automatic control ballistic vs guided compare actual output to desired output automatic gain control...

33
Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual) = error Op Amp as example of negative feedback Use of SIMULINK [ F(s) represents f(t)… ] Proportional control Effects of transport delay Integral control Linear vs nonlinear control: Bang Bang Adaptive gain control Stability

Upload: conrad-johns

Post on 11-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Automatic Control• Ballistic vs guided• Compare Actual Output to Desired Output• Automatic Gain Control (feedforward)• Negative feedback (desired – actual) = error • Op Amp as example of negative feedback• Use of SIMULINK [ F(s) represents f(t)… ] • Proportional control • Effects of transport delay • Integral control • Linear vs nonlinear control: Bang Bang• Adaptive gain control• Stability

Page 2: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Feedforward→• Is there subtraction of actual from desired?

No, it’s “then” subtracted from “now” …• Consider delay in one path: differentiation• AGC = Automatic Gain Control… • Or noise subtracted from signal+noise…• Examples:

Fetal heart monitorMuffler-less exhaust: noise cancellation

+

_Delay line

Page 3: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Negative feedback:

Page 4: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

1. Automatic Control vs Homeostatics Automatic control is imagined to be carried out by sensors that transduce physical data into voltage; control itself is achieved by motors, heaters, pumps, and other electromechanical devices. To account for sensing and control by biological tissue and organs, physiologists use the term homeostatis. It implies that important physiological parameters need to be kept in limited, “static” ranges, by means of negative feedback.

•Blood presssure (vessel dilation)•Blood sugar (insulin)•Potassium ions (actions in kidney)•Pupil diameter of the eye (light level, emotion) •Sense of balance (vestibular apparatus)•Temperature (metabolism, cooling by evaporation)•Stretch reflex (golgi tendon organs)•Intracellular cyclic GMP (phosphodiesterase enzyme activity)

Page 5: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Negative feedback output as a function of IN and G(S)Below: G(ain) = Plant + Compensation (control)

Output is less than “open loop” but insensitive to changesin G, if G >> 1. G is an “internal” factor

Page 6: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Negative feedback with dynamics in F(s):(the problem of algebraic loops…)

Generating the inverse of a functionuse in “linearizing” a complex machine (motor)

Let G be a large “algebraic” gain;the only dynamics is in F(s)

Page 7: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

• Increase speed of response of LP filter with negative feedback

www.biomathdynamics.com 

And see fold23/SpeedChangeLPHP13.m for speed of HP filter in feedback

Deriving exp(+at) Laplace transform

Page 8: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Second order plantSpeed increase:

with feedback as gainincreases it becomes underdamped.

Page 9: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

• Reduced sensitivity to changes in Load:

Page 10: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

suppose the load changes suddenly, at t=0, from 0 to 2: a step of magnitude 2:

instead of 2.0

Page 11: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)
Page 12: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

• Stabilize a system:

Let the input be an impulse function with L(δ(t)) = 1

open loop response;then place in (unity) negative feedback system

Page 13: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Virtues of negative feedback:

• system less sensitive to internal parameter changes• can be used to generate inverse to a transfer function• system less sensitive to external parameter changes• increase system speed• help stabilize an unstable system

• What you’ve seen here is PROPORTIONAL control:Control effort proportional to error…

Page 14: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Vestibular Nystagmus as a marker of velocity storage

• http://www.youtube.com/watch?v=jAE1hr_cLFw

Notice quick phase of VN…

Paroxysmal alternating skew deviation and nystagmus after partial destruction of the uvulaA Radtkea, A M Bronsteina, M A Grestya, M Faldona, W Taylorb, J M Stevensb, P Rudgea

Page 15: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

A use for positive feedback: loop gain less than one…

Page 16: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Example of a positive feedback loop inside a negative loop:Velocity storage in the VOR and optokinesis…

Lcturs/vstopt05

Page 17: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

First Top is increased by X4 with 0.75 gain + feedback then when “the lights are turned on” it reverts back to faster than normal

Page 18: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Example of feedback quiz

http://www.brown.edu/Departments/Engineering/Courses/En123/Exams/FDBKquizes/FDBK06y.htm

Page 19: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)
Page 20: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Push-Pull Amplifier modelling vestibular recurrent inhibition

Page 21: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Example of op amp NGSA feedback

• http://www.brown.edu/Departments/Engineering/Courses/En123/Lectures/FDBKopamp.htm

Page 22: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Transport delay

• Flip side of conduction velocity

• A “nonlinear” Laplace transform

Page 23: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

approximating transport delay

Page 24: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Transport delay of a leaky integrator

And see fold23/TransDly13.mdl

Page 25: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Integral compensation drives the error to zero

Page 26: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)
Page 27: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)
Page 28: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

PID control: for inverted pendulum balance

• Derivative compensation: predictive, but a way to amplify noise in system…

• Motion-sensitive g-cells at retinal output…

• see PoleSim_PID.mdl in work/PoleBal_10

• try modifying the D on PID→more D, better score.

• fold23/PID_first_ord12.mdl• Approx deriv in Simulink: (s)/(s+a) at low freq

a>>s=jᵚhttp://www.mathworks.com/help/simulink/slref/derivative.html

Page 29: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Bang bang—where is the feedback? • Bang-bang controller for…The Fan Lab: in LabVIEW• Always allowing the “actual” to drift between HI-LO limits

Page 30: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Simulink and SR latch for bang-bang oscillator

Page 31: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Adaptive Gain Control of VOR

• neural network adapting to visual disturbance of VOR: Robinson JNP 1976:

• http://jn.physiology.org/content/39/5/954.abstract?ijkey=127029d171b72a8dc8037f9bbcc8abb6ed3863c8&keytype2=tf_ipsecsha

• 122JDD/Asgn06/II_VORgainMOD.htm

• C:/MatlabR12/work/fold22/asg5B04.mdl

• B. Widrow & Peter N. Stearns, Adaptive Signal Processing (1985)

Page 32: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Adaptive Gain Control:Learning to be a D→A converter

• We, the designers of a D→A converter, figured out that resistors of size 1K, 2K, 4K and 8K would be required for a 4-bit conversion.

• Think of the resistances as representing “gain” blocks of 1, 2, 4, 8 for LSB to MSB inputs.

• Can the weight be learned, by training? • See code in script: • C:/MatlabR12/work/fold23/D2A_learn_2010.m • The weights start at random then are updated on each

presentation of a learning stimulus/response pair. • ΔW(i) = input(i) * error ε * learning rate μ Hebb’s Law

Page 33: Automatic Control Ballistic vs guided Compare Actual Output to Desired Output Automatic Gain Control (feedforward) Negative feedback (desired – actual)

Fuzzy Controllers• See description of Matlab Fuzzy Logic

Toolbox• http://www.mty.itesm.mx/dtie/centros/csi/materias/

ia4002-1/docs/Fuzzy_Toolbox.pdf

• Application Examples: Inverted pendulum balancingnoise cancellationbacking up tractor-trailer truck to loading dockball juggling