avian circulatory system

Upload: carlbuscato

Post on 14-Oct-2015

36 views

Category:

Documents


2 download

DESCRIPTION

Circulatory System of Birds (Anatomy)

TRANSCRIPT

  • 5/24/2018 Avian Circulatory System

    1/27

    Avian Circulatory System

    Carl G. Buscato

    ZOO131: Comparative Anatomy and Phylogeny of Vertebrates

    Mindanao State University-General Santos City

  • 5/24/2018 Avian Circulatory System

    2/27

    Circulatory System

    I. Cardiovascular System

    A. Blood

    B. Blood Vessels

    C. Heart

    II. Lymphatic System

    A. Major Lymph OrgansB. Minor Lymph Organs

  • 5/24/2018 Avian Circulatory System

    3/27

    I. Cardiovascular System

    Transportation of oxygen, nutrients,

    metabolic wastes and antibodies

    Regulation of body temperature

    Energy supply for various metabolic

    demands

  • 5/24/2018 Avian Circulatory System

    4/27

    A. Blood

    Plasma water (~85%);

    protein (~9-11%);

    glucose (blood glucose levels in birds are greater

    than in mammals; about 200-400 mg/dl),

    Other constituents: amino acids, waste products,

    hormones, antibodies, & electrolytes.

  • 5/24/2018 Avian Circulatory System

    5/27

    A. Blood

    Red Blood Cells elliptical, biconvex and nucleated

    red blood cells are about 6x12 microns in size

    2.5 to 4 million/cubic mm

    lifespan of 28-45 days

    contain hemoglobin

  • 5/24/2018 Avian Circulatory System

    6/27

    A. Blood

    oxygen affinity is generally lower in birds than in

    similar-sized mammals

    Hematocrit averages about 40%

    Hemopoietic bone marrow

    produces RBC (shaded areas)

  • 5/24/2018 Avian Circulatory System

    7/27

    A. Blood

    Thromobocytes

    nucleated

    similar function with the non-nucleated platelets of

    mammalian blood)

    White Blood Cells

    - defense against foreign

    pathogens, immune response

  • 5/24/2018 Avian Circulatory System

    8/27

    A. Blood

    Types of Avian WBC:

    1. Lymphocyte- most numerous white blood cell.

    Either T-lymphocytes or B-lymphocytes produce

    antibodies; T-lymphocytes attack infected orabnormal cells.

  • 5/24/2018 Avian Circulatory System

    9/27

    A. Blood

    Types of Avian WBC:

    2. Heterophil- second most numerous in most

    birds, phagocytic, use their enzyme-containing

    granules to lyse ingested materials, motile andcan leave blood vessels to engulf foreign

    materials.

  • 5/24/2018 Avian Circulatory System

    10/27

    A. Blood

    Types of Avian WBC:

    3. Monocytes- motile cells that can migrate using

    ameboid movements. Monocytes are also

    phagocytic.

  • 5/24/2018 Avian Circulatory System

    11/27

    A. Blood

    Types of Avian WBC:

    4. Eosinophils- make up about 2 to 3 % of the

    WBC population of healthy birds

  • 5/24/2018 Avian Circulatory System

    12/27

    B. Blood Vessels

    Similar pattern to mammals and reptiles

    Aortic Arches - 6 in early embryo; 1, 2, & 5 drop out.

    #3Carotid Arteries to head

    #4Only right 4th persists as systemic arch

    #6Pulmonary arteries

    Large brachial and pectoral arteries which supplyblood to flight musculature

    Sytemic arch branches to the right

  • 5/24/2018 Avian Circulatory System

    13/27

    Arch 3

    Arch 6

    Arch 4

  • 5/24/2018 Avian Circulatory System

    14/27

    B. Blood Vessels1. Arteries- carry blood away from the heart &

    toward the body cells

    2. Arterioles - 'distribute' blood (that is, directblood where needed with more going to active

    tissues & organs & less to less active tissues &organs) by vasodilating & vasoconstricting

    3. Capillaries - exchange of nutrients, gases, &

    waste products between the blood & the bodycells

    4. Veins and venules (small veins)- conduct blood

    back to the heart

  • 5/24/2018 Avian Circulatory System

    15/27

    B. Blood Vessels Arteries

    1. Carotids-head and brain

    2. Brachials-wings

    3. Pectorals-flight muscles (pectoralis)

    4. The systemic arch (aorta)-all areas of

    the body except the lungs.

    5. The pulmonary arteries-the lungs

    6. The celiac (or coeliac) is the first

    major branch of the descending aorta

    & delivers blood to organs & tissues

    in the upper abdominal area

    7. Renal arteries-kidneys

    8. Femorals-legs

    9. Caudal artery-tail

    10. The posterior mesenteric-many organs& tissues in the lower abdominal area

  • 5/24/2018 Avian Circulatory System

    16/27

    B. Blood Vessels Veins

    1. Jugular anastomosis allows blood to

    flow from right to left side when the

    birds head is turned & one of the

    jugulars constricted

    2. Jugular- head and neck

    3. Brachial veins-wings

    4. Pectoral veins- pectoral muscles and

    anterior thorax

    5. Superior vena cavae (or precavae)-

    the anterior regions of the body

    6. Inferior vena cava (or postcava)- the

    posterior portion of the body

    7. Hepatic vein- liver

    8. Hepatic portal vein-digestive system.

    9. Coccygeo mesenteric vein- posteriordigestive system & empties in the

    hepatic portal vein

    10. Femoral veins- legs

    11. Sciatic veins drain- hip or thigh

    regions.12. Renal & renal portal veins- kidneys

  • 5/24/2018 Avian Circulatory System

    17/27

    C. Heart

    4-chambered Heart, complete double circulation

    1.5-2 X larger than in comparable mammals

    Maintain higher metabolism

    Smaller birds have relatively larger hearts than

    larger birds

    Heart size increases with latitude, altitude for

    same species

  • 5/24/2018 Avian Circulatory System

    18/27

    C. Heart

  • 5/24/2018 Avian Circulatory System

    19/27

    C. Heart

  • 5/24/2018 Avian Circulatory System

    20/27

    C. Heart

  • 5/24/2018 Avian Circulatory System

    21/27

    C. Heart

  • 5/24/2018 Avian Circulatory System

    22/27

    II. Lymphatic System Remove and destroy toxic substances

    Transportation of digested fat from the intestine to thebloodstream

    Poorly developed compared to mammals

    Valves are present in lymph vessels to preventbackflow. Lymph is moved by skeletal muscle

    contraction

    Lymph Hearts are present in all bird embryos usuallydisappear in adults, but persist in a few species -Ostrich, Cassowaries, Gulls, Storks, some Passerines

  • 5/24/2018 Avian Circulatory System

    23/27

    A. Major Lymph Organs

    1. Bursa of Fabricius

    predominate in young birds

    situated adjacent to the cloaca

    source of antigen-producing B-lymphocytes in

    embryonic stage.

    as birds grow older, the bursa of Fabricus

    becomes smaller and at about the time of thebird's sexual maturity, it has atrophied and no

    longer function

  • 5/24/2018 Avian Circulatory System

    24/27

    A. Major Lymph Organs

    2. Thymus Gland

    located in the neck along the jugular vein

    functions at peak levels in the young

    produces hormones that program certain lymphocytes

    against certain antigens (t-lymphocytes)

  • 5/24/2018 Avian Circulatory System

    25/27

    B. Secondary Lymph Organs

    1. Spleen divided into red and white pulp

    white pulp is where the T-lymphocytes reside

    spleen filters and cleans the blood of debris anddestroys worn out red blood cells

    2. Bone marrow

    produces lymphocytes and macrophages

    3. Capillaries transport lymph fluid throughout the body

    4. Lymph

    nodes filter lymph

  • 5/24/2018 Avian Circulatory System

    26/27

    References Butler, P. J. 2001. Divingbeyond the limits. News in Physiological Sciences 16: 222-227.

    Butler, P. J., N. H. West, and D. R. Jones. 1977. Respiratory and cardiovascular responses of the

    pigeon to sustained, level flight in a wind tunnel. Journal of Experimental Biology 71:7-26

    Hamilton, W. D. and M. Zuk. 1982 Heritable true fitness and bright birds: a role for parasites?

    Science 218: 384-387.

    Kohonen, P., K.-P. Nera, and O. Lassila. 2007. Avian model for B-Cell immunology - new genomes

    and phylotranscriptomics. Scandinavian Journal of Immunology 66: 113121.

    Machida, N. and Y. Aohagi. 2001. Electrocardiography, heart rates, and heart weights of free-living

    birds. Journal of Zoo and Wildlife Medicine 32: 4754.

    Mller, A. P., J. Erritze, & L. Z. Garamszegi. 2004. Covariation between brain size and immunity

    in birds: implications for brain size evolution. Journal of Evolutionary Biology 18: 223-237.

    Mller, A.P. and M. Petrie. 2002. Condition dependence, multiple sexual signals, and

    immunocompetence in peacocks. Behavioral Ecology 13:248253.

    http://physiologyonline.physiology.org/cgi/content/full/16/5/222http://physiologyonline.physiology.org/cgi/content/full/16/5/222http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3083.2007.01973.xhttp://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3083.2007.01973.xhttp://www.bioone.org/bioone/?request=get-document&issn=1042-7260&volume=032&issue=01&page=0047http://www.bioone.org/bioone/?request=get-document&issn=1042-7260&volume=032&issue=01&page=0047http://www.bioone.org/bioone/?request=get-document&issn=1042-7260&volume=032&issue=01&page=0047http://www.bioone.org/bioone/?request=get-document&issn=1042-7260&volume=032&issue=01&page=0047http://www.bioone.org/bioone/?request=get-document&issn=1042-7260&volume=032&issue=01&page=0047http://www.bioone.org/bioone/?request=get-document&issn=1042-7260&volume=032&issue=01&page=0047http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3083.2007.01973.xhttp://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3083.2007.01973.xhttp://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3083.2007.01973.xhttp://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3083.2007.01973.xhttp://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3083.2007.01973.xhttp://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3083.2007.01973.xhttp://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3083.2007.01973.xhttp://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3083.2007.01973.xhttp://physiologyonline.physiology.org/cgi/content/full/16/5/222http://physiologyonline.physiology.org/cgi/content/full/16/5/222http://physiologyonline.physiology.org/cgi/content/full/16/5/222http://physiologyonline.physiology.org/cgi/content/full/16/5/222http://physiologyonline.physiology.org/cgi/content/full/16/5/222
  • 5/24/2018 Avian Circulatory System

    27/27

    Oglesbee, B. L., R. L. Hamlin, H. Klingaman, J. Cianciola, and S. P. Hartman. 2001. Electrocardiographic

    Reference Values for Macaws (Arasp.) and Cockatoos (Cacatuasp.). Journal of Avian Medicine and Surgery 15:

    17-22.

    Palacios, M. G., J. E. Cunnick, D. W. Winkler, and C. M. Vleck. 2007.Immunosenescence in some but not all

    immune components in a free-living vertebrate, the Tree Swallow. Proc. Royal Academy of London B, online early.

    Pelletier, D., M. Guillemette, J.-M. Grandbois, and P. J. Butler. 2007. It is time to move: linking flight and foraging

    behaviour in a diving bird.Biology Letters 3: 357-359.

    Sato, K., Y. Naito, A. Kato, Y. Niizuma, Y. Watanuki, J. B. Charrassin, C.-A. Bost, Y. Handrich, and Y. Le Maho.

    2002. Buoyancy and maximal diving depth in penguins: do they control inhaling air volume? J. Exp. Biol. 205:

    1189-1197.

    Schepelmann, K. 1990. Erythropoietic bone marrow in the pigeon: development of its distribution and volume

    during growth and pneumatization of bones. Journal of Morphology 203: 21-34.

    Schmaier, A. A., T. J. Stalker, J. L. Runge, D. Lee, C. Nagaswami, P. Mericko, M. Chen, S. Cliche, C. Gariepy, L.

    F. Brass, D. A. Hammer, J. W. Weisel, K. Rosenthal, and M. L. Kahn. 2011. Occlusive thrombi arise in mammals

    but not birds in response to arterial injury: evolutionary insight into human cardiovascular disease. Blood 118:3661-3669.

    Scott, G. R., S. Egginton, J. G. Richards, and W. K. Milsom. 2009. Evolution of muscle phenotype for extreme

    high altitude flight in the Bar-headed Goose. Proceedings of the Royal Society B: online early.

    Szabo, Cs., L. Bardos, S. Losonczy, and K. Karchesz. 1998. Isolation of Antibodies from Chicken and Quail Eggs.

    Presented at INABIS '98 - 5th Internet World Congress on Biomedical Sciences at McMaster University, Canada,D 7 16th A il bl t URL htt // t /i bi 98/i l / b 0509/t ht l

    http://www.journals.royalsoc.ac.uk/(d41jfirit5jzbrbnqjkxs2y5)/app/home/contribution.asp?referrer=parent&backto=issue,11,17;journal,1,319;linkingpublicationresults,1:102024,1http://www.journals.royalsoc.ac.uk/(d41jfirit5jzbrbnqjkxs2y5)/app/home/contribution.asp?referrer=parent&backto=issue,11,17;journal,1,319;linkingpublicationresults,1:102024,1http://journals.royalsociety.org/content/8762767397444457/http://journals.royalsociety.org/content/8762767397444457/http://bloodjournal.hematologylibrary.org/content/118/13/3661.abstract?sid=05104dd6-a57a-442a-b01a-cf075bdc7b83http://bloodjournal.hematologylibrary.org/content/118/13/3661.abstract?sid=05104dd6-a57a-442a-b01a-cf075bdc7b83http://rspb.royalsocietypublishing.org/content/early/2009/07/27/rspb.2009.0947.abstracthttp://rspb.royalsocietypublishing.org/content/early/2009/07/27/rspb.2009.0947.abstracthttp://www.mcmaster.ca/inabis98/immunology/szabo0509/two.htmlhttp://www.mcmaster.ca/inabis98/immunology/szabo0509/two.htmlhttp://rspb.royalsocietypublishing.org/content/early/2009/07/27/rspb.2009.0947.abstracthttp://rspb.royalsocietypublishing.org/content/early/2009/07/27/rspb.2009.0947.abstracthttp://rspb.royalsocietypublishing.org/content/early/2009/07/27/rspb.2009.0947.abstracthttp://rspb.royalsocietypublishing.org/content/early/2009/07/27/rspb.2009.0947.abstracthttp://bloodjournal.hematologylibrary.org/content/118/13/3661.abstract?sid=05104dd6-a57a-442a-b01a-cf075bdc7b83http://bloodjournal.hematologylibrary.org/content/118/13/3661.abstract?sid=05104dd6-a57a-442a-b01a-cf075bdc7b83http://journals.royalsociety.org/content/8762767397444457/http://journals.royalsociety.org/content/8762767397444457/http://journals.royalsociety.org/content/8762767397444457/http://journals.royalsociety.org/content/8762767397444457/http://www.journals.royalsoc.ac.uk/(d41jfirit5jzbrbnqjkxs2y5)/app/home/contribution.asp?referrer=parent&backto=issue,11,17;journal,1,319;linkingpublicationresults,1:102024,1http://www.journals.royalsoc.ac.uk/(d41jfirit5jzbrbnqjkxs2y5)/app/home/contribution.asp?referrer=parent&backto=issue,11,17;journal,1,319;linkingpublicationresults,1:102024,1http://www.journals.royalsoc.ac.uk/(d41jfirit5jzbrbnqjkxs2y5)/app/home/contribution.asp?referrer=parent&backto=issue,11,17;journal,1,319;linkingpublicationresults,1:102024,1http://www.journals.royalsoc.ac.uk/(d41jfirit5jzbrbnqjkxs2y5)/app/home/contribution.asp?referrer=parent&backto=issue,11,17;journal,1,319;linkingpublicationresults,1:102024,1http://www.journals.royalsoc.ac.uk/(d41jfirit5jzbrbnqjkxs2y5)/app/home/contribution.asp?referrer=parent&backto=issue,11,17;journal,1,319;linkingpublicationresults,1:102024,1http://www.journals.royalsoc.ac.uk/(d41jfirit5jzbrbnqjkxs2y5)/app/home/contribution.asp?referrer=parent&backto=issue,11,17;journal,1,319;linkingpublicationresults,1:102024,1http://www.journals.royalsoc.ac.uk/(d41jfirit5jzbrbnqjkxs2y5)/app/home/contribution.asp?referrer=parent&backto=issue,11,17;journal,1,319;linkingpublicationresults,1:102024,1