale

• DC Microgrids Components– Modular MIBBC– Battery Bank– Programmable Load emulator– DC bus module– High Freq. Inverter– more

• Hybrid PEVs Charging system Components

– RL Filter– Bidirectional ac/dc converter– Bidirectional dc/dc converter– Hardware Overview– Lithium‐ion Battery– Management, 

Diagnostics Software

• AC/DC interconnected network components

– Uncontrolled rectifier

– Dynamic load emulation

– AC Filter

– DC Filter

– DC/Dc Boost Converter

– AC/DC Measurements and Protection

– DC Power Module

– Medium voltage DC Transmission line model

• Components of Microgrids for pulse load studies 

– Super capacitor bank– Bidirectional converter– Multi port Boost Converter– Lead Acid Battery Bank– Programmable DC Load

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Composing a smart grid test bed at the laboratory scale

• Distributed control components– Embedded agent platform– HIL simulators– DDS infrastructure– Smart Meters

– Developed Interface library

• Phasor measurement Components– PMUs– PDCs– RTACs– Interface for control and protection modules– Real time phasor data server

Page 6: Attributes and design of composable and modular smart grid

3/13/2014

6

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Utilization and Applications of composable modules in the smart grid test bed

• Steps from design to operation

• Voltage and current measurement

• Security analysis

• Embedded Control architecture

• PMUs and RTAC

• Hybrid PEV charging station

• Pulse load studies

• DC System monitoring and protection

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

• Wind, PV and Energy storage integration

• Implementation of DC architecture studies

• Modular interconnected WECS Control system

• AC/DC Interconnection Grid Studies

• Multi Agent Environment and Social behavior analysis and pricing

Utilization and Applications of composable modules in smart grid test bed

Page 7: Attributes and design of composable and modular smart grid

3/13/2014

7

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Generation Stations

Dynamic Brake

Transmission lines

Buses

Synchronizers

Programmable loads

Communication platform

PMUs

Distributed control

Battery ChargingAnd

PEV system

Pulse load/super cap. micro grid

DC architecture

Software platform

Battery management

system

Wind, PV, Storage microgrid

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Generation stations attributes

Next slide

3D view

Page 8: Attributes and design of composable and modular smart grid

3/13/2014

8

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Generation Stations

Frequency Drive

AC Grid Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Power Generation Control Loop

Dynamic brake for quick synchronization of generators

Multi port Dynamic Brake(Good for up to 5 Gens.)

AC Grid Components

Page 9: Attributes and design of composable and modular smart grid

3/13/2014

9

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Transmission lines

Hardwareimplementation

OR

AC Grid Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Switching and measurement buses

Solid state switches:• High current capability• Low consumption• Fast response,

symmetrical• Indication LED

CTs:• 1% to 100% current

range• Overcurrent capability• Low impact on

measurement• Calibrable• Adjustable range and

output range• Voltage convertable

PTs:• Over voltage capability• Low impact on

measurement (efficient)• Calibrable• Adjustable range and

output range• Linear response

Connection Terminals:• Standard wiring for

analog outputs• Optimized & Compatible

with DAQs• Flat cable for quick

replacement

Transmission Line Box #

RL (Ohm)

L(mH)

C(uF)

Rc (Ohm)

0060 2.261 24.11 6.689 0.16

0080 0.627 2.685 3.287 0.24

0090 0.614 2.703 6.581 0.11

0150 0.643 2.728 2.228 0.326

0170 1.246 5.4 6.67 0.16

0180 0.64 2.715 2.195 0.303

0190 0.646 2.724 2.194 0.3

0200 2.246 11.78 2.224 0.36

Line parameters for some line boxes

AC Grid Components

Page 10: Attributes and design of composable and modular smart grid

3/13/2014

10

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Synchronizer Module

Synchronizing conditions

CTPT

Communication Terminals

Solid State Switch

Power TerminalsAC Grid Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Programmable loads

Pulse load

Passive loads

Dynamic motor load

AC GridControl circuit

Point of connection 1

Point of connection 2

Power Connection

Digital Command

Load 1

Load 2

Switch set 1 Switch set 2

Com

mun

icat

ion

Inductive

Resistive

AC Grid Components

Page 11: Attributes and design of composable and modular smart grid

3/13/2014

11

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Serial comm.  platformAnd/or 

DDS platform

Communication Infrastructure

AC Grid Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

1

Steps From Design to complete operationof a composable module

2

3

4

5

6

7

Example:Serial RS232 to RS485 converter

8

Applications

Page 12: Attributes and design of composable and modular smart grid

3/13/2014

12

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Voltage Measurement Calibration module

Traditional Measurement using precise meters

Compensation of Nonlinear PT measurements by different polynomial

correction

3 phase Voltage measurement by

PTs

PTs and Calibration potentiometer Measurements by

transducers and data acquisition

For voltage measurements,   we would  like For voltage measurements,   we would  like to  have  precise measurements  in  a  range between 100‐130V (for a 120V system). 

Developed PT calibration module

Real Values

PTs Measured values

Coefficients for 3 phases

Track of different Measurement ranges

Variable load

Precise meter

Device under calibration

Next

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Current Measurement Calibration module

Traditional Measurement using precise meters

Developed CT calibration module

3 phase Voltage measurement by PTs

PTs and Calibration potentiometer (linear/scale compensation)

Compensation of Nonlinear CT measurements by different polynomial

correction

Measurements by transducers and data

acquisition

Measured values

Real Values

Inverse polynomial Function plot

Current Range

Real Values

CTs Measured values

Coefficients for 3 phases Different 

Measurement ranges

Variable load

Precise meterDevice under calibration

Next

Page 13: Attributes and design of composable and modular smart grid

3/13/2014

13

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Post design requirement checks:Measurement Calibration 

&Measurement linearization

Different polynomials

Inverse of measurements

Coefficients of the inverse polynomial:

•q1 = 0.0680 0.0240•q2 = -0.0001 0.0812 -0.0209•q3 = -0.0000 0.0005 0.0499 0.0127

Measured values

Real Values

Inverse polynomials

Applications

(Green Graph) fReal Value(Measured x)=c3*x3+c2*x2+c1*x1+c0

(Red Graph) f=c1*x1+c0

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

LabviewProject

Instruments

Environment

Structure

Sub structure

Test bed software platform

SCADA

Front panel

Whole m

imic view

Alert indications

Operator capabilities

Load

 change

Topology change

Access to details

Block Diagram

Data acquisition

Software based

 calibration

Protection module

Protection relay 

functions

Output commands

Event logger

Power calculation

RMS, phase

Phase reference and 

synchronization

Graphic 

representation

Outputs 

Online Monitoring

Front Panel

Indicators

Stations

Lines

Buses

Alarm

s

Block diagram

Request data

Validate data

Dynamic brake

Front panel

Operator 

capability

Automatic

Manual set point

Block diagram

Data acquisition

PID controll

er 

Freq

uen

cy control

Phase control

Online analysis

Connect to 

external software

Digsilent  interface

Read topology and 

values

Analysis 

Generation control

Front panel

Indicators

Individual unit control

Communication settings

Generation/deman

status

Block diagram

Data acquisition

Controllers

Freq

uen

cy

Power/torque

Communication to 

units

Global data base

Block diagram

Receive all data

Share data

Archiving

authorize data 

requests

Experiment specific 

instruments

Front panel

Needs

Apply changes

Capture results

Block diagram

Calculation and 

functions

Inputs

Outputs

Return to AC Grid 

Components

Page 14: Attributes and design of composable and modular smart grid

3/13/2014

14

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Real Time SCADA

Next

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

SCADA Several architectures, overview of hardware setups and load management

Single line diagram with different architecture in AC/DC micro grid

Simple front panel of AC/DC micro grid

panel of AC/DC hybrid grid for ship board power system emulations

Return to Software platform

Page 15: Attributes and design of composable and modular smart grid

3/13/2014

15

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Real Time Monitoring 

Return to Software platform

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Generation Control and ManagementActive power 

tracking

Frequency and power indicator

Frequency tracking

Automatic synchronization

Generation commands

And automatic generation control

Communication settings

Generation comparison

Return to Software platform

Page 16: Attributes and design of composable and modular smart grid

3/13/2014

16

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Over view of generation control system

Data Acquisition

Waveform Acquisition

Data 

Power measurements

Synchronizing operations

Communication to drive

Communication from drive

Synchronizing controller

Operator Interface

Return to Software platform

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Real time monitoring

Front panel of 2D SCADA map

(virtual input for testing)

Example of real time visualizing of SCADA 

Return to Software platform

Page 17: Attributes and design of composable and modular smart grid

3/13/2014

17

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Experiments in Real time 

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Verification of Synchrophasors

Power Analyzer

PMUs

Verification of results

Page 18: Attributes and design of composable and modular smart grid

3/13/2014

18

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Return to Software platform

Page 19: Attributes and design of composable and modular smart grid

3/13/2014

19

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Data base and archiving for real time analysis of the power system

Y‐bus

Line impedances

Bus connectivity Matrix

Line switch status Bus connectivity Matrix

SCADA

Bad data filter

Network topology analysis

Observability analysis

State estimation

Bad data identification

Stop

No

Yes

Pseudo measurements

Observable IslandAnalysis

State Estimation Flowchart

Return to Software platform

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Front Panel of Main and Microgrid

Unbalanced Disconnected Link

Islanding Detection UsingSynchronized Measurements and Sequential Vectors (+,-,o)

Simulation model in MATLAB/Simulink

1‐ Idea2‐ Simulation

3‐ Experimental test

Return to Software platform

Page 20: Attributes and design of composable and modular smart grid

3/13/2014

20

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Security improvement by Trusted sensing base (TSB) algorithm

Applications

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Distributed control architecture

Load

Applications

Page 21: Attributes and design of composable and modular smart grid

3/13/2014

21

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

ADC/DAC

PWM

Serial IO

Shaft encoder

Embedded SQserver

SD card storage

Power supply

Digital IO

Embedded Platform

Embedded Agent platform

Distributed control, and 

PMU

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

HIL simulation

Distributed control, and 

PMU

Page 22: Attributes and design of composable and modular smart grid

3/13/2014

22

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

DDS infrastructure

Data Distribution service DDS Infrastructure

Distributed control, and 

PMU

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Smart meter

Smart Meter

• Smart meter Based on ARM processor

• Integrated power line carrier Modem (PLCM)

• Customized firmware

• Real time measurement of P,Q

• Support zigbee, serial, USB and power line communication  

Distributed control, and 

PMU

Page 23: Attributes and design of composable and modular smart grid

3/13/2014

23

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Test Bed Interface Library

• Standard interface Library provide control function and data collection capability from local and remote network

• Real time publisher subscriber protocol (RTPS) insure interoperability

• Provide Flexible environment for Distributed control test and validation

• Currently available interface  for generators, Microgrids, CB, measurement nodes, PMU, Load emulators and renewable energy emulatorsNext 

slide

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Next slide

Page 24: Attributes and design of composable and modular smart grid

3/13/2014

24

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Next slide

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Logical Connection Diagram between Different Test bed Nodes(Updated In Real Time)

Nodes sending dataNodes Receiving Data

or control commandData

Logical Connection Before running HIL Simulation Logical Connection and data exchange during HIL Simulation

Data connection between Simulation Modeland Physical system

Simulation Models

Node Name

Data type

Next slide

Page 25: Attributes and design of composable and modular smart grid

3/13/2014

25

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

0 20 40 60 80 100 120 140 160 1800

10

20

30

40

50

60

70

80

90

100Frequency

Time(sec)

Freq

uenc

y(H

z)

0 20 40 60 80 100 120 140 160 1800

20

40

60

80

100

120Load Bus Voltage

Time (sec)

Vol

tage

(V

)

0 20 40 60 80 100 120 140 160 1800

100

200

300

400

500

600

700

800

900

1000Generator Output Power

Time (sec)

Pow

er (

W)

0 20 40 60 80 100 120 140 160 1800

0.5

1

1.5

2

2.5

3Generator Current

Time (sec)

Cur

rent

(A

mp)

Distributed control, and 

PMU

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

PMUs and Complimentaries

50

2 x Phasor Measurement Units

Motor Protection Relay

Energy Meter

Real‐Time Automation ControllerGPS Satellite Clock

Software Based PhasorData Concentrator

Secondary Voltage/Current Transformers

Distributed control, and 

PMU

Page 26: Attributes and design of composable and modular smart grid

3/13/2014

26

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Phasor Data Concentrator (PDC)

51

Optional 5 ,30, 60 readings per

secondPhase Angle Measurement

Voltage Magnitude

Frequency

Distributed control, and 

PMU

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

PMU Measurement Based Control

52

Satellite Clock

Programmable Logic Controller (PLC)

IRIG B

Real Time Automation Controller (RTAC)

SEL

Energy Meter

Phasor Measurement Unit (PMU)

Phasor Measurement Unit (PMU)

Generator and Load Control

Embedded Controller

FACTS (Flexible AC Transmission) Device

Next

Page 27: Attributes and design of composable and modular smart grid

3/13/2014

27

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

PMU Labview Interface

53

Loads

Utility Connection

? Labview PMU Interface to be added ?

Analog and Discrete readings can be passed to Labview environment.

Analog MeasurementsTime Stamp Measurement

Discrete Measurements

Distributed control, and 

PMU

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Integrating PMUs on the hybrid test bed and communication infrastructure

54

Distributed control, and 

PMU

Page 28: Attributes and design of composable and modular smart grid

3/13/2014

28

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Applications of PMU Setup

Online monitoring of Phasor data concentration

55

https://131.94.117.168

Distributed control, and 

PMU

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Applications of PMU Setup

56

1) Online Power Quality Measurement

Harmonic level of microgrid

2) Islanding Detection

Rate of change of frequency monitoringPhase angle difference monitoring

3) Online Monitoring of Distributed Generation Units

Generation controlNext

Page 29: Attributes and design of composable and modular smart grid

3/13/2014

29

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

57

4) Synchronization of distributed generation unitsFrequency matching process

Phase angle matching process

5) Post-Fault Analysis

Single phase fault event example

Voltage phasors a) Prior fault b) During fault

Voltage and Current measurements during fault

Voltage control during synchronization

Applications

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Hybrid PEVs charging system.

Next

Page 30: Attributes and design of composable and modular smart grid

3/13/2014

30

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Framework for V2G

Next

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Framework for V2H

Next

Page 31: Attributes and design of composable and modular smart grid

3/13/2014

31

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Framework for V2V

Applications

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Bidirectional DC-DC converter• High switching frequency• Low consumption• Fast response,

symmetrical• High efficiency

Lithium-ion battery• Five lithium-ion batteries

stands for five individual PEVs.

• High energy capacity: 21 Ah.

• High energy density.• High terminal voltage.

Battery monitor system• SOCs monitor for SOC

balancing• Temperatures monitor

for thermal balancing

Bidirectional AC-DC converter• High switching frequency• Low consumption• Fast response,

symmetrical• High efficiency

DC  microgrids Components

Page 32: Attributes and design of composable and modular smart grid

3/13/2014

32

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Lithium‐ion battery (PEV emulator)

• Lithium-ion battery bank with 21 Ah capacity, 51.8V terminal voltage, and 40A maximum charging/discharging current is used to emulate a single PEV.

• Five lithium-ion battery banks are used to emulate five PEVs in a parking garage.

DC  microgrids Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

• A 50V to 350V current control bidirectional DC-DC converter with 20Kswitching frequency is built on PCB board.

• Each PEV can be connected to the common DC bus through a DC-DC converter, also the charging/discharging of the battery can be controlled by the current flow the converter.

DC  microgrids Components

Page 33: Attributes and design of composable and modular smart grid

3/13/2014

33

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

• This bidirectional AC-DC inverter links this DC PEVs car park system to the utility grid. Both active and reactive power flow from both directions can be controlled.

• Therefore, the energy system can be used to do some services such as frequency regulation and voltage regulation by control the active and reactive power flow.

DC  microgrids Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

RL filterfuse & relay protections

AC voltage and current measuring circuit

IGBT drive circuit

DC  microgrids Components

Page 34: Attributes and design of composable and modular smart grid

3/13/2014

34

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Modular Hybrid DC Microgrid For Pulse study

Next

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Examples of Possible Hybrid DC Microgrid Configuration with composable modules

One bus hybrid DC microgrid:• The grid is supplied by internal

generator and AC grid.• All the loads are connected to a

common coupling bus.

Four buses Hybrid DC Microgrid for Pulse study:

• This system can be a shipboard power system or a DC microgrid connected to a utility grid.

Next

Page 35: Attributes and design of composable and modular smart grid

3/13/2014

35

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Composable modules in aHybrid DC Microgrid for Pulse study

dSPACE 1104 BoardControl Desk 1

Control Desk 2

dSPACE 1103 Board

Applications

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Supercapacitor Bank

Analog Voltage Protection of the Supercapacitor Bank:• Each four 16-V module is protected • In the case of overvoltage the charging path

will be open and the supercapacitor bank can only be discharged.

Composed of 58 F, 16 V supercapacitor Module:

• 19 A maximum continues current• Very high efficiency

• Wide range of operation temperature• Long cyclic life time

DC  microgrids Components

Page 36: Attributes and design of composable and modular smart grid

3/13/2014

36

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Bidirectional Converter

IGBT and Switching:• Isolated switching• Switching capability up to 20kHz

• Continues current operation up to 30A • Operating voltage up to 600 V

• High short circuit capability

Monitoring Capabilities:• Voltage and current measurement of

the input and output• Isolated measurement

• Very low noise with application of analog low pass filter

Configuration of the Converter:

DC  microgrids Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Multiport‐Boost Converter

IGBT and Switching:• Isolated switching• Switching capability up to 20kHz

• Continues current operation up to 30A • Operating voltage up to 600 V

• High short circuit capability

RCD Snubber• Reduces the IGBT switching power losses

• Peak voltage limitation of the switches during

transient time

Configuration of the Converter:• Two Boost-converters are

compacted in one unit. • The units can be connected in

parallel or in series.

DC  microgrids Components

Page 37: Attributes and design of composable and modular smart grid

3/13/2014

37

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Lead‐Acid Battery Bank

Possible Configuration in our Test Setup:• From 24-V up to 120-V in series connection• From 12-V up to 60-V in parallel connection

12-V 110 Ah Module:• Low cost• Reliable

• Wide range of sizes • Modular series parallel connection capability

• Wide applicability

DC  microgrids Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Programmable DC Load

320-V 6-kW Programmable Load :• High frequency switching DC load

• Very fast response using IGBT switches • Completely programmable

• Long Time Operation.

Example of load emulation:• Step change load emulator

• High inrush current load emulator• Pulse load emulator

DC  microgrids Components

Page 38: Attributes and design of composable and modular smart grid

3/13/2014

38

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

0 2 4 6 8 10 12 14 16 18 200

1

2

3

Gen

erat

or 1

Pow

er (

kW)

0 2 4 6 8 10 12 14 16 18 2059.4

59.7

60

60.3

Time (S)

Gen

erat

or 1

Fre

quen

cy (

Hz)

data1

data2

data1

data2

AC System Monitoring for Pulse study

The following parameters can be measured and further analyzed for

pulse study:• Current and voltage variation

• Power fluctuation• Frequency variation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

5

10

15

20

25

Harmonic order

Fundamental (60Hz) = 10.65 , THD= 4.05%

Mag

(%

of

Fun

dam

enta

l)

Harmonic analysis:• The harmonic content under

different operation condition• The effect of grid isolation on the

harmonic contents• Design of active or passive filter

for harmonic suppurationDC  microgrids Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

DC System Monitoring

DC System Monitoring for the Controlof the Hybrid DC Microgrid

DC System Monitoring for the

Protection of the Hybrid DC Microgrid

Next

Page 39: Attributes and design of composable and modular smart grid

3/13/2014

39

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

DC System Monitoring for Protection Purpose

A schematic diagram of the hybrid dc microgrid for Protection study

Next

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

0 0.1 0.2 0.3 0.4 0.5 0.610

2

103

Time (ms)

dib

1 / d

t (A

/ms)

F5 F6 F7 F8 F9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.40

50

100

150

200

Time (ms)

i b1 (

A)

F5 F6 F7 F8 F9

DC System Monitoring for Protection Purpose

• The Output current of the Capacitor at the DC link

are measured.• RC low pass filter are implemented to reduce EMI effect on the measurements.

Advantages of derivative fault identification method:

• It is very fast to identify a fault.• It is accurate for fault classification

Derivative

Different types of fault

Next

Page 40: Attributes and design of composable and modular smart grid

3/13/2014

40

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

DC System Monitoring for Protection Purpose

The Protection scheme of the hybrid dc microgrid is able to;

• Accurately identify the type of fault,

• Isolate the faulted area very fast

• Restore the system quickly

• Maintain the load voltage during the system transient using clamp capacitor.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.0350

100200300400

Vb3

(V

)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.0350

1

2

3

i bat (

A)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035305

310

315

320

Time (s)

Vl2

(V

)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.03505

1015

20

i c2 (

A)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.0350

10

20

30

i c1 (

A)

Performance of the Hybrid Dc microgrid during bus fault F1

Applications

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Practical Implementation of wind, PV, energy storages in Microgrids with Modular Components

Battery Bank

MIBBC

Programmable Load

Multi phase AC Bus

DC BUS High Freq. Inverter

Applications

Page 41: Attributes and design of composable and modular smart grid

3/13/2014

41

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Modular MIBBC

Modularized frameOpen frame prototype

DC  microgrids Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Battery Bank

Battery State of Charge

Battery Connection Terminals

Multifunction measurement display

12-V 110 Ah Module:• Low cost• Reliable• Wide range of sizes • Modular series parallel connection

capability• Wide applicability

DC  microgrids Components

Page 42: Attributes and design of composable and modular smart grid

3/13/2014

42

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Programmable Load Emulator

Cooling Fans

C.B

Connection Terminals

Control Signal

Heat Sinks

DC  microgrids Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

DC-Bus Module System (0-1000V)

• Photovoltaic Generation Systems

• Wind Energy Conversion Systems

• Fuel cells

• DC-Loads (Static & Dynamic)

• Battery Banks

• DC-DC Converters

This DC bus is integrating various

types of energy sources and loads.

DC  microgrids Components

Page 43: Attributes and design of composable and modular smart grid

3/13/2014

43

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

High Frequency Inverter

• Higher efficiency (average above

94%)

• Larger power density

(power/weight ratio)

• Better protection against system

operation faults

• Better power quality

• Multi-phase output load

connectivity (single phase, two

phases, and three phases)

DC  microgrids Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Protection and measurement module for hybrid AC/DC energy sources

AC-bus modular system for multi-phase grid connection

PV and Fuel Cell Emulators

Wind Emulator System

Bru

shle

ss

DC

mo

tor

PM

SM

Mechanical Coupler

DC  microgrids Components

Page 44: Attributes and design of composable and modular smart grid

3/13/2014

44

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Measurements

Control Signals

Applications

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

4 rectifiers were developed

The used module: Semikron BRIDGE RECTIFIER, 3PH, 150 A, 1.6 kV

DC  microgrids Components

Page 45: Attributes and design of composable and modular smart grid

3/13/2014

45

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Connection Terminals

Connection between Generators and DC.

380-V 6-kW Programmable Load :• High frequency switching DC

load• Very fast response using IGBT

switches • Completely programmable • Long Time Operation.

Example of load emulation:• Step change load emulator• High inrush current load

emulator• Pulse load emulator

DC  microgrids Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Input‐Output Connections

Inductors

• Four DC filters in the same modules

DC  microgrids Components

Page 46: Attributes and design of composable and modular smart grid

3/13/2014

46

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Inductors

Capacitors

Input‐Output Connections

• Four AC filters in the same modules

DC  microgrids Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Boost Converter Parameters• Lb=6 mH• Cb=1200 F• Controller parameters: Kp=0.002, 

Ki=0.2

Packaging• Each package contains two DC‐DC 

boost converters• Two units were developed to 

obtain 4 boost converters

The building block: Power Electronic Switch: IBGT, Chopper, 1200V, 176ADC  microgrids 

Components

Page 47: Attributes and design of composable and modular smart grid

3/13/2014

47

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Solid State Relay

Supply Input+15,0,‐15

CT

Voltage Transducer

+/‐Connection

Measured signal

Two modules are developed, each module is capable of:• Measuring 12 current

signals.• Measuring 8 voltage

signals.• Controlling 8 solid state

relays.

DC  microgrids Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Output connections

Measurements Interface Panel

DC  microgrids Components

Page 48: Attributes and design of composable and modular smart grid

3/13/2014

48

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Outputside

Inputside

+ +

Series Inductors

Shuntcapacitor

Shuntcapacitor

Fuse

VDC Source VDC Zone

R=15 mohm L=0.64 mH

C=7nF C=7nF

• The MVDC transm-

ission line model is

built as a pi model.

• The given parameters

are for transmission line

with 1 km length.

• Four DC TL models are

built with different

lengths.

DC  microgrids Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Inverter

SVPWM Line voltage & Current measurement

VOC

Rectifier

G2

G1

SPLL

+

++ +

+

SVPWM

PI

PI

SPLL

Reference currents calculation

Line voltages & currents measurements

Active & Reactive power demanded calculation

R L R Grid

Applications

Page 49: Attributes and design of composable and modular smart grid

3/13/2014

49

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Applications

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

DC/AC inverter

Generator Connection

Filter

Measurement Box

DC/DC Converter

Hardware and System Implementation

Page 50: Attributes and design of composable and modular smart grid

3/13/2014

50

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Utility Battery Management, Sensing and Diagnostics Software• Allows battery decoupling & Charge Balancing

• Multipath voltage and current flow & measurements

V

A

V

A

V

A

V

A

DC Bus+

DC Bus-

14.7 VBattery Charging and

Diagnostic Bus

V

A

V

A

• Helps characterizing overall performance and efficiency

• Overdischarge or thermal stress cause system imbalance.

DC  microgrids Components

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Logical structure of distributed  Multi‐agent Environment and relation to Social Behavior Analysis and Pricing

Agent configuration and parameter initialization

Load DemandLoad DemandGeneration availability

State of charge

Price signal

Applications

Page 51: Attributes and design of composable and modular smart grid

3/13/2014

51

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Generation Stations

Dynamic Brake

Transmission lines

Buses

Synchronizers

Programmable loads

Communication platform

PMUs

Distributed control

Battery ChargingAnd

PEV system

Pulse load/super cap. micro grid

DC architecture

Software platform

Battery management

system

Wind, PV, Storage microgrid

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Conclusion• Modular components in the test bed is necessary as it

enable extending the system, replace defective component, and enhance the interconnectivity and operability of components.

• Modules require extended specifications with lowest limitations for their application.

• Combining modules will provide an environment for developing, integrating, testing and evaluating ideas, components, and recent research advances

• Standards need used, tested or even improved through various studies.

• Finally the test bed should be designed in a way to achieve full potential of smart grid by enabling solution and testing of practical solutions.

Page 52: Attributes and design of composable and modular smart grid

3/13/2014

52

Energy Systems Research Laboratory, FIUProf. O. A. Mohammed

Our Research Group

Ali MazloomzadehMohammadreza

Barzegaran Mustafa Farhadi Tarek Youssef Tan Ma Mehmet Hazar Cintuglu

Frank Silva Arash Anzalchi Ahmed Taha Elsayed

Bharat Sukhyani

Ahmed Ebrahim

Ahmed Mohamed

Brandy Serrano Roosevelt Dejoie

Jose Andia

Sebastien Coriolan Harold Martin

Yuan Song

Christopher Lashway

Mohammed Alihussein

Dueal Allen

Alberto Berzoy

Sergey Asratyan