avoiding death by vacuum decay · w. g. h. avoiding death by vacuum decay. the higgs sector of the...

81
Avoiding Death by Vacuum Decay Cutting on the MSSM parameter space Wolfgang Gregor Hollik DESY Hamburg Theory February 18 2016 | Theory Seminar Zeuthen W. G. H. Avoiding Death by Vacuum Decay

Upload: others

Post on 20-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Avoiding Death by Vacuum Decay

Cutting on the MSSM parameter space

Wolfgang Gregor Hollik

DESY Hamburg Theory

February 18 2016 | Theory Seminar Zeuthen

W. G. H. Avoiding Death by Vacuum Decay

Page 2: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

The end is nigh. . .

W. G. H. Avoiding Death by Vacuum Decay

Page 3: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Motivation and Outline

www.

haar

etz.

com

“I think, we have it!”Rolf Heuer

W. G. H. Avoiding Death by Vacuum Decay

Page 4: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Motivation and Outline

www.

thed

aily

star

.net

“Eureka!”Archimedes

W. G. H. Avoiding Death by Vacuum Decay

Page 5: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

What do we have?

[par

ticl

ezoo

]

W. G. H. Avoiding Death by Vacuum Decay

Page 6: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Having pinned down the missing piece. . .

[Hambye, Riesselmann: Phys.Rev. D55 (1997) 7255]

W. G. H. Avoiding Death by Vacuum Decay

Page 7: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

The SM phase diagram

0 50 100 150 2000

50

100

150

200

Higgs mass Mh in GeV

Top

mas

sM

tin

GeV

Instability

Non

-perturbativity

Stability

Meta-stab

ility

[Deg

rass

iet

al.JH

EP

1208

(201

2)09

8]

W. G. H. Avoiding Death by Vacuum Decay

Page 8: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Back again

[Hambye, Riesselmann: Phys.Rev. D55 (1997) 7255]

W. G. H. Avoiding Death by Vacuum Decay

Page 9: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Constraining the SM Higgs sector

Theoretical considerationsλ < 4π ↪→ perturbativityλ > 0 ↪→ unbounded from below, aka vacuum stability

trivial at the classical (i.e. tree) level

V (Φ) = m2Φ†Φ + λ(Φ†Φ

)2Quantum level

[courtesy of Max Zoller]

dominant contribution: top quark (yt ∼ 1)dependence on the energy scale: β function!

W. G. H. Avoiding Death by Vacuum Decay

Page 10: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Constraining the SM Higgs sector

Theoretical considerationsλ < 4π ↪→ perturbativityλ > 0 ↪→ unbounded from below, aka vacuum stability

trivial at the classical (i.e. tree) level

V (Φ) = m2Φ†Φ + λ(Φ†Φ

)2Quantum level

[courtesy of Max Zoller]

dominant contribution: top quark (yt ∼ 1)dependence on the energy scale: β function!

W. G. H. Avoiding Death by Vacuum Decay

Page 11: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Energy scale dependence

Scale-independent loop-corrected effective potential

Qd

dQVloop(λi, φ,Q) = 0

Approximation for large field values

Vloop(φ) = λ(φ)φ4,

evaluated at Q ∼ φ

β function for coupling λi

βi(λi) = Qdλi(Q)

dQ

running of λ determines stability of the loop potentialupper bound: Landau pole; lower bound: λ > 0

W. G. H. Avoiding Death by Vacuum Decay

Page 12: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Precise analysis: up to three loops!

[Zoller 2014]

W. G. H. Avoiding Death by Vacuum Decay

Page 13: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Precise analysis: up to three loops!

[Zoller 2014]

W. G. H. Avoiding Death by Vacuum Decay

Page 14: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Stability, instability or metastability?

[Courtesy of Max Zoller]

W. G. H. Avoiding Death by Vacuum Decay

Page 15: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Stability, instability or metastability?

[Courtesy of Max Zoller]

W. G. H. Avoiding Death by Vacuum Decay

Page 16: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Metastability of the Standard Model

mh = 125 GeV: metastable electroweak vacuummetastability: decay time of false vacuum largeinstability scale around 1010...12 GeV

SM sufficiently stableneutrino masses missing

Why New Physics?

Why Supersymmetry?mh = 125 GeV: very suitable for light MSSM Higgsmetastability → absolute stability

Task: Do not introduce further instabilities!(generically difficult)

W. G. H. Avoiding Death by Vacuum Decay

Page 17: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Metastability of the Standard Model

mh = 125 GeV: metastable electroweak vacuummetastability: decay time of false vacuum largeinstability scale around 1010...12 GeV

SM sufficiently stableneutrino masses missing

Why New Physics?

Why Supersymmetry?mh = 125 GeV: very suitable for light MSSM Higgsmetastability → absolute stability

Task: Do not introduce further instabilities!(generically difficult)

W. G. H. Avoiding Death by Vacuum Decay

Page 18: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Metastability of the Standard Model

mh = 125 GeV: metastable electroweak vacuummetastability: decay time of false vacuum largeinstability scale around 1010...12 GeV

SM sufficiently stableneutrino masses missing

Why New Physics?

Why Supersymmetry?mh = 125 GeV: very suitable for light MSSM Higgsmetastability → absolute stability

Task: Do not introduce further instabilities!(generically difficult)

W. G. H. Avoiding Death by Vacuum Decay

Page 19: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Metastability of the Standard Model

mh = 125 GeV: metastable electroweak vacuummetastability: decay time of false vacuum largeinstability scale around 1010...12 GeV

SM sufficiently stableneutrino masses missing

Why New Physics?

Why Supersymmetry?mh = 125 GeV: very suitable for light MSSM Higgsmetastability → absolute stability

Task: Do not introduce further instabilities!

(generically difficult)

W. G. H. Avoiding Death by Vacuum Decay

Page 20: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Metastability of the Standard Model

mh = 125 GeV: metastable electroweak vacuummetastability: decay time of false vacuum largeinstability scale around 1010...12 GeV

SM sufficiently stableneutrino masses missing

Why New Physics?

Why Supersymmetry?mh = 125 GeV: very suitable for light MSSM Higgsmetastability → absolute stability

Task: Do not introduce further instabilities!(generically difficult)

W. G. H. Avoiding Death by Vacuum Decay

Page 21: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Supersymmetry

relates bosonic and fermionic degrees of freedom: absolute zerothe only non-trivial extension of Poincaré symmetry

[Par

ticl

eFe

ver]

WMSSM = µHd·Hu−Y eijHd·LL,iER,j+Y

uijHu·QL,iUR,j−Y d

ijHd·QL,iDR,j

W. G. H. Avoiding Death by Vacuum Decay

Page 22: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Supersymmetry

relates bosonic and fermionic degrees of freedom: absolute zerothe only non-trivial extension of Poincaré symmetry

[Par

ticl

eFe

ver]

WMSSM = µHd·Hu−Y eijHd·LL,iER,j+Y

uijHu·QL,iUR,j−Y d

ijHd·QL,iDR,j

W. G. H. Avoiding Death by Vacuum Decay

Page 23: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Supersymmetry

relates bosonic and fermionic degrees of freedom: absolute zerothe only non-trivial extension of Poincaré symmetry

[Par

ticl

eFe

ver]

WMSSM = µHd·Hu−Y eijHd·LL,iER,j+Y

uijHu·QL,iUR,j−Y d

ijHd·QL,iDR,j

W. G. H. Avoiding Death by Vacuum Decay

Page 24: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

The Higgs sector of the MSSM and its stability

WMSSM = µHd·Hu−Y eijHd·LL,iER,j+Y

uijHu·QL,iUR,j−Y d

ijHd·QL,iDR,j

Higgs potential of 2HDM type II

V = m211 H

†dHd +m2

22 H†uHu +

(m2

12 Hu ·Hd + h.c.)

+λ12

(H†dHd

)2+λ22

(H†uHu

)2+ λ3

(H†uHu

)(H†dHd

)+ λ4

(H†uHd

)(H†dHu

)+ {λ5, λ6, λ7}

In the MSSM: tree potential calculated from D-terms and Lsoft

m2 tree

11 = |µ|2 +m2Hd, λtree1 = λtree2 = −λtree3 =

g2 + g′2

4,

m2 tree

22 = |µ|2 +m2Hu, λtree4 =

g2

2,

m2 tree

12 = Bµ, λtree5 = λtree6 = λtree7 = 0.

W. G. H. Avoiding Death by Vacuum Decay

Page 25: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

The Higgs sector of the MSSM and its stability

WMSSM = µHd·Hu−Y eijHd·LL,iER,j+Y

uijHu·QL,iUR,j−Y d

ijHd·QL,iDR,j

Higgs potential of 2HDM type II

V = m211 H

†dHd +m2

22 H†uHu +

(m2

12 Hu ·Hd + h.c.)

+λ12

(H†dHd

)2+λ22

(H†uHu

)2+ λ3

(H†uHu

)(H†dHd

)+ λ4

(H†uHd

)(H†dHu

)+ {λ5, λ6, λ7}

In the MSSM: tree potential calculated from D-terms and Lsoft

m2 tree

11 = |µ|2 +m2Hd, λtree1 = λtree2 = −λtree3 =

g2 + g′2

4,

m2 tree

22 = |µ|2 +m2Hu, λtree4 =

g2

2,

m2 tree

12 = Bµ, λtree5 = λtree6 = λtree7 = 0.

W. G. H. Avoiding Death by Vacuum Decay

Page 26: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

The Higgs sector of the MSSM and its stability

WMSSM = µHd·Hu−Y eijHd·LL,iER,j+Y

uijHu·QL,iUR,j−Y d

ijHd·QL,iDR,j

Higgs potential of 2HDM type II

V = m211 H

†dHd +m2

22 H†uHu +

(m2

12 Hu ·Hd + h.c.)

+λ12

(H†dHd

)2+λ22

(H†uHu

)2+ λ3

(H†uHu

)(H†dHd

)+ λ4

(H†uHd

)(H†dHu

)+ {λ5, λ6, λ7}

Unbounded from below requirements

λ1 > 0 , λ2 > 0 , λ3 > −√λ1λ2

and others. . . [Gunion, Haber 2003]

always fulfilled in the MSSM @ tree

Extending the treeloop corrections? [Gorbahn, Jäger, Nierste, Trine 2011]

W. G. H. Avoiding Death by Vacuum Decay

Page 27: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Effective 2HDM [Gorbahn, Jäger, Nierste, Trine 2011]

integrating out heavy SUSY particlesrequirement of large SUSY scale MSUSY �MA ∼ veweffective theory: generic 2HDM, λi calculated from SUSYloops

H

H

H

H

tL

tR tL

tR

H

H

H

H

χ0

collecting all SUSY contributions:

λi = λi(tanβ, µ,M1,M2, m2Q, m

2u, m

2d, m

2L, m

2e, Au, Ad, Ae).

W. G. H. Avoiding Death by Vacuum Decay

Page 28: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Effective 2HDM [Gorbahn, Jäger, Nierste, Trine 2011]

integrating out heavy SUSY particlesrequirement of large SUSY scale MSUSY �MA ∼ veweffective theory: generic 2HDM, λi calculated from SUSYloops

H

H

H

H

tL

tR tL

tR

H

H

H

H

χ0

collecting all SUSY contributions:

λi = λi(tanβ, µ,M1,M2, m2Q, m

2u, m

2d, m

2L, m

2e, Au, Ad, Ae).

W. G. H. Avoiding Death by Vacuum Decay

Page 29: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Triviality bounds on the effective 2HDM

simple check:

λ1 > 0 , λ2 > 0 , λ3 > −√λ1λ2,

where now

λi = λtreei +λinoi + λsfermi

16π2.

Severe UFB limitsBounds on λ1,2,3 transfer into bounds on m0, At, µ, . . .

W. G. H. Avoiding Death by Vacuum Decay

Page 30: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Recovery from unbounded from below???

V (φ) = −µ2φ2 + λφ4

W. G. H. Avoiding Death by Vacuum Decay

Page 31: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Recovery from unbounded from below???

V (φ) = −µ2φ2 − λφ4

W. G. H. Avoiding Death by Vacuum Decay

Page 32: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Recovery from unbounded from below???

V (φ) = −µ2φ2 − λφ4+λ(6)φ6

W. G. H. Avoiding Death by Vacuum Decay

Page 33: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Calculating the 1-loop effeective potential

tL

tR

h h+ + + + . . .

+

tL,R

h0u

h0u

+ + . . . +

h0u

h0u

h

h

tL,R

tL,R

tR,L + . . .

dominant contribution from third generation squarksquadrilinear couplings (∼ |Yt|2)trilinear coupling to a linear combination (µ∗Yth

†d −Ath

0u)

series summable to an infinite number of external legs

Do not stop after renormalizable / dim 4 terms!

W. G. H. Avoiding Death by Vacuum Decay

Page 34: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Calculating the 1-loop effeective potential

tL

tR

h h+ + + + . . .

+

tL,R

h0u

h0u

+ + . . . +

h0u

h0u

h

h

tL,R

tL,R

tR,L + . . .

dominant contribution from third generation squarksquadrilinear couplings (∼ |Yt|2)trilinear coupling to a linear combination (µ∗Yth

†d −Ath

0u)

series summable to an infinite number of external legsDo not stop after renormalizable / dim 4 terms!

W. G. H. Avoiding Death by Vacuum Decay

Page 35: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

All roads lead to Rome. . .

1-loop effective potential [Coleman, Weinberg 1973]

V1(hu, hd) =1

64π2STrM4(hu, hd)

[ln

(M2(hu, hd)

Q2

)− 3

2

]

field dependent massM(hu, hd)STr accounts for spin degrees of freedom

same result can be obtained by the tadpole method

T ∼ ∂

∂hV1(h) ↪→ V1(h) ∼

∫dh T (h)

[Lee, Sciaccaluga 1975]

functional methods: effective potential for arbitrary number ofscalars: V1(φ1, φ2, . . . φn) [Jackiw 1973]

W. G. H. Avoiding Death by Vacuum Decay

Page 36: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

The reasoning behind

The effective potential

Veff(φ): average energy density

The ground state of the theoryVeff minimized:

dVeffdφ

∣∣∣∣φ=v

= 0

Technically:generating function for 1PI n-point Green’s functions:

Veff(φ) = −∞∑n=2

G(n)(pi = 0)φn

conversely: calculate all 1PI n-point functions → Veff(with subleties)

W. G. H. Avoiding Death by Vacuum Decay

Page 37: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

The reasoning behind

The effective potential

Veff(φ): average energy density

The ground state of the theoryVeff minimized:

dVeffdφ

∣∣∣∣φ=v

= 0

Technically:generating function for 1PI n-point Green’s functions:

Veff(φ) = −∞∑n=2

G(n)(pi = 0)φn

conversely: calculate all 1PI n-point functions → Veff(with subleties)

W. G. H. Avoiding Death by Vacuum Decay

Page 38: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

The reasoning behind

The effective potential

Veff(φ): average energy density

The ground state of the theoryVeff minimized:

dVeffdφ

∣∣∣∣φ=v

= 0

Technically:generating function for 1PI n-point Green’s functions:

Veff(φ) = −∞∑n=2

G(n)(pi = 0)φn

conversely: calculate all 1PI n-point functions → Veff(with subleties)

W. G. H. Avoiding Death by Vacuum Decay

Page 39: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

The reasoning behind

The effective potential

Veff(φ): average energy density

The ground state of the theoryVeff minimized:

dVeffdφ

∣∣∣∣φ=v

= 0

Technically:generating function for 1PI n-point Green’s functions:

Veff(φ) = −∞∑n=2

G(n)(pi = 0)φn

conversely: calculate all 1PI n-point functions → Veff

(with subleties)

W. G. H. Avoiding Death by Vacuum Decay

Page 40: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

The reasoning behind

The effective potential

Veff(φ): average energy density

The ground state of the theoryVeff minimized:

dVeffdφ

∣∣∣∣φ=v

= 0

Technically:generating function for 1PI n-point Green’s functions:

Veff(φ) = −∞∑n=2

G(n)(pi = 0)φn

conversely: calculate all 1PI n-point functions → Veff(with subleties)

W. G. H. Avoiding Death by Vacuum Decay

Page 41: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Summing up external legs

H

H

H

H

tL

tR tL

tR

+ + + . . .

most dominant contribution from top Yukawa yt and Atcan be easily summed for mtR

= mtL≡M

1-PI potential as generating function for 1-PI Green’s functions

−V1−PI(φ) = Γ1−PI(φ) =∑n

1

n!Gn(pext = 0)φn

“classical” field value φ→ 〈0|φ|0〉dV (φ)dφ = 0 determines ground state of the theory

W. G. H. Avoiding Death by Vacuum Decay

Page 42: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Summing up external legs

H

H

H

H

tL

tR tL

tR

+ + + . . .

h

tL

tR

h = h0†d −Atµ∗Yt

h0u

V1 ∼∑n

ann!2

(h†h)n

,ann!2

=1

n(n− 1)(n− 2)

V1 =NcM

4

32π2[(1 + x)2 log(1 + x) + (1− x)2 log(1− x)− 3x2

]Q2 = M2 x2 = |µYt|2h†h/M4, m2

tL= m2

tR= M2

W. G. H. Avoiding Death by Vacuum Decay

Page 43: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Summing up external legs

H

H

H

H

tL

tR tL

tR

+ + + . . .

h

tL

tR

h = h0†d −Atµ∗Yt

h0u

V1 ∼∑n

ann!2

(h†h)n

,ann!2

=1

n(n− 1)(n− 2)

V1 =NcM

4

32π2[(1 + x)2 log(1 + x) + (1− x)2 log(1− x)− 3x2

]Q2 = M2 x2 = |µYt|2h†h/M4, m2

tL= m2

tR= M2

W. G. H. Avoiding Death by Vacuum Decay

Page 44: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Summing up external legs

H

H

H

H

tL

tR tL

tR

+ + + . . .

h

tL

tR

h = h0†d −Atµ∗Yt

h0u

V1 ∼∑n

ann!2

(h†h)n

,ann!2

=1

n(n− 1)(n− 2)

V1 =NcM

4

32π2[(1 + x)2 log(1 + x) + (1− x)2 log(1− x)− 3x2

]Q2 = M2 x2 = |µYt|2h†h/M4, m2

tL= m2

tR= M2

W. G. H. Avoiding Death by Vacuum Decay

Page 45: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Summing up (ctd.)

Field dependent stop mass

M2t(h0u, h

0d) =

(m2tL

+ |Yth0u|2 Ath0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

tR+ |Yth0u|2

)

trilinear ∼ h(h0d, h0u), quadrilinear ∼ |h0u|2

diagrams with mixed contributions

tL,R

tL,Rh0

u

h0

u

gummi bear factor

(2n+ k − 1)!

k!(2n− 1)! www.idn.uni-bremen.de/biologiedidaktik

W. G. H. Avoiding Death by Vacuum Decay

Page 46: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Summing up (ctd.)

Field dependent stop mass

M2t(h0u, h

0d) =

(m2tL

+ |Yth0u|2 Ath0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

tR+ |Yth0u|2

)

trilinear ∼ h(h0d, h0u), quadrilinear ∼ |h0u|2

diagrams with mixed contributions

h0

u

h0

u

h

h

tL,R

tL,R

tR,L

gummi bear factor

(2n+ k − 1)!

k!(2n− 1)! www.idn.uni-bremen.de/biologiedidaktik

W. G. H. Avoiding Death by Vacuum Decay

Page 47: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Summing up (ctd.)

Field dependent stop mass

M2t(h0u, h

0d) =

(m2tL

+ |Yth0u|2 Ath0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

tR+ |Yth0u|2

)

trilinear ∼ h(h0d, h0u), quadrilinear ∼ |h0u|2

diagrams with mixed contributions

h0

u

h0

u

h

h

tL,R

tL,R

tR,L

gummi bear factor

(2n+ k − 1)!

k!(2n− 1)! www.idn.uni-bremen.de/biologiedidaktik

W. G. H. Avoiding Death by Vacuum Decay

Page 48: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Summing up (ctd.)

Field dependent stop mass

M2t(h0u, h

0d) =

(m2tL

+ |Yth0u|2 Ath0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

tR+ |Yth0u|2

)

trilinear ∼ h(h0d, h0u), quadrilinear ∼ |h0u|2

diagrams with mixed contributions

h0

u

h0

u

h

h

tL,R

tL,R

tR,L

gummi bear factor

(2n+ k − 1)!

k!(2n− 1)! www.idn.uni-bremen.de/biologiedidaktik

W. G. H. Avoiding Death by Vacuum Decay

Page 49: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Summing up (ctd.)

Field dependent stop mass

M2t(h0u, h

0d) =

(m2tL

+ |Yth0u|2 Ath0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

tR+ |Yth0u|2

)

tL

tR

h h+ + + + . . .

+

tL,R

h0

u h0

u

+ + . . . +

h0

u

h0

u

h

h

tL,R

tL,R

tR,L + . . .

W. G. H. Avoiding Death by Vacuum Decay

Page 50: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Summing up (ctd.)

Field dependent stop mass

M2t(h0u, h

0d) =

(m2tL

+ |Yth0u|2 Ath0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

tR+ |Yth0u|2

)

V1 ∼∞∑n=0

∞∑k=0

akn x2nyk , x2 =

|µYt|2h†hM4

, y =|Yth0u|2

M2

=

∞∑n=0

∞∑k=0

1

n(2n+ k − 1)(2n+ k − 2)

(2n+ k − 1)!

k!(2n− 1)!x2nyk

=[

(1 + y + x)2 log(1 + y + x)

+(1 + y − x)2 log(1 + y − x)− 3(x2 + y2 + 2y)]

W. G. H. Avoiding Death by Vacuum Decay

Page 51: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Features of the resummed series

V1(h0u, h

0d) =

NcM4

32π2

[(1 + y + x)2 log(1 + y + x)

+ (1 + y − x)2 log(1 + y − x)

− 3(x2 + y2 + 2y)

]

x2 =|µYt|2h†hM4

, h = h0∗d −Atµ∗Yt

h0u, y =|Yth0u|2

M2

branch cut at x− y = ±1: take real part (analytic cont.)ignore imaginary part: log(1 + y − x) = 1

2 log((1 + y − x)2

)always bounded from belowminimum independent of Higgs parameters from tree potentialminimum determined by SUSY scale parameters

W. G. H. Avoiding Death by Vacuum Decay

Page 52: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Tree, loop and tree + loop

(a)

x

V(x)

10.90.80.70.60.50.40.30.20.10

0.5

0.4

0.3

0.2

0.1

0

-0.1

W. G. H. Avoiding Death by Vacuum Decay

Page 53: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Tree, loop and tree + loop

(b)

x

V(x)

43.532.521.510.50

8

6

4

2

0

-2

-4

W. G. H. Avoiding Death by Vacuum Decay

Page 54: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Tree, loop and tree + loop

(c)

x

V(x)

1.41.210.80.60.40.20

4

3

2

1

0

-1

-2

-3

W. G. H. Avoiding Death by Vacuum Decay

Page 55: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Tree, loop and tree + loop

(d)

x

V(x)

1.41.210.80.60.40.20

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

W. G. H. Avoiding Death by Vacuum Decay

Page 56: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Cooking up phenomenologically viable parameters

Minimum at the electroweak scale v = 246 GeV

m2 tree

11 = m2 tree

12 tanβ − v2

2cos(2β)λtree1 − 1

v cosβ

δ

δφdV1

∣∣∣∣φu,d→ 0χu,d→ 0

,

m2 tree

22 = m2 tree

12 cotβ +v2

2cos(2β)λtree1 − 1

v sinβ

δ

δφuV1

∣∣∣∣φu,d→ 0χu,d→ 0

.

mh = 125 GeV

using FeynHiggs 2.10.0 to determine light Higgs mass byadjusting At (several solutions: signAt = − signµ)connection to potential: mA

pseudoscalar mass mA less dependent on higher loopsdecoupling limit: mA,mH± ,mH � mh

include sbottom (drives minimum), take Ab = 0

W. G. H. Avoiding Death by Vacuum Decay

Page 57: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

tanβ resummation for bottom yukawa coupling

Yukawa coupling not given directly by the mass

yb =mb

vd(1 + ∆b)

∆gluinob =

2αs3π

µMG tanβC0(mb1, mb2

,MG),

∆higgsinob =

Y 2t

16π2µAt tanβC0(mt1

, mt2, µ).

20 000 40 000 60 000 80 000 100 000

MG

GeV

0.4

0.6

0.8

1.0

1.2

DbHgluinoL

-4000 -2000 2000 4000Μ

-0.2

-0.1

0.1

0.2

DbHhiggsinoL

W. G. H. Avoiding Death by Vacuum Decay

Page 58: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Discussion of stability

✷ ✂ ✶✵✽

✹ ✂ ✶✵✽

✻ ✂ ✶✵✽

�✷ ✂ ✶✵✽

✷✵✵ ✹✵✵ ✻✵✵

✈✉ ✰ ✣✉ ❂●❡❱

✁✄❢❢ ❂ ●❡❱☎

✆✝

tanβ = 40

mA = 800 GeV

M = 1 TeV

µ = 3.75 TeV

At ' −1.5 TeV

W. G. H. Avoiding Death by Vacuum Decay

Page 59: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Discussion of stability

✷ ✂ ✶✵✽

✹ ✂ ✶✵✽

✻ ✂ ✶✵✽

�✷ ✂ ✶✵✽

✷✵✵ ✹✵✵ ✻✵✵

✈✉ ✰ ✣✉ ❂●❡❱

✁✄❢❢ ❂ ●❡❱☎

☎✽

✆✝

tanβ = 40

mA = 800 GeV

M = 1 TeV

µ = 3.83 TeV

At ' −1.5 TeV

W. G. H. Avoiding Death by Vacuum Decay

Page 60: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

[ww

w.b

bcam

eric

a.co

m]

W. G. H. Avoiding Death by Vacuum Decay

Page 61: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Naive exclusions: Constraint in µ-tanβ

MSUSY = 2TeVMSUSY = 1TeV

µ/TeV

tanβ

54321

60

50

40

30

20

10

W. G. H. Avoiding Death by Vacuum Decay

Page 62: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

New interpretation

Access to Charge and Color breaking minima

µ = 3910 GeVµ = 3860 GeVµ = 3810 GeV

vu +ϕu/GeV

V eff/G

eV4

6004002000

6× 108

5× 108

4× 108

3× 108

2× 108

1× 108

0× 1

−1× 108

−2× 108

−3× 108

−4× 108

W. G. H. Avoiding Death by Vacuum Decay

Page 63: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

New interpretation

Access to Charge and Color breaking minima

M2t(h0u, h

0d) =

(m2Q + |Yth0u|2 Ath

0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

t + |Yth0u|2)

M2b(h0u, h

0d) =

(m2Q + |Ybh0d|2 Abh

0d − µ∗Ybh0∗u

A∗bh0∗d − µY ∗b h0u m2

b + |Ybh0d|2)

non-trivial behaviour of sfermions masses with Higgs vev

:

m2b1,2

(h0u, h0d) =

m2Q + m2

b

2+ |Ybh0d|2

± 1

2

√(m2

Q − m2b)

2 + 4|Abh0d − µ∗Ybh0∗u |2

expand theory around new minimum: m2b2< 0

tachyonic squark mass!

W. G. H. Avoiding Death by Vacuum Decay

Page 64: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

New interpretation

Access to Charge and Color breaking minima

M2t(h0u, h

0d) =

(m2Q + |Yth0u|2 Ath

0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

t + |Yth0u|2)

M2b(h0u, h

0d) =

(m2Q + |Ybh0d|2 Abh

0d − µ∗Ybh0∗u

A∗bh0∗d − µY ∗b h0u m2

b + |Ybh0d|2)

non-trivial behaviour of sfermions masses with Higgs vev:

m2b1,2

(h0u, h0d) =

m2Q + m2

b

2+ |Ybh0d|2

± 1

2

√(m2

Q − m2b)

2 + 4|Abh0d − µ∗Ybh0∗u |2

expand theory around new minimum: m2b2< 0

tachyonic squark mass!

W. G. H. Avoiding Death by Vacuum Decay

Page 65: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

New interpretation

Access to Charge and Color breaking minima

M2t(h0u, h

0d) =

(m2Q + |Yth0u|2 Ath

0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

t + |Yth0u|2)

M2b(h0u, h

0d) =

(m2Q + |Ybh0d|2 Abh

0d − µ∗Ybh0∗u

A∗bh0∗d − µY ∗b h0u m2

b + |Ybh0d|2)

non-trivial behaviour of sfermions masses with Higgs vev:

m2b1,2

(h0u, h0d) =

m2Q + m2

b

2+ |Ybh0d|2

± 1

2

√(m2

Q − m2b)

2 + 4|Abh0d − µ∗Ybh0∗u |2

expand theory around new minimum: m2b2< 0

tachyonic squark mass!

W. G. H. Avoiding Death by Vacuum Decay

Page 66: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

[com

mons

.wik

imed

ia.o

rg]

W. G. H. Avoiding Death by Vacuum Decay

Page 67: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Rolling down the hill

What does a tachyonic mass mean?

mass ⇔ second derivative: m2φ = ∂2V/∂φ2

m2φ < 0 ⇔ negative curvature

non-convex potential: imaginary partlog(1 + y − x) ∼ log(m2

φ)

-100 -50 50 100 b�

L

-2´107

2´107

4´107

6´107

8´107

1´108

V Hb� LL

W. G. H. Avoiding Death by Vacuum Decay

Page 68: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Rolling down the hill

What does a tachyonic mass mean?

mass ⇔ second derivative: m2φ = ∂2V/∂φ2

m2φ < 0 ⇔ negative curvature

non-convex potential: imaginary partlog(1 + y − x) ∼ log(m2

φ)

-100 -50 50 100 b�

L

-2´107

2´107

4´107

6´107

8´107

1´108

V Hb� LL

W. G. H. Avoiding Death by Vacuum Decay

Page 69: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

A more complete picture

Including colored directions

V treeb

= b∗L(M2Q

+ |Ybvd|2)bL + b∗R(M2b

+ |Ybvd|2)bR

−[b∗L(µ∗Ybh

0†u −Abvd)bR + h. c.

]+ |Yb|2|bL|2|bR|2

+ D-terms.

D-flat direction: minimizing D-term contribution

D-terms: g2φ4

VD =g218

(|h0u|2 − |h0d|2 +

1

3|bL|2 +

2

3|bR|2

)2+g228

(|h0u|2 − |h0d|2 + |bL|2

)2+g236

(|bL|2 − |bR|2

)2.

will always take over for large field valuestake e.g. bL = bR = b and |h0d|2 = |h0u|2 + |b|2|

W. G. H. Avoiding Death by Vacuum Decay

Page 70: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

A more complete picture

Including colored directions

V treeb

= b∗L(M2Q

+ |Ybvd|2)bL + b∗R(M2b

+ |Ybvd|2)bR

−[b∗L(µ∗Ybh

0†u −Abvd)bR + h. c.

]+ |Yb|2|bL|2|bR|2

+ D-terms.

D-flat direction: minimizing D-term contribution

D-terms: g2φ4

VD =g218

(|h0u|2 − |h0d|2 +

1

3|bL|2 +

2

3|bR|2

)2+g228

(|h0u|2 − |h0d|2 + |bL|2

)2+g236

(|bL|2 − |bR|2

)2.

will always take over for large field valuestake e.g. bL = bR = b and |h0d|2 = |h0u|2 + |b|2|

W. G. H. Avoiding Death by Vacuum Decay

Page 71: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

A more complete picture

Including colored directions

V treeb

= b∗L(M2Q

+ |Ybvd|2)bL + b∗R(M2b

+ |Ybvd|2)bR

−[b∗L(µ∗Ybh

0†u −Abvd)bR + h. c.

]+ |Yb|2|bL|2|bR|2

+ D-terms.

D-flat direction: minimizing D-term contribution

D-terms: g2φ4

VD =g218

(|h0u|2 − |h0d|2 +

1

3|bL|2 +

2

3|bR|2

)2+g228

(|h0u|2 − |h0d|2 + |bL|2

)2+g236

(|bL|2 − |bR|2

)2.

will always take over for large field valuesor h0d = 0 and b = h0u [large D-term]

W. G. H. Avoiding Death by Vacuum Decay

Page 72: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

CCB minima and the one-loop Higgs potential

From CCC to CCBpreviously “safe” false but CC conserving minima turn into todeep global minima with 〈bL〉 = 〈bR〉 6= 0 and 〈h0u〉 6= vu

W. G. H. Avoiding Death by Vacuum Decay

Page 73: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

CCB minima and the one-loop Higgs potential

From CCC to CCBpreviously “safe” false but CC conserving minima turn into todeep global minima with 〈bL〉 = 〈bR〉 6= 0 and 〈h0u〉 6= vu

W. G. H. Avoiding Death by Vacuum Decay

Page 74: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Analytic bounds at the tree-level

1 choose appropriate direction ↪→ one-field problem

V treeφ = m2φ2 −Aφ3 + λφ4

h0u = b, h0d = 0

2 identify parameters, e.g. m2 = m2Q + m2

b +m2Hu

+ µ2,

λ = Y 2b +

g21+g22

2 , A = 2µYb

3 necessary condition: m2 > A2

4λ ↪→ second minimum not belowfirst (trivial) one)

h0u = b, h0

d = 0

m2Hu

+ µ2 + m2Q + m2

b >(µYb)2

Y 2b + (g21 + g22)/2

W. G. H. Avoiding Death by Vacuum Decay

Page 75: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Analytic bounds at the tree-level

1 choose appropriate direction ↪→ one-field problem

V treeφ = m2φ2 −Aφ3 + λφ4

h0u = b, h0d = 0

2 identify parameters, e.g. m2 = m2Q + m2

b +m2Hu

+ µ2,

λ = Y 2b +

g21+g22

2 , A = 2µYb

3 necessary condition: m2 > A2

4λ ↪→ second minimum not belowfirst (trivial) one)

h0u = b, h0

d = 0

m2Hu

+ µ2 + m2Q + m2

b >(µYb)2

Y 2b + (g21 + g22)/2

W. G. H. Avoiding Death by Vacuum Decay

Page 76: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Analytic bounds at the tree-level

1 choose appropriate direction ↪→ one-field problem

V treeφ = m2φ2 −Aφ3 + λφ4

h0u = b, h0d = 0

2 identify parameters, e.g. m2 = m2Q + m2

b +m2Hu

+ µ2,

λ = Y 2b +

g21+g22

2 , A = 2µYb

3 necessary condition: m2 > A2

4λ ↪→ second minimum not belowfirst (trivial) one)

|h0d|2 = |h0

u|2 + |b|2, b = αh0u

m211(1 + α2) +m2

22 ± 2m212

√1 + α2 + α2(m2

Q + m2b) >

µ2α4

2 + 3α2

W. G. H. Avoiding Death by Vacuum Decay

Page 77: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

µ/GeV

tanβ

5000450040003500300025002000

60

50

40

30

20

10

0

W. G. H. Avoiding Death by Vacuum Decay

Page 78: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Conclusions

the Higgs potential in the SM is meta/un/stableMSSM: multi-scalar theory, has several unwanted minimaformation of new CCB conserving minima at the 1-loop levelstability of the electroweak vacuum: bounds on µ-tanβ

instability of electroweak vacuum by second minimum in“standard model direction” ∼ vu: global CCB minimummore severe bounds [new CCB constraints]CCB constraints for non-vanishing D-Termsquantum tunneling: either very long- or very short-lived

W. G. H. Avoiding Death by Vacuum Decay

Page 79: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Finally. . .

Greetings from Señor Higgs(courtesy of Jens Hoff)

W. G. H. Avoiding Death by Vacuum Decay

Page 80: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

Backup

Slides

W. G. H. Avoiding Death by Vacuum Decay

Page 81: Avoiding Death by Vacuum Decay · W. G. H. Avoiding Death by Vacuum Decay. The Higgs sector of the MSSM and its stability W MSSM = H dH u Y e ij H dL L;iE R;j+Y u ij H uQ L;iU R;j

References

Wolfgang Gregor Hollik: “Charge and color breaking constraints inthe Minimal Supersymmetric Standard Model associated with thebottom Yukawa coupling” Physics Letters B 752 (2016) 7 – 12

Wolfgang Gregor Hollik: “Neutrinos meet Supersymmetry: QuantumAspects of Neutrinophysics in Supersymmetric Theories”, PhDThesis, Karlsruhe 2015

Markus Bobrowski, Guillaume Chalons, Wolfgang G. Hollik, UlrichNierste: “Vacuum stability of the effective Higgs potential in theMinimal Supersymmetric Standard Model” Physical Review D 90,035025 (2014)

W. G. H. Avoiding Death by Vacuum Decay