auxiliary generator work done on ge 44-ton – western ...auxiliary generator work done on ge 44-ton...

9
Auxiliary Generator work done on GE 44-ton – Western Maryland 75 History and recommendations for 2015 By Robert MacDowell Western Maryland 75’s battery charging circuits were modernized by a previous owner. This inadvertently removed a protective circuit. Without it, the auxiliary generators hve been overloading whenever an engine is started. This has been destroying generators and regulators at a high rate. A solution has been found but needs to be finished. GE 44s – two engines, two generators GE 44ton locomotives have two engines. They share one battery bank. The battery bank is 64 volts “nominal” but is charged at 74 volts. They have two auxiliary generators, which recharge the battery. When the unit was built, each auxiliary generator had a mechanical “clackclack” voltage regulator, and some interlocks, including a balancing circuit to assure the auxiliary generators didn’t “fight” each other during operation. There is also an absolutely critical circuit which disconnects both auxiliary generators when either diesel engine is being started. Otherwise the generator on the running engine would overload itself trying to help start the other engine. This circuit is a very significant factor in the troubles of the last 20 years. A DC generator has two windings – the field windings around the outside, and the spinning armature windings. Applying current (flow) to the field windings “excites” the generator. As field current increases, armature voltage (pressure) increases. The job of a voltage regulator is to figure out how exciting to be at any moment! History of WM 75 Western Maryland 75 was purchased in 1994 by SMRS from Railroads Forever in Traverse City, Michigan. When we received the unit, the voltage regulators had been modernized with a transistorized type used on GE “Uboat” locomotives. These types cost about $900 to have overhauled. One of the auxiliary generators was burned out, we did not know why. This modernization omitted several interlocks. The auxiliary generator cabinet is inside the cab on the #2 end of the locomotive. SMRS ran the locomotive with only one auxiliary generator for quite some time. Starting in 2008 there was a flurry of activity. (Please note that the rest of this section is guesswork, from newsletter and member interviews, and may not be 100% reliable.) SMRS replaced one of the auxiliary generators, intending to have both working. In mid

Upload: others

Post on 27-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Auxiliary Generator work done on GE 44-ton – Western ...Auxiliary Generator work done on GE 44-ton – Western Maryland 75 History and recommendations for 2015 ! By!RobertMacDowell!!

Auxiliary Generator work done on GE 44-ton – Western Maryland 75

History and recommendations for 2015

 

By  Robert  MacDowell  

 

Western  Maryland  75’s  battery  charging  circuits  were  modernized  by  a  previous  owner.    This  inadvertently  removed  a  protective  circuit.    Without  it,  the  auxiliary  generators  hve  been  overloading  whenever  an  engine  is  started.    This  has  been  destroying  generators  and  regulators  at  a  high  rate.    A  solution  has  been  found  but  needs  to  be  finished.  

GE  44s  –  two  engines,  two  generators  GE  44-­‐ton  locomotives  have  two  engines.    They  share  one  battery  bank.    The  battery  bank  is  64  volts  “nominal”  but  is  charged  at  74  volts.    They  have  two  auxiliary  generators,  which  recharge  the  battery.    When  the  unit  was  built,  each  auxiliary  generator  had  a  mechanical  “clack-­‐clack”  voltage  regulator,  and  some  interlocks,  including  a  balancing  circuit  to  assure  the  auxiliary  generators  didn’t  “fight”  each  other  during  operation.    

There  is  also  an  absolutely  critical  circuit  which  disconnects  both  auxiliary  generators  when  either  diesel  engine  is  being  started.    Otherwise  the  generator  on  the  running  engine  would  overload  itself  trying  to  help  start  the  other  engine.    This  circuit  is  a  very  significant  factor  in  the  troubles  of  the  last  20  years.  

A  DC  generator  has  two  windings  –  the  field  windings  around  the  outside,  and  the  spinning  armature  windings.    Applying  current  (flow)  to  the  field  windings  “excites”  the  generator.    As  field  current  increases,  armature  voltage  (pressure)  increases.  The  job  of  a  voltage  regulator  is  to  figure  out  how  exciting  to  be  at  any  moment!  

History  of  WM  75  Western  Maryland  75  was  purchased  in  1994  by  SMRS  from  Railroads  Forever  in  Traverse  City,  Michigan.      When  we  received  the  unit,  the  voltage  regulators  had  been  modernized  with  a  transistorized  type  used  on  GE  “U-­‐boat”  locomotives.    These  types  cost  about  $900  to  have  overhauled.    One  of  the  auxiliary  generators  was  burned  out,  we  did  not  know  why.    This  modernization  omitted  several  interlocks.    The  auxiliary  generator  cabinet  is  inside  the  cab  on  the  #2  end  of  the  locomotive.  

SMRS  ran  the  locomotive  with  only  one  auxiliary  generator  for  quite  some  time.  Starting  in  2008  there  was  a  flurry  of  activity.    (Please  note  that  the  rest  of  this  section  is  guesswork,  from  newsletter  and  member  interviews,  and  may  not  be  100%  reliable.)  SMRS  replaced  one  of  the  auxiliary  generators,  intending  to  have  both  working.  In  mid-­‐

Page 2: Auxiliary Generator work done on GE 44-ton – Western ...Auxiliary Generator work done on GE 44-ton – Western Maryland 75 History and recommendations for 2015 ! By!RobertMacDowell!!

2009,  there  was  a  report  of  “smoking”  from  an  auxiliary  generator.1    Since  these  are  under  the  deck,  it  was  likely  a  great  deal  of  smoke  to  be  noticed.      There  were  incidents  of  the  auxiliary  generator  fuses  “blowing”.2    Starting  in  late  2009,  member  Rob  Hall  took  a  look  at  the  fuse  problem  and  determined  that  the  wrong  size  of  fuse  was  being  used.  (the  correct  fuse  is  35  amp,  and  the  only  other  size  found  on  the  unit  is  60  amp.)    

On  September  4,  20093,  the  auxiliary  generator  #1  was  overhauled  and  replaced.    Rob  Hall  reworked  the  wiring  inside  the  auxiliary  generator  cabinet,  and  replaced  the  expensive  GE  transistorized  regulators  with  EMD  “black  box”  types.4  These  cost  only  about  $300  to  overhaul.    

Existing  Conditions  as  of  late  2011  In  2011,  crews  reported  that  the  locomotive  pulled  poorly,  and  the  voltage  meter  never  went  above  65  volts  in  normal  operation  and  often  went  below  60  volts.      In  2012,  Robert  MacDowell  focused  very  intensely  on  this  problem.    Mr.  MacDowell  installed  a  set  of  gauges  to  directly  observe  the  performance  of  the  auxiliary  generators.    He,  member  Gary  Baker,  and  a  friend  of  Mark  Beekel’s  also  examined  the  unit  and  reached  the  same  conclusions.    

Neither  auxiliary  generator  was  working  at  all,  and  had  not  worked  for  a  long  time.    When  crews  saw  voltage  below  64  volts,  that  meant  the  generators  were  not  working.  Amazingly,  the  locomotive  was  able  to  function  entirely  on  battery  throughout  the  2011  and  summer  2012  operating  seasons,  including  3-­‐trip  Fall  Color  Tours.    Crews  and  management  faithfully  charged  the  battery  on  a  charger  every  night,  unaware  this  was  the  battery’s  only  power  source.    

The  locomotive  did  not  pull  very  well  because  of  the  low  battery  voltage.    The  main  generator  depends  on  a  small  “exciter”  generator  which  itself  depends  on  the  auxiliary  generator’s  74  volt  output.    Because  of  this  multiplying  effect,  when  the  battery  voltage  was  lower,  locomotive  power  was  much  lower.    Both  engines  were  needed,  and  higher  throttle  positions  were  needed  as  well.  

MacDowell  and  Baker  did  some  testing  on  generator  #1  and  determined  that  it  was  defective  (even  though  recently  rebuilt).    Generator  #2  had  some  foreign  material  on  the  commutator,  but  appeared  to  otherwise  work.    Both  “EMD  black  box”  regulators  were  broken.    One  of  the  regulators  was  incorrectly  installed.  5    

                                                                                                               1  Email  from  Cynthia  Given,  7/20/2009  and  7/21/2009.    2  Interview  with  Cynthia  Given.    3  Email  from  Dave  Lau,  9/5/2009  4  Railway  Express  85,  page  2;  and  Express  88,  page  3.      5  Some  EMD  regulators  have  4  terminals  instead  of  3;  those  must  be  installed  as  described  in  EMD  maintenance  instruction  MI  9553,  and  it  was  not.  

Page 3: Auxiliary Generator work done on GE 44-ton – Western ...Auxiliary Generator work done on GE 44-ton – Western Maryland 75 History and recommendations for 2015 ! By!RobertMacDowell!!

The  2012  Diagnostics  reveal  the  problem  New  gauges  

SMRS  was  able  to  obtain  a  replacement  EMD  regulator.    However  there  was  great  concern  on  the  part  of  some  SMRS  board  members  that  parts  kept  breaking  and  nobody  knew  why,  and  that  we  were  simply  going  to  break  more  parts.    To  troubleshoot  a  generator,  you  need  to  know  a  great  deal  about  current,  and  you  cannot  measure  current  with  a  voltmeter.    We  were  all  measuring  volts  and  guessing.    Voltage  is  like  pressure,  but  current  is  flow.    To  measure  flow,  the  meter  must  be  inline  with  the  flow,  which  means  it  must  be  wired  into  the  circuit.    

With  that  in  mind,  Robert  MacDowell  installed  a  set  of  gauges  in  the  auxiliary  generator  cabinet.  Here  is  the  gage  group.    Above,  engine  #1.    Below,  engine  #2.      The  left  gauge  (0-­‐30  amps)  is  generator  current  and  should  read  between  2  and  20  generally.    The  center  gauge  (0-­‐100  volts)  is  generator  voltage,  which  should  be  74.    The  small  right  gauge  (0-­‐5  amps)  is  field  current,  and  we  discovered  that  around  1.0  amp  is  normal.    The  field  has  a  4-­‐amp  fuse.  

 In  this  picture,  engine  #1  has  a  good  regulator  and  #2  has  a  defective  one.    Pay  close  attention  to  the  field  current  gauge  on  the  right.    For  generator  #1,  field  current  is  correct,  but  the  other  gauges  show  it  is  not  generating!    For  generator  #2,  there  is  no  field  current,  so  naturally  the  generator  is  not  generating.    

Now  you  see  that  there  is  a  small  voltage  on  both  generators  –  this  is  because  the  generators  are  spinning.  The  generator  fields  are  large  hunks  of  iron,  and  carry  some  

Page 4: Auxiliary Generator work done on GE 44-ton – Western ...Auxiliary Generator work done on GE 44-ton – Western Maryland 75 History and recommendations for 2015 ! By!RobertMacDowell!!

magnetic  charge,  that  is  enough  to  put  a  small  voltage  on  the  armature.  This  is  a  tiny  amount  of  power,  and  it  is  used  by  the  regulator  to  start  itself  up.    (it  has  no  access  to  battery  power  because  of  a  diode.)    A  healthy  generator  can  lose  this  magnetism,  and  in  that  case  there’s  a  procedure  called  “flashing  the  generator”  to  restore  it.  

Troubleshooting    

To  start  with,  Mr.  MacDowell  spent  about  2  days  tracing  every  wire  on  the  locomotive  which  related  to  the  #1  auxiliary  generator  circuit.  This  involved  disconnecting  each  wire  at  both  ends,  so  that  wires  weren’t  falsely  traced,  while  keeping  careful  note  of  how  things  were  assembled.      He  determined  that  all  the  wiring  was  correct.      

Everyone’s  diagnosis  proved  correct  when  SMRS  obtained  a  new  voltage  regulator.    When  Robert  connected  it  to  generator  #2,  it  “came  to  life”  and  worked  normally.  Generator  #1  did  not.    Since  the  other  regulators  had  been  tried  with  generator  #2,  that  meant  they  were  bad  too.  

SMRS  obtained  a  second  spare  regulator.    This  was  installed  for  generator  #1,  but  was  disconnected  after  testing,  in  case  generator  #1  is  burning  out  regulators.    

Auxiliary  generators  shouldn’t  start  engines!    

At  this  juncture,  engine  #2’s  generator  works,  but  engine  #1  does  not.  

Normally  you  can  start  either  engine  on  a  GE  44,  but  by  convention,  SMRS  starts  engine  #1  first  and  that  is  firmly  enforced.    It  was  unusual  that  we  had  engine  #2  running,  and  tried  to  start  engine  #1.  The  new  gages  on  auxiliary  generator  #2  violently  pegged  out.    It  was  clear  that  generator  #2  was  trying  to  “help”  start  engine  #1,  and  was  massively  overloading  as  a  result.    

There  is  a  circuit,  #60,  which  disables  both  auxiliary  generators  when  either  engine  is  started.    That  circuit  was  removed  when  Railroads  Forever  upgraded  the  voltage  regulators.    That  meant  whichever  engine  was  started  second,  the  other  engine’s  auxiliary  generator  would  always  overload.    Before  these  gauges  were  installed,  nothing  on  the  locomotive  would  indicate  this  was  happening.    

This  explains  a  lot.    It  explains  the  “smoke  from  the  auxiliary  generator”  earlier  reported.    It  explains  why  fuses  were  blowing.  It  explains  why  Railroads  Forever  delivered  the  unit  with  a  broken  auxiliary  generator.    Since  SMRS  normally  starts  engine  #1  first,  it  means  generator  #1  would  constantly  suffer  this  problem,  overloading  while  engine  #2  is  started.    That  explains  the  frequent  problems  with  failures  on  generator  #1.    

How  severe  was  the  problem?    The  best  evidence  is  found  in  a  6-­‐gauge  wire  in  the  generator  #1  circuit,  which  Rob  Hall  had  installed  in  2009.  The  generator  is  rated  at  30  amps.    This  wire  was  code-­‐rated  for  over  100  amps.    Mr.  MacDowell  found  the  wire  was  discolored,  with  black  plastic  melted  into  the  strands  -­‐  this  was  the  wire  insulation.  Clearly  the  circuit  was  handling  200  amps  or  more,  cooking  the  wire  and  surely  the  generator  as  well.      They  upsized  the  wires,  fuses  and  diodes  to  try  to  stop  meltdowns,  but  this  just  melted  down  the  generator  instead.      

Page 5: Auxiliary Generator work done on GE 44-ton – Western ...Auxiliary Generator work done on GE 44-ton – Western Maryland 75 History and recommendations for 2015 ! By!RobertMacDowell!!

The  2012  attempt  at  Solution  When  Rob  Hall  rewired  the  electrical  cabinet,  he  brought  many  connections  out  to  a  new  terminal  block.    Two  of  the  connections  he  brought  out  were  wires  60B  and  60E,  which  were  part  of  circuit  60.    This  is  the  circuit  that  disables  auxiliary  generators  during  engine  startup.    However,  Rob  never  hooked  these  wires  up  to  anything,  and  there  was  nowhere  on  the  auxiliary  generator  wiring  to  hook  it  to.    

Circuit  60  

 Figure  1.    Circuit  60  as  originally  built.    Follow  from  the  left:  circuit  60  comes  from  control  voltage  (the  left  rail)  through  both  engine  start  buttons.  It’s  drawn  with  the  controls  in  the  off  position,  so  pressing  a  button  interrupts  this  circuit,  which  shuts  the  generators  off.    The  same  kind  of  interlock  is  done  on  the  right,  with  the  GS1  and  GS2  start  contactors  (large  relays)  which  are  controlled  by  the  start  buttons.    Yes,  it’s  redundant,  GE  did  “belt  and  suspenders”.    In  the  middle,  RC1  and  A1  worked  together.    

When  Railroads  Forever  rewired  the  locomotive,  they  threw  RC1,  A1,  RC2  and  A2  in  the  trash.    Circuit  60  went  to  nothing  at  all.    The  ends  were  intact  but  the  middle  was  gone.  

In  late  2012,  Mr.  MacDowell  updated  the  circuit  as  follows.      

 Figure  2.    Robert  added  two  relays  called  AF1  and  AF2.    (On  these  old  diagrams,  zigzags  are  coils,  not  resistors.)  These  have  36  volt  coils,  so  they  are  wired  in  series.    The  60B  wire  was  damaged  but  was  fixed  in  2015.    The  diagram  has  not  been  updated,  but  60C  now  connects  to  60B  instead  of  21  (always  hot).    Because  of  GE’s  “belt  and  suspenders”  we  were  able  to  get  buy  on  suspenders  alone.    

You  may  wonder  what  RC1,  A1,  RC2  and  A2  did.    Here  are  the  diagrams  for  the  generators  and  regulators,  edited  in  Photoshop  to  hide  irrelevant  stuff.    This  discusses  engine  1,  but  all  the  same  applies  to  engine  2  as  well.      

Page 6: Auxiliary Generator work done on GE 44-ton – Western ...Auxiliary Generator work done on GE 44-ton – Western Maryland 75 History and recommendations for 2015 ! By!RobertMacDowell!!

 Figure  3:  original  wiring.    It  looks  scary  because  it  shows  the  internals  of  several  devices.    The  RC1  relay  coils  sensed  when  the  generator  was  stronger  than  the  battery,  and  closed  the  RC1  contact  (back  on  circuit  60)  which  enabled  A1  contact  at  top  center.    Note  also  a  bias  circuit,  #29,  which  balanced  the  generators  so  they  didn’t  fight.  

   Figures  4  and  5.    Above  left  is  the  wiring  in  2011.    (omitting  battery  and  BR1  resistor  for  clarity.)  The  A1  contactor    and  bias  circuit  are  gone.  Diode  D1  replaces  a  lot  of  stuff  –  too  much  stuff  as  it  turns  out.    Above  right  is  the  wiring  at  the  end  of  2012,  which  is  exactly  the  same,  but  adds  3  gauges  for  dianostics  and  a  new  AF1  relay  to  disconnect  the  field.  

Page 7: Auxiliary Generator work done on GE 44-ton – Western ...Auxiliary Generator work done on GE 44-ton – Western Maryland 75 History and recommendations for 2015 ! By!RobertMacDowell!!

It  didn’t  quite  work.    

Robert’s  2012  approach  was  not  to  disconnect  the  generator,  but  merely  disconnect  the  generator  field  with  new  AF1  and  AF2  relays.    You  saw  in  the  earlier  photo  what  happens  when  the  field  has  no  current.    And  the  field  is  a  low-­‐current  circuit,  typically  1  amp,  and  fused  at  4  amps.  Robert  used  two  30-­‐amp,  36-­‐volt  relays  wired  in  series.    

The  AF1  relay  “tried’,  but  generators  (particularly  fields)  do  not  act  like  resistors.    They  have  a  big  inductive  “kick”  that  threw  an  arc  across  the  automotive  grade  relays.    This  was  somewhat  expected,  but  thought  to  be  worth  a  try.  

How  to  handle  that?    One  way  is  a  “snubber  circuit”  –  which  absorbs  the  “kick”,  but  adds  complexity  and  does  not  guarantee  it  won’t  happen  again.  The  kick  may  be  too  severe  to  solve  with  a  snubber  –  it  is  a  big  generator  with  a  big  kick.    It’s  also  possible  interrupting  the  field  could  cause  problems  with  the  regulator.      In  2015,  AF1  and  AF2  were  wired  in  series  to  reduce  arcing,  but  protect  generator  2  only.  

The  recommended  2015  approach  The  generator  output  must  be  interrupted,  which  will  require  a  large  contactor.    Both  generators  can  share  the  same  contactor  in  this  design.      

                 On  the  left,  the  2012-­‐14  wiring.    On  the  right,  the  proposed  wiring.  AF1  goes  away  and  a  new  large  A12  contactor  is  added,  which  disconnects  both  auxiliary  generators  (their  21  and  31  circuits)  from  battery.    This  A12  contactor  is  energized  by  the  60  circuit.    

Page 8: Auxiliary Generator work done on GE 44-ton – Western ...Auxiliary Generator work done on GE 44-ton – Western Maryland 75 History and recommendations for 2015 ! By!RobertMacDowell!!

Available  contactors  and  relays  

A  relay  has  a  magnetic  coil,  designed  for  a  certain  voltage.    The  coil,  when  energized,  throws  an  internal  switch.    The  switch  can  only  handle  so  much  voltage  or  current.    It  needs  to  handle  a  lot  more  current  when  switching  an  inductive  load,  like  a  generator  field.  Like  any  coil,  the  field  resists  changes  in  current  and  will  spike  the  voltage,  causing  arcing.  That’s  why  GE  used  enormous  contactors6  with  arc  extinguishing  features.    This  can  be  a  problem  for  automotive  grade  relays,  especially  for  the  generator  field.    

Automotive  relays  have  coils  wound  for  12,  24  or  36  volts,  and  work  fine  if  several  same-­‐model  relays  are  wired  in  series  to  total  72  volts.  Robert  used  Potter  &  Brumfield  T9AP1D52-­‐36  relays,  which  cost  $4.28  each.    At  30  amps,  they  are  probably  too  small  to  replace  A1/A2  but  may  be  paralleled.    

Electric  vehicles  need  safety  contactors  on  their  300  volt  battery  packs.    They  are  made  in  bulk  and  are  “cheap”.      We  need  two  (they’re  36  volts)  at  $200  each  for  a  Kilovac  Ev200  series,  made  to  interrupt  500  amps  at  320  volts  DC.  

The  original  A1/A2  contactors  (GE  17CM15CC4)  can  be  had  from  Western  Star  for  $500.  It  is  wound  for  74v  so  we  will  need  one.    It  is  designed  to  mount  where  the  diodes  are  now.  The  diodes  are  wildly  oversized  and  can  be  replaced  with  much  smaller  ones.  

Damping  the  generators  

Voltage  regulators  are  not  designed  to  drive  into  an  open  circuit  –  they  expect  a  battery  there.    When  we  disconnect  the  generators  during  engine  starting,  the  regulator  could  malfunction.  My  answer  is  to  put  a  300  ohm  resistor  across  the  generator  output  to  create  a  “dummy  load”  of  0.25  amps,  and  also  a  capacitor  to  act  like  the  natural  capacitance  of  a  battery.    This  will  also  act  like  a  “snubber”  to  reduce  arcing  in  the  disconnect  contactor.          

Recommended  

1.    Obtain  a  GE  16CM15CC4  contactor.  

This  should  be  available  from  companies  that  scrap  GE  44s,  such  as  Western  Star.  It  should  be  able  to  bolt  up  to  its  original  mounting  holes  in  the  locomotive.    This  needs  to  mount  where  the  current  “diode  board”  is.    

2.    Downsize  the  diodes  to  an  appropriate  size  

The  current  diodes  are  far  too  large,  and  require  a  large  heatsink  that  is  energized  at  battery  voltage  (thus  a  shock  hazard).  Much  smaller  diodes  will  do  just  fine,  and  should  be  low-­‐forward-­‐voltage  units  if  possible.  Several  dual-­‐diode  rectifiers  are  made.    

3.  Add  damping  circuits  to  the  generators.    

Add  a  capacitor  and  resistor  around  the  generator  output.                                                                                                                    6  A  contactor  is  simply  a  very  large  relay.    

Page 9: Auxiliary Generator work done on GE 44-ton – Western ...Auxiliary Generator work done on GE 44-ton – Western Maryland 75 History and recommendations for 2015 ! By!RobertMacDowell!!

4.  Send  out  the  spare  auxiliary  generator.  

SMRS  owns  a  spare  auxiliary  generator  (in  the  basement  of  the  Clinton  building.)  There’s  just  one  problem:  for  some  reason,  someone  removed  one  of  its  four  field  coils.  As  a  result,  it  is  incomplete.    The  copper  wire  can  be  easily  replaced  by  the  repair  shop.  The  scarce  part  is  the  iron  “pole  piece”  which  the  coil  is  wound  around.    It  may  be  in  the  basement  somewhere.    

Then,  the  generator  should  be  sent  out  to  –  specifically  –  Swiger  Coil  in  Cleveland,  division  Wabtec  (Westinghouse).    Electric  railroad  museums  are  finding  that  random  local  shops  do  a  terrible  job,  wrecking  parts  as  often  as  fixing  them.  Swiger  Coil  has  proven  their  abilities  to  the  industry  and  should  be  used.    

5.  Swap  auxiliary  generators.    

This  is  a  greasy,  messy  job  –  of  rotating  the  generators  so  the  new  one  ends  in  the  #1  generator  position  and  the  currently-­‐#2  generator  ends  back  in  the  #2  position.    This  should  probably  be  done  when  we  overhaul  the  fuel  pump,  as  it  is  in  the  way.    

6.  Repair  the  60B  circuit  -­‐  DONE