az91d ! * z n-butyl-n-methylpyrrodine

6
-79- AZ91D n-butyl-n-methylpyrrodine trifluoromethylsulfonate (BMP-NTf 2 ) 張仍奎* 1 、林姵瓊 2 、蘇忠瑞 2 、孫亦文 2 、蔡文達 3 、曾傳銘 4 Corrosion Characteristics of Mg Alloys in n- butyl-n-methylpyrrodine trifluoromethylsulfonate (BMP-NTf 2 ) Ionic Liquids J. K. Chang* 1 , P. C. Lin 2 , C. J. Su 2 , I. W. Sun 2 , W. T. Tsai 3 , C. M. Tseng 4 Received 10 August 2010; received in revised form 14 June 2011; accepted 21 June 2011 本研究探討 AZ91 鎂合金於 n-butyl-n-methylpyrrodine trifluoromethylsulfonate (BMP- NTf 2 )離子液體中的腐蝕行為,並與同材料在一般在水溶液環境中的腐蝕特性做比較。實驗 中利用動電位極化以及電化學交流阻抗分析以探討鎂合金於不同環境下的電化學性質與抗 蝕能力。另外,亦將鎂合金浸泡於離子液體中兩週,並分別以掃瞄式電子顯微鏡與 X-ray 能量散佈光譜儀分析試片的表面形貌與化學成分。實驗結果顯示,鎂合金於離子液體中比 在水溶液中有明顯較佳的抗蝕性,在兩種環境下的極化阻抗值分別為 160,000 -cm 2 以及 500 -cm 2 關鍵字:鎂合金;離子液體;腐蝕特性。 ABSTRACT Corrosion behavior of Mg alloys in n-butyl-n-methylpyrrodine trifluoromethylsulfonate (BMP-NTf 2 ) ionic liquids was investigated in this study. Potentiodynamic and electrochemical impedance spectroscopic techniques were used to examine the corrosion properties of Mg alloys in 防蝕工程 第二十五卷第二期 79 ~ 84 2011 6 Journal of Chinese Corrosion Engineering, Vol. 25, No. 2, pp. 79 ~ 84 (2011) ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ 1 中央大學材料科學與工程研究所 1 Institute of Materials Science and Engineering, National Central University 2 成功大學化學系 2 Department of Materials Science and Engineering, National Cheng Kung University 3 成功大學材料科學及工程學系 3 Department of Chemistry, National Cheng Kung University 4 台大凝態中心 4 Center for Condensed Matter Sciences, National Taiwan University * 連絡作者:[email protected]

Upload: others

Post on 03-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Microsoft Word - 250203-0902-OK.docAZ91D n-butyl-n-methylpyrrodine trifluoromethylsulfonate (BMP-NTf2)
*1 2 2 2 3 4
Corrosion Characteristics of Mg Alloys in n- butyl-n-methylpyrrodine
trifluoromethylsulfonate (BMP-NTf2) Ionic Liquids
J. K. Chang*1, P. C. Lin2, C. J. Su2, I. W. Sun2, W. T. Tsai3, C. M. Tseng4
Received 10 August 2010; received in revised form 14 June 2011; accepted 21 June 2011
AZ91 n-butyl-n-methylpyrrodine trifluoromethylsulfonate (BMP- NTf2)

160,000 -cm2 500 -cm2

79 ~ 84 2011 6
Journal of Chinese Corrosion Engineering, Vol. 25, No. 2, pp. 79 ~ 84 (2011)

1
1 Institute of Materials Science and Engineering, National Central University 2
2 Department of Materials Science and Engineering, National Cheng Kung University 3
3 Department of Chemistry, National Cheng Kung University 4
4 Center for Condensed Matter Sciences, National Taiwan University * [email protected]
2011 6
-80-
ionic liquids and traditional aqueous solutions (as a counterpart). The Mg samples after being immersed in the ionic liquid were analyzed using a scanning electron microscope and an X-ray energy dispersive spectrometer. The experimental results indicated that the corrosion resistance of Mg in the ionic liquid was much better than that in traditional aqueous solutions, and the measured polarization resistances in the two environments were 160,000 and 500 -cm2, respectively.
Keywords: Mg alloy; Ionic liquid; Corrosion behavior.
1. CO2
20% CO2




) n-butyl-n-methylpyrrodine trifluoromethylsulfonate ionic liquid (BMP-NTf2)


9 wt% 0.5 wt%
AZ91D
2000

2.2 n-butyl-n-
methylpyrrodine trifluoromethylsulfonate (BMP-NTf2) 3.5 wt% NaCl


ferrocene/ferrocenium couple (Fc/Fc+ = 50/50 mol%)

(Polarization behavior) (AC impedance spectroscopy)
1 mV/s
AZ91D n-butyl-n-methylpyrrodine trifluoromethylsulfonate (BMP-NTf2)
10 mHz 100,000 Hz 0.1 Hz
2.3 BMP-NTf2
(99.9%)
(scanning electron microscope, SEM)
(EDS)
SEM --
β(Mg17Al12) α
2×10-4 A/cm2
2(b) 3.5 wt% NaCl
1 AZ91D SEM
Figure 1 SEM micrograph of the AZ91D alloy.
1E-6 1E-5 1E-4 1E-3 1E-2
Current density (A/cm2)
Current density (A/cm2)
Po te
nt ia
l ( V
v s.
SC E)
(a) (b) 2 (a) BMP-NTf2(b) 3.5 wt% NaCl
Figure 2 Polarization curves of the Mg alloys recorded in (a) the BMP-NTf2 ionic liquid and (b) a 3.5 wt% NaCl aqueous solution.
2011 6
-82-

NaCl
( ZPlot )
160,000 -cm2 3.5 wt% NaCl 3(b) 500 -cm2BMP-NTf2

Z'
-100000
-80000
-60000
-40000
-20000
0
Z' '
Z'
-1000
-800
-600
-400
-200
'
(a) (b) 3 (a) BMP-NTf2(b) 3.5 wt% NaCl
Figure 3 Nyquist plots of the Mg alloys recorded in (a) the BMP-NTf2 ionic liquid and (b) a 3.5 wt% NaCl aqueous solution.
4 BMP-NTf2
SEM
Figure 4 SEM micrograph of the AZ91D sample after being immersed in the BMP-NTf2 ionic liquid for two weeks.
(-cm2) (-cm2)








500 -cm2 160,000 -cm2
BMP-NTf2
3.5 wt% NaCl
1. A. Shkurankov, S.E. Abedin, and F. Endres, Aust. J. Chem., 60 (2007) 35.
2. P. C. Howlett, S. Zhang, D. R. MacFarlane, and M. Forsyth, Aust. J. Chem., 60 (2007) 43.
3. N. Birbilis, P. C. Howlett, D. R. MacFarlane, and M. Forsyth, Surface and Coatings Technology, 201 (2007) 4496.
4. G. L. Markar and J. Kruger, Int. Mater. Rev., 38 (1993) 138.
5. D. R. MacFarlane, S. A. Forsyth, J. Golding, and G. B. Deacon, Green Chemistry, 4 (2002) 444.
6. M. J. Deng, P. Y. Chen, T. I. Leong, I. W. Sun, J. K. Chang, and W. T. Tsai, Electrochemisty Communication, 10 (2008) 213.
7. D. R. MacFarlane, P. Meakin, J. Sun, N. Amint, and M. Forsyth, J. Phys. Chem. B, 103 (1999) 4164.
2010 8 10
2011 6 14
2011 6 21
5 SEM
Figure 5 SEM micrograph of the AZ91D sample after being immersed in water for one week.
2011 6
-84-