b2-13h instruments gyroscopic sr

Upload: alexander-mcfarlane

Post on 28-Feb-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    1/104

    StudentResource

    SubjectB2-13h

    InstrumentsGyroscopic

    Copyright 2008 Aviation Australia

    Allrightsreserved.Nopartofthisdocumentmaybereproduced,transferred,sold,orotherwisedisposedof,withoutthewrittenpermissionofAviationAustralia.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    2/104

    Thispageintentionallyleftblank

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    3/104

    Part 66 Su j

    b ec tAA Form TO-19

    IssueBJanuary2008 Revision3 B2-13h-i

    B2-13h Instruments Gyroscopic

    CONTENTS

    Topic

    Definitions ii

    Studyresources iii

    Introduction v

    Gyroscopes 13.8.2.1

    ArtificialHorizons 13.8.2.2.1

    SlipIndicators 13.8.2.2.2

    DirectionalGyros 13.8.2.2.3

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    4/104

    Part 66 Su

    bjectAA Form TO-19

    IssueBJanuary2008 Revision3 B2-13h-ii

    B2-13h Instruments Gyroscopic

    Tosetforthinwords;declare.

    DEFINITIONS

    Define

    Todescribethenatureorbasicqualitiesof.

    Tostatetheprecisemeaningof(awordorsenseofaword).

    State

    Specifyinwordsorwriting.

    Identify

    Toestablishtheidentityof.

    List

    Itemise.

    Describe

    Representinwordsenablinghearerorreadertoformanideaofanobjectorprocess.

    Totellthefacts,details,orparticularsofsomethingverballyorinwriting.

    Explain

    Makeknownindetail.

    Offerreasonforcauseandeffect.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    5/104

    Part 66 Su

    bjectAA Form TO-19

    IssueBJanuary2008 Revision3 B2-13h-iii

    B2-13h Instruments Gyroscopic

    STUDY RESOURCES

    E.H.J.Pallett,AircraftInstruments&IntegratedSystems,Chapter4

    JeppesenAircraftInstrumentsandAvionicspp2941

    AvionicsFundamentals,IAPInc.Chapter5

    B2-13hStudentHandout

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    6/104

    Part 66 Su

    bjectAA Form TO-19

    IssueBJanuary2008 Revision3 B2-13h-iv

    B2-13h Instruments Gyroscopic

    This page intentionally left blank

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    7/104

    Part 66 Su

    bjectAA Form TO-19

    IssueBJanuary2008 Revision3 B2-13h-v

    B2-13h Instruments Gyroscopic

    INTRODUCTION

    ThepurposeofthissubjectistoallowyoutogainknowledgeofAircraftSystems,Instruments

    Gyroscopic.Oncompletionofthefollowingtopicsyouwillbeableto:

    Topic 13 8 2 1 Gyroscopic Terminology and Characteristics

    DefineGyroscopicrelatedterms.

    Explainthefollowing:

    Earthrateandcalculateitforvariouspositionsontheearthinrespecttoapparentprecession

    Rigidityandlistthefactorswhichaffectit

    2and3gimballedgyroscopelayouts Gimballockcondition;

    methodsofavoidingand

    rectifyingagyrointhiscondition

    Realdriftandapparentdriftandlistthefactorswhichaffectthem

    Free,tied,earthandrategyros.

    Describegyroscopicprecessionanddeterminethedirectionofprecessionresultingfromanappliedforce.

    Identifythefollowinggyroscopicinstrumentsystems,statetheirpurposeandexplaintheiroperation:

    ArtificialHorizons

    SlipIndicators

    DirectionalGyros

    Describeprecautionsinvolvedwithgyroscopicinstruments/components.

    13 8 2 2 1 Gyroscopic Instrument Systems: Artificial Horizons

    Identifythefollowinggyroscopicinstrumentsystem,statetheirpurposeandexplaintheiroperation:

    ArtificialHorizons;

    13 8 2 2 2 Gyroscopic Instrument Systems: Slip Indicators

    Identifythefollowinggyroscopicinstrumentsystem,statetheirpurposeandexplaintheiroperation:

    SlipIndicators(Turn&BankIndicators)and

    13 8 2 2 3 Gyroscopic Instrument Systems: Directional Gyros

    Identifythefollowinggyroscopicinstrumentsystem,statetheirpurposeandexplaintheiroperation:

    DirectionalGyros.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    8/104

    Part 66 SubjectAA Form TO-19

    B2-13h-vi

    B2-13h Instruments Gyroscopic

    IssueBJanuary2008 Revision3

    Thispageintentionallyleftblank

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    9/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page1of56

    B2-13h Instruments Gyroscopic

    TOPIC 13.8.2.1: GYROSCOPES

    Newtons 1st Law of Motion

    Inertia

    Anobjectinmotionwillremaininmotionandanobjectatrestwillremainatrestunlessactedonbyanunbalanced force.Thismeansthatif therewerenofriction,egspace,youcouldthrow/pushsomethinganditwillcontinueatthatsamespeedforevermore.Inrealityintheatmosphereoftheearthwehaveplenty offrictionfromairandgravitywhichprovides theadditionalforcetoopposetheinitialmotionimpartedbyyou.Buttheconceptisthatamovingmasswillcontinuetomoveinthesamedirectionunlesssomeotherforceactsuponit.

    Whenarotorismadetospinathighspeedthedevicebecomesagyroscopepossessingtwoimportantfundamentalproperties:

    Gyroscopic Rigidity or Gyroscopic Inertia:

    causedbytheinertiaofthemass,keepingtheaxisrigidorpointinginthesamedirection.

    Gyroscopic Precession:

    describestheapplicationofaforcetothegyroandtheeffectoftheangulardisplacement.

    Boththesepropertiesdependontheprincipleofconservationofangularmomentum,whichmeansthattheangularmomentumofabodyaboutagivenpointremainsconstantunlesssomeforceisappliedtochangeit.Angularmomentumistheproductofthemomentofinertia(I)andangularvelocity(w) ofa bodyreferredtoagivenpointthecentreofgravityin thecaseofagyroscope.

    Theseratherintriguingpropertiescanbeexhibitedbyanysysteminwhicharotatingmassis

    involved.Althoughitwasleftformantodevelopgyroscopesandassociateddevices,itistruetosaythatgyroscopicpropertiesareasoldastheearthitself:ittoorotatesathighspeedand

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    10/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page2of56

    B2-13h Instruments Gyroscopic

    Sopossessesrigidity,andalthoughithasnogimbalsystemorframeonwhichexternalforcescanact,itcan,anddoes,precess.Thereare,however,manymechanicalexamplesarounduseverydayandoneofthem,thebicycle,affordsaverysimplemeansofdemonstration.Ifweliftthefrontwheelofftheground,spinitathighspeed,andthenturnthe

    handlebars,wefeelrigidityresistingusandwefeelprecessiontryingtotwistthehandlebarsoutofourgrasp.Theflywheelofamotor-carengineisanotherexample.Itsspinaxisisinthedirectionofmotionofthecar,butwhenturningacorneritsrigidityresiststheturningforcessetup,andasthisresistancealwaysresultsinprecession,thereisatendencyforthefrontofthecartomoveupordowndependingonthedirectionoftheturn.Otherfamiliarexamplesareaircraftpropellers,compressorandturbineassembliesofjetengines;gyroscopicpropertiesareexhibitedbyallofthem.

    Elements of the Gyroscope

    Therotorisaperfectlybalancedmass,mountedonacentralshaft.

    Gyro Rotor Construction

    Thegyrowheelorrotorunitmustbeperfectlysymmetricalandcircularaboutthespinaxis.Anyothershapewouldcausean imbalanceduringrotation.Togainhighermomentumandthereforestability,theweightisnormallyconcentratedontherim.Toomuchweightcausesexcessivebearingfrictionandconsequentlydrift,soa compromisemustbemadebetweenmomentumandfriction.Becauseinertiadependsuponthesquareoftheradius,therotorsaremadeaslargeaspossiblewiththegreatestmassconcentratedattherim.

    Gyroscopic Balance

    Thegyroscopemustbeperfectlybalancedtoreducethevibrationfeltduringthehighspeedsatwhichtheyarerotated.Thereforetheyarebothstatically anddynamically balanced.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    11/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page3of56

    B2-13h Instruments Gyroscopic

    Static Balance: tobestaticallybalanced,thecentreofgravitymustbeactinguponthespinaxis.

    Dynamic Balance: to be dynamically balanced, the plane of spin must be acting at rightanglestotheaxisofspin.

    Constructionoftherotorwilldirectlyaffecttherigidityofthegyro.Theheaviertherotorisandthecloser totheoutsiderim that theweightcanbedistributedwillcontributetothegyrosrigidity.

    Weaddaframewithbearingsandwehavecreatedthefirstaxisofspin.Thisframewillsoonbecomeourinnergimbalbutuntoitispivoteditselfweonlyhaveasingleaxisofspin.

    Gyroscopic Rigidity or Gyroscopic Inertia:causedbytheinertiaofthemass,keepingtheaxisrigidorpointinginthesamedirection.

    Gyroscopic Precession:describestheapplicationofaforcetothegyroandtheeffectoftheangulardisplacement.

    Boththesepropertiesdependontheprincipleofconservationofangularmomentum,whichmeansthattheangularmomentumofabodyaboutagivenpointremainsconstantunlesssomeforceisappliedtochangeit.Angularmomentumistheproductofthemomentofinertia(I)andangularvelocity(w) ofa bodyreferredtoagivenpointthecentreofgravityin thecaseofagyroscope.

    Theseratherintriguingpropertiescanbeexhibitedbyanysysteminwhicharotatingmassisinvolved.Althoughitwasleftformantodevelopgyroscopesandassociateddevices,itistruetosaythatgyroscopicpropertiesareasoldastheearthitself:Ittoorotatesathighspeedandsopossessesrigidity,andalthoughithasnogimbalsystemorframeonwhichexternalforcescanact,itcan,anddoes,precess.Thereare,however,manymechanicalexamplesarounduseverydayandoneofthem,thebicycle,affordsaverysimplemeansofdemonstration.Ifweliftthefrontwheelofftheground,spinitathighspeed,andthenturnthehandlebars,wefeelrigidityresistingusandwefeelprecessiontryingtotwistthehandlebarsoutofourgrasp.The flywheel ofamotor-car engine isanother example. Its spinaxis is inthe direction ofmotionofthecar,butwhenturningacorneritsrigidityresiststheturningforcessetup,andasthisresistancealwaysresultsinprecession,thereisatendencyforthefrontofthecartomoveupordowndependingonthedirectionoftheturn.Otherfamiliarexamplesareaircraftpropellers, compressor and turbine assemblies of jet engines; gyroscopic properties areexhibitedbyallofthem.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    12/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page4of56

    B2-13h Instruments Gyroscopic

    Asamechanicaldeviceagyroscopemaybedefinedasasystemcontainingaheavymetal

    wheel,orrotor,universallymountedsothatithasthreedegreesoffreedom:

    Spinningfreedomaboutanaxisperpendicularthroughitscentre(axisofspinXX 1){thismeansthelinefromXtoX1}

    Tiltingfreedomaboutahorizontalaxisatrightanglestothespinaxis(axisoftiltYY1)

    Veeringfreedomaboutaverticalaxisperpendiculartoboththespinandtiltaxes(axisofveerZZ1).

    Axes of Freedom

    Engineershaveusedmanyandvariouswaysofdescribingthemountingandaxisreferencesofthegyroscope.Athree frame gyro wassaidtohave three degrees of freedom whichwere

    namely: spinningfreedom,whichenabledagyroscopesrotortospin.

    tilting freedom, where the gyro case or inner gimbal was free to rotate about thehorizontalplane,atrightanglestothespinaxis.

    veeringfreedom,wheretheoutergimbalwasfreetorotateabouttheverticalplane,whichisperpendiculartoboththespinandtiltaxes.

    Theoutergimbalissupportedintheframeorcaseofthegyrosystem.Themoderntechnicalterminologyusedtoexpressthedegreesoffreedomofgyroscopestendstowardsacceptingas fact, that a gyromust spin toshow the gyroscopic properties.Therefore, a two framegyroscope has only one degree of freedom, while the three frame gyroscope has two

    degrees of freedom.The three degrees of freedom are obtained by mounting the rotor in two concentricallypivoted rings, called inner and outer gimbal rings. The whole assembly is known as the

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    13/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page5of56

    B2-13h Instruments Gyroscopic

    gimbalsystemofafreeorspacegyroscope.Thegimbalsystemismountedinaframe,sothatinitsnormaloperatingposition,alltheaxesaremutuallyatrightanglestooneanotherandintersectatthecentreofgravityoftherotor.

    Thegyromustbe universallymountedor ingimbalssoastomaintainthetwodegreesoffreedomrequired,thatisverticalandhorizontal(inthisexplanationthespinaxisof freedomisignoredalthoughthetextreferstotwodegreesoffreedom,itmeansfullfreedomofspin,tilt&veer).Theconstructionofthegyrodeterminestheshapeandformofthegimbalswhichinturndependsonhowthegyrowillbeusedandinwhichplaneitwillberequiredtosensemovement.

    Gimbalspermitthegyroframe(oranaircraft)tomovearoundthegyrowhileitmaintainsitsoriginalattitudeanddirectionofspinaxis.

    Planeofspindoesnotrequireagimbalasthisplaneissimplythefreedomoftherotortospinonitsaxis.Agyrocannotdetectmovementaboutitsplaneofspin,egaDGcannotdetectpitchandanAHcannotdetectyaw.

    Eachothergyroaxisrequiresagimbaltoprovideitwithfreedom.

    Only1gimbalonlypermitsfreedominonly1axis(inadditiontoplaneofrotationexplainedabove).Asecondgimbalisrequiredtoprovidefreedominbothaxissoftiltandveer.

    Wecanlimitthegimbals toouradvantage inmeasuring things,ega rategyroonlyhas1

    gimbal,butthatwillbecoveredindepthlater.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    14/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page6of56

    B2-13h Instruments Gyroscopic

    Gyroscopic Inertia or Rigidity

    Thepropertyofrigidityofthegyroscopeisitsabilitytoresistanyforcewhichtendstochange

    theplaneof rotationof its rotor. Thismeansthat ifa forceis applied totry andmove thegyroscope to another position the rotors axis of spin will try and remain in the constantdirection inspace. This property is the result of its high angular velocity, and the kineticenergypossessedintherotor.Thegyroscopicinertiaorrigiditycanbeincreasedby:

    increasingthemassoftherotor

    increasingtherotorspeed

    concentratingmoremassneartherimoftherotor.Thisiscalledincreasingtheradiusofgyration.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    15/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page7of56

    B2-13h Instruments Gyroscopic

    Precession.Theangularchangeindirectionoftheplaneofrotationundertheinfluenceofanappliedforce.Thechangeindirectiontakesplace,notinlinewiththeappliedforce,butalwaysatapoint90awayinthedirectionofrotation.

    Therateofprecessionalsodependsonthreefactors:

    Strengthanddirectionoftheappliedforce

    Momentofinertiaoftherotor(rigidityofrotor-weight)

    Angularvelocityoftherotor(Rigidityofrotorspeed)

    Thegreatertheforce,thegreateris therateofprecession,whilethegreaterthemomentofinertiaand the greater the angular velocity, the smaller is the rateofprecession. (greater

    rigiditysmallerrateofprecessionforequalamountofappliedforce)

    Precessionofarotorwillcontinue,whiletheforceisapplied,untiltheplaneofrotationisinlinewiththeplaneoftheappliedforceanduntilthedirectionsofrotationandappliedforcearecoincident.Atthispoint,sincetheappliedforcewillnolongertendtodisturbtheplaneofrotation,therewillbenofurtherresistancetotheforceandprecessionwillcease.gyrowilleventually gimbal lock or topple if unrestrained a rate gyro functions on the basis ofprecession, but the gyro rotor is restrained by springs so does not gimbal lock rotorcontinuestoprecessagainstspringpressurewhilstturningforceisdetectedbygyrorotormoreonrategyroslater.

    Theaxisaboutwhichatorqueisappliedistermedtheinputaxis,andtheoneaboutwhichprecessiontakesplaceintermedtheoutputaxis.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    16/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page8of56

    B2-13h Instruments Gyroscopic

    Theproperty ofprecessiononlybecomesapparentwhenanexternal forceis appliedto aspinningmass.Thiswillcausetheplaneofrotationtochangedirection.Thechangetakesplace,notatthedirectionoftheappliedforce,butatapoint90awayinthedirectionofgyrorotation.Therateofprecessionalsodependsuponthreefactors:

    Strengthanddirectionoftheappliedforce

    Rigidityoftherotor;(massoftherotor,whereitisconcentratedandspeed)

    Thegreatertheforce,thegreateristherateofprecession,whilethegreatertherigidityoftherotor,thesmalleristherateofprecession.

    Sinceprecessionistheangularchangeinpositionoftheplaneofrotation(spin)thatoccurswhen the applied force exceeds the rotational force, the direction of the precessionalmovementisdependentuponthedirectionoftheappliedforceandthedirectionofthegyrorotation.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    17/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page9of56

    B2-13h Instruments Gyroscopic

    Unavoidable precession is caused by aircraftmaneuvering and by the internal friction ofattitudeanddirectionalgyros.Thiscausesslow"drifting"andthuserroneousreadings.Whendeflectiveforcesaretoostrongorareappliedveryrapidly,mostoldergyrorotorstoppleover,rather thanmerely precess.This is called "tumbling" or "spilling" the gyro and should be

    avoidedbecauseitdamagesbearingsandrenderstheinstrumentuselessuntilthegyroiserectedagain.Someof theoldergyroshavecagingdevicesto hold thegimbals inplace.Eventhoughcagingcausesgreaterthannormalwear,oldergyrosshouldbecagedduringaerobaticmaneuverstoavoiddamagetotheinstrument.Thegyromaybeerectedorresetbyacagingknob.Manygyroinstrumentsmanufacturedtodayhavehigherattitudelimitationsthantheoldertypes.Theseinstrumentsdonot"tumble"whenthegyrolimitsareexceeded,but,however,donot reflectpitchattitudebeyond85degreesnoseupornosedown fromlevelflight.Beyondtheselimitsthenewergyrosgiveincorrectreadings.Thesegyroshaveaself-erectingmechanismthateliminatestheneedforcaging.

    Gimbal lock is normally prevented by limiting the movement of the inner gimbal withmechanical stops as shown on the slide. A mechanical stop applied to prevent gimballocking. This physically prevents the inner gimbal and the outer gimbal from becomingaligned.Ifthegimbalsdoreachthesestops,theforcesactingonthegimbalsystemcause

    thesystemtoprecessrandomlyandtopple.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    18/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page10of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    19/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page11of56

    B2-13h Instruments Gyroscopic

    Free or Space Gyros

    Anunrestricted,un-referenceddisplacementgyro is calleda spacegyro.Thesearegyrosthathavecompletefreedomaboutthreeaxiswhichareallactingatrightanglestoeachother

    (spin,tilt,andveer).Thisenablesthegyrotomaintainitspositionrelativetosomepointinspace for an indefinite time assuming that thereare no bearing imperfectionsorexternalforcessuchasmagneticfieldsorgravity.

    Typical gyro training aids and gyro toys are space gyros. They are not referenced toanything,notevengravity.Ifyouweretositandwatchaperfectlybalancedandfrictionlessspacegyro,itwillappeartorotateordriftawayfromtheperpendicular,butinrealitytherotoris remaining rigidly fixed inspace, and as the earthrotates, the framerotatesaround therotor,appearingtothevieweronearthasthoughthegyroisrotating.

    Obviouslyanun-referencedspacegyroisofnouseinanaircraft.Forastartiftheaircraftweresittingstillonthegroundthegyrowouldbedriftingoffatarateof15perhourduetotheearthsrotation.Agyroinanaircraftmustbereferencedtothehorizon,ortheearth.Soa

    spacegyromustbecontrolledtoremainrigid,butwithrespecttothecentreoftheearth,thisisusuallyachievedbyusinggravityasareferencetomaintainthegyroerect&referencedtothecentreoftheearth.

    Free or Space Gyros

    Thesearegyrosthathave completefreedomabout threeaxiswhichareall actingatrightangles to each other (spin, tilt, and veer). This enables the gyro to maintain its positionrelative tosome point in space for an indefinite time assuming that thereare nobearingimperfectionsorexternalforcessuchasmagneticfieldsorgravity.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    20/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page12of56

    B2-13h Instruments Gyroscopic

    Tied Gyros

    Aspacegyrowouldbeofnousewhateverinestablishingtheneededverticalandhorizontalreferences required for safe instrument flight.Weneed to havegyros that have freedom

    about threeaxis at rightangles toeachother, but whichare controlledbysomeexternalforce,sotheyassumeanattitudeinrespecttosomegivenpoint.Bytyingthegyrospinaxistosomefixedpoint,wecreatewhatiscalledatiedgyro.Thedirectionalgyroindicatorusesatiedgyroscope.Thegyrospinaxisbeingtiedhorizontalinrespecttotheindicatorcaseandassuch isparallel to the aircraft lateral and longitudinal axes.This type ofapplication iscalledacasetiedgyro.

    Earth Gyros

    Thesearetiedgyroswhosespinaxisismaintainedinaverticalpositionwithrespecttotheearthssurfacebyagravitationaldevice.Thesetypesofgyroscopesarecalledverticalgyrosandisthebasicelementofthegyrohorizonorartificialhorizonindicator.

    Rate Gyros

    Thesearetiedgyros,whicharetiedtoaparticularreferencepointbysprings,creatingagyrowhichhasonlyonedegreeoffreedom.Itisconstructedsoastoindicaterateofmovementaboutaplaneatrightanglestoboththeplaneofrotationandtheplaneoffreedomwhichinthiscaseisthetiltingplane.Thegyroscopeisspring-restrictedaboutthetiltaxissothatwhentheunitisturnedabouttheverticalaxis,theamountofdisplacementduetoprecessionisameasureoftherateofturn.

    References Established by Gyroscopes

    Theapplicationofthegyroscopeintoaircraftsystemsistoprovidetwoessentialreferencedatums:

    vertical flight reference

    Againstwhichaircraft attitude changesarenotedandused to indicateboth pitchand rollfunctionsoftheaircraft.

    directional flight reference

    Againstwhich aircraft heading changesare noted and used to indicatemovement of theaircraftabouttheverticalaxis.

    These referencesareestablishedbygyroscopeshaving their spin axisarrangedverticallyand horizontally. The vertical gyro is the sense element of all attitude gyros, whilst thehorizontal gyro is the sense element of the directional gyro providing aircraft headinginformation.

    Fromtheabovedescription,itcanbeseenthatthethreegyrocontrolledflightinstrumentsusedbythepilotarealltiedgyros.Ineachcasehowever,adifferentmethodisusedtotiethegyroinstrumenttoitsappropriatereferencepoint.

    Earth Gyro

    Before a free gyroscope can be ofpractical use asanattitude reference inaircraft flightinstrumentsandotherassociatednavigationalequipment,driftandtransportwandermustbecontrolledsothatthegyroscopesplaneofspinismaintainedrelativetotheearth;inotherwords,itrequiresconversiontowhatistermedanearthgyroscope.

    ASpaceGyroreferencedtoearthis thentermedanEarthgyro.AnySpacegyroreferenced

    toaparameterisreferredtoasatiedgyro,soanEarthGyro(tiedtocentreoftheearth)isaformofTiedgyro.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    21/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page13of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    22/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page14of56

    B2-13h Instruments Gyroscopic

    Rate Gyros

    The difference between a displacement gyro, and that provided by a rate gyro: where adisplacementgyroutilisesagyrospropertyof rigidity inspace andmeasuredisplacement

    around it, a rategyrorelies ona gyrobeingsubjected toprecessiveforcesagainstspringpressuretodeterminerateofmovement.Thehighertherateofmovementthegreatertheinertial force applied to the gyro resulting in precession. The higher the rate of turn, thegreatertheprecessiveforce,thegreaterthemovementagainstspringpressure.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    23/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page15of56

    B2-13h Instruments Gyroscopic

    Displacement Gyros

    Aircraftinflightarestillverymuchapartoftheearth,i.e.allreferencesmustbewithrespect

    totheearthssurface.Thefreeorspacegyroscopewehavebeenreferringtoinpresentinggyrotheorywouldservenousefulpurposeinanaircraftandwouldhavetobecorrectedfordriftwithrespecttotheearthsrotation,calledapparentdrift,andforwanderasaresultoftransportingthegyroscopefromonepointontheearthtoanother,calledtransportwander.

    Itwillalsobenotedthatthepitch,roll,anddirectionalattitudesoftheaircraftaredeterminedbyitsdisplacementwithrespecttoeachappropriategyroscope.Forthisreason,therefore,the gyroscopesare referred toasdisplacement typegyroscopes. Eachonehas the threedegrees of freedom, and consequently three mutual axes, but for the purpose ofattitudesensing,thespinaxisofthegyroisdiscountedsincenousefulattitudereferenceisprovidedwhendisplacementstakeplaceaboutthespinaxisalone(displacementaroundaxisofspin

    isnotdetected).Thus,inthepracticalcase,vertical-axisandhorizontal-axisgyroscopesarefurtherclassifiedastwo-axisdisplacementgyroscopes.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    24/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page16of56

    B2-13h Instruments Gyroscopic

    Gyroscope Applications in Aircraft

    Foruseinaircraft,gyroscopesmustestablishtwoessentialreferencedatums:

    Referenceagainstwhichpitchandrollattitudechangesmaybedetected

    Directionalreferenceagainstwhichchangesabouttheverticalaxismaybedetected

    Thesereferencesareestablishedbygyroscopeshavingtheirspinaxesarrangedverticallyandhorizontallyrespectively.Bothtypesofgyroscopeutilisethefundamentalpropertiesinthefollowingmanner:

    Rigidityestablishesastabilisedreferenceunaffectedbymovementofthesupportingbody

    Precessioncontrolstheeffectsofapparentandrealdriftthusmaintainingstabilisedreferencedatums(erectionsystemstoreferencetoearth).

    Foruseinaircraft,gyroscopesmustestablishtwoessentialreferencedatums:areferenceagainstwhichpitchandrollattitudechangesmaybedetected,andadirectionalreferenceagainst which changes about the vertical axis may be detected. These references areestablished by gyroscopes having their spin axes arranged vertically and horizontallyrespectively.

    Both typesofgyroscopeutilizethe fundamentalpropertiesin thefollowingmanner:Rigidityestablishes a stabilized reference unaffected by movement of the supporting body, andprecessioncontrolstheeffectsofapparentandrealdriftthusmaintainingstabilisedreference

    datums.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    25/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page17of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    26/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page18of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    27/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page19of56

    B2-13h Instruments Gyroscopic

    Tocompensateaspacegyrotoeliminateearthrate,attheequatorwecouldprecessitat15perhour,sothatitwillcompletelyrotateevery24hours(sameastheearthsrotation)thusappearing to remain erect with respect to earth. If the gyro is not at the equator, theprecessionvaluecanstillbeeasilycalculatedbecauseapparentdriftequals15sin(where

    equalsangleoflatitude).Canbeachievedbyelectricaltorquingsignals,orbyunbalancinggimbalstocausegyrotodriftatdesiredrate.

    Controlofdriftwhich,relatesonlytohorizontal-axisgyroscopesandcanbeachievedeitherby:

    calculatingcorrectionsusingtheearth-rate formulagivenin theprecedingtableandapplyingthemasappropriate;e.g.tothereadingsofadirectionindicator:

    applyingfixedtorqueswhichunbalancethegyroscopeandcauseittoprecessatarateequalandoppositetotheearthratewe,

    applying torqueshaving a similar effect to that stated inabove, but which can bevariedaccordingtothelatitude.

    Agyrocorrectedforearthrateorapparentdriftwillmaintainsitsattitudewithreferencetotheearth,itwillcontinuetopointtothecentreoftheearthevenastheearthrotates.

    This is the name given to the apparent drift which becomes evident in the directionalgyroscopeduetotheearthsrotation.Itisacombinationofbothapparenttiltandapparentveer.Apparentprecessionoccursatarateof15degreesperhourxsineofthelatitudeinwhich the gyro is operating. Apparent drift compensation is carried out by causing thegyroscopetobeprecessedintheoppositedirectiontotheearthsrotation.Thisisachievedbyplacingweightsinthespinaxisofthegyrorotortounbalancetheunitsothattheweightforcecauses the gyro toprecess.The rate ofprecession isdeterminedby the latitude inwhichthegyroisbeingoperated.

    Real drift results from imperfections in themanufactureof the gyroscope suchasbearingfriction,gimbalimbalances.Imperfectionscancauseunwantedprecessionwhichcanonlybeminimisedbyapplyingprecisionengineeringtechniques.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    28/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page20of56

    B2-13h Instruments Gyroscopic

    Transport Rate

    Assumenowthatthegyroscopeistransportedfromonepointontheplanettoanother,withitsspinaxisalignedwiththelocalverticalcomponentofgravity.Itwillhaveappearedtoanobserverontheearththatthespinaxisofthegyroscopehastiltedthisistransportwander

    The control of transport wander is normally achievedbyusing gravity-sensing devices toautomatically detect tilting of the gyro scopes spin axis, and to apply the appropriatecorrectivetorques.Examplesofthesedevicesarelaterdescribed.

    Transport Rate

    IfagyroweretransportedfromtheNorthPoletotheequatoritwillappearasthoughithastilted90.Infactyouhavemovedandnotthegyro.Inthediagrams,theoneontheleftshowsan uncorrected gyro which would display transport rate, the one on the right shows acorrectedgyro.

    Transportrateiscorrectedbyreferencingthegyrotothecentreoftheearth,orgravity.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    29/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page21of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    30/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page22of56

    B2-13h Instruments Gyroscopic

    Gimbal errors

    :occurinalldirectionalgyroswhich,asyouwillrecall,haveahorizontalspinaxis.Thegimbalerrorsarecausedduringaircraftmaneuvers.Theyarecausedby lossofgimbal relationshipundercertainconditions, in thatthegyro spin axis andgimbalsarenolongerat90degreestoeachother.Gimbalerrorsarenotcausedbyexternalforces,butby

    the output from sensing synchros, as a result of the outer gimbal moving as the aircraftrotates about the spin axis. This output causes heading errors on inter-connectedinstrumentsduringmaneuvershowever,theseerrorsareeliminatedwhentheaircraftreturnstostraightandlevelflight.Iftheaircraftgyroframeisrotatedabouttherotorspinaxis,theoutergimbalmustmovetomaintainthedirectionoftherotorspinaxis.Thismovementoftheoutergimbalwillbedetectedbytheoutergimbalheadingsynchro.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    31/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page23of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    32/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page24of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    33/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page25of56

    B2-13h Instruments Gyroscopic

    Handling

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    34/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page26of56

    B2-13h Instruments Gyroscopic

    Ring Laser Gyro

    Lasergyrosarenowwidelyused inaircraftnavigationapplications.Theyprovideaccurate,independent navigational data with high accuracy and reliability. They are still a dead

    reckoningsystem,andrequirenoexternalinputstofunction.ThistypeofInertialReferenceUnitisreferredtoasastrapdownsystembecauseitdoesnotrequire a gyro stabilised platform as described in a conventional INU. Pitch and rollmovementswhichwouldnormally introduceerrorsinanaccelerometer,areprovidedtothecomputer and the accelerometer outputs are modified electronically to compensate forattitudechanges.

    Thisformof InertialReferenceUnitnormallyprovidesprimaryAttitudeinformation,andcanalsomeasurealtitude(inertially),rateofascentanddescentandgroundspeed.OutputsfromanIRUaretypicallydistributedoveradigitaldatabustoflightcontrolcomputers,navigationcomputers,multi-functiondisplays,etc.

    Fundamentals of Laser Operation

    LASER isanacronymforLightAmplificationbyStimulatedEmissionofRadiation.Sinceitsdiscoveryin1960,LASERtechnologyhasexpandedrapidlywithapplicationinmanyfieldsotherthanaviationincludingmedical,agricultureandengineering.ThefirststepinproducingLaseristheionisationofagaswhichmaybehelium,argon,krypton,neonorxenon.Eachgasproducesadifferentcolour(andwavelength)oflight.Amixtureofheliumandneonisused in ring laser gyros. This gas mixture is held at low pressure inside a sealed tubeexposedtoananodeandcathodeplate.Whenahighvoltageisappliedacrosstheseplatesthe gases ionise, producing a glow discharge similar to fluorescent tubes. In lasergyroscopestheappliedvoltageisaround3000volts.

    Whatisthedifferencebetweenlaserlightandsayordinarywhitelight?Firstly,whitelightisamixtureofmanywavelengths;laserlightisasinglewavelengthwhichisdependantonthe

    typeofgas used.Secondly, ordinary light isscattered inall directionsbut laser light isaparallelbeam.Forexample,recentexperimentsusingapencilsizedlaserlightaimedatthemoon founditspread toadistanceofonly twomilesover the distanceof250,000miles.Laseristermedcoherent light whichmeansitisofaspecificwavelength.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    35/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page27of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    36/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page28of56

    B2-13h Instruments Gyroscopic

    Construction of the Ring Laser Gyroscope

    Ringlasergyrosarenotgyroscopesinthesensethatweknowthem.Theyaresimplytwobeamsoflaserlightrotating inoppositedirectionsengineeredtodetectmotionandbehave

    likeagyro.Laserringgyrosareconstructedsothattwolaserbeamsarereflectedaroundatrianglecausingthelighttotravelinanenclosedloop.Thelighttravelsinbothdirectionsatthesametime,sowehaveaclockwisebeamandacounter-clockwisebeam.

    So how can this be used to detect motion? Picture a merry-go-round platform which isstationary, with two people walking around it from the same starting point. One walksclockwiseandtheotheranticlockwise,andbothcanwalkentirelyaroundthemerry-go-roundbacktotheirstartingpointbywalking100steps.However,iftheplatformisrotatedslowlyclockwise,thepersonwalkingwiththeplatformwouldneedtotakeshorterstepstocompletethe journey in the same number of steps. Conversely, the person walking against thedirectionofrotationwouldneedtotakelongerstepstocompletethejourneyin100steps(likewalkingonanescalatormorestepstoachievethesamedistance).

    ThiscanalsobeexplainedusingtheDopplerprinciple.Asimilarphenomenontakesplaceinourlasergyro.Ifthegyroisturnedclockwise(CW),theCWbeamcompletes the journeyina shorter time.Inordertocompletethe journeyinthesamenumber ofcycles thebeamwavelengthmustbe compressed, that is, the frequencymust be increased. Conversely, the counter-clockwise (CCW) beam wavelength mustincrease(frequencydecreased).

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    37/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page29of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    38/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page30of56

    B2-13h Instruments Gyroscopic

    Fibre Optic Gyro

    FibreOpticGyros(FOGs)arealaterexpansionoftheRLGprinciple.SimilartoRLGs,they

    operate on exactly the same principle of sending two light beams, in different directionsaroundafibreopticpath.AnymovementoftheFibreOpticcoilineitherdirectionwillresultinthepathoflighttravellingfurtherinonebeamwhiletheotherlightpathtravelslessdistance.Bringingthetwolightbeamsouttosomeformofdetector,whichlooksatthephaseofthelight, will then give an output signal which will relate directly to the amount of rotationencounteredbythecoil.ThisisagainusingtheSagnaceffectasdotheRLGs.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    39/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page31of56

    B2-13h Instruments Gyroscopic

    The reason FOGs are finding greater use than RLGs is that they can be made in muchsmallerandcompactinstallations.Alsothepaththatthebeamsarerequiredtotravelaround,can bemademuch longer thanasimilarRLG lightpath,and this increaseinpath lengthmeans that more accurate and smaller changes of rotation can bemeasured. Typically,

    FOGscan have fibreoptic coilswhich canmeasureanywhere from100metres toover5kilometresinlength.Thelongerthepath,meansbasicallythemoreaccuratetheFOGcanbe, which in turn means that the Inertial Measurement Unit will provide far greaternavigationalaccuracy.

    Most modern day FOGs, because of their much smaller physical size than RLGs, areincorporatedwithGPS receivers andAir Dataunits.What thisdoes is togive the aircraftdesigneracompact,fullyselfcontained,navigationunitcapableofveryhighaccuracies.

    Becauseoftheiroperationandthevirtualabsenceornearlyallmovingparts,themeantimebetween failure (MTBF) for these types of units is nowmeasured in the order of yearsbetween failures. Typical MTBFs are measured in excess of 50,000 hours of continuousoperation, which in laymens terms means nearly over 6 years of continuous operation

    betweenreportedfaults.

    TheaccuracyoftheseunitsisalsohigherthantypicalRLGunits.Accuraciesintheorderof15metresorless,anywhereintheworld,issomethingthatAirlinesareveryhappytoaccept.

    Atypicalunit fromNorthropGrummanasshownaboveiscurrentlyfittedtotheAirbusA380.Itweighs less than8 kilograms,and draws less than 36 watts ofpower from the aircraftelectricalsystem.ThisunitcombinesthefunctionsofGPS,InertialReferenceandAirDatamodulesintoonepackage.Whatthisdoesisgiveasmalllightweightpackagewhichdrawsverylittlepower,yetprovidesextremelyaccuratenavigationalaccuracy.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    40/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page32of56

    B2-13h Instruments Gyroscopic

    Gyroscope Erection Systems

    Therearetwomaintypeofairdrivengyroerectionsystems:

    wedgeplate

    pendulousvane.

    Bothtypesrelyonthegyroscopicprecessiontomovethespinningrotorbacktoabalancedorerectposition.

    Wedge Plate

    Thewedgeplatesystemsimplydeflectstheairfromtherotorsystemacrossawedgeshapedplate.Thisdeflectedairwhenexhaustedevenlyorbalancedacrosstheplatehasnoeffectontheoutergimbal.Whenanunbalanceddeflectionoccursduetothemovementoftherotorfrom the vertical, the air isdistributedmoreonone sideof the plate than the other. Thisdifferential air flow causes a precessioneffect on the outer gimbal and therefore tries toreturnthespinningrotortotheverticalposition.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    41/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page33of56

    B2-13h Instruments Gyroscopic

    A negative pressure is created so that the cabin air enters the filtered inlet and passesthroughthechannelstothejets.Theairfromthejetshitstherotorbuckets,evenlydrivingtherotor at approximately 15,000 rev./min. After spinning the rotor, the air passes through apendulousvaneunitattachedtotheundersideoftherotorcasingandisfinallydrawntothe

    vacuumsource.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    42/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page34of56

    B2-13h Instruments Gyroscopic

    Pendulous Vane

    Thependulousvaneunitoperatesonanairdrivengyrospinningaroundaverticalaxis,suchasanartificialhorizon.Thistypeoferectionsystemportstheexhaustedairthroughfourports

    locatedatrightangles toeachother. Thependulousvanesin thenormal positionportairequallyacrossalloutletsandthereforenoprecessioneffectisgenerated.Inanunbalancedsituation,thegyrorotoristiltedandthegravitationaleffectautomaticallyadjuststhepositionof the pendulous vanes and therefore directs the air differentially. This differential forcecausestherotortoprecessbacktothenormalposition.

    Erection Systems for Electrically Driven Gyros

    Mechanical

    For electrically driven gyros, a mechanical form of erection is to manually cage thegyroscope.Thisactionmechanicallyforcesthegyrogimbalstoapositionatrightanglesto

    eachother, that is,pitch, rollandyaw.Caremustbe takenwhencaginganinstrumentasdamagecanresulttogimbalsandbearingsifcagingisundertakenincorrectly.

    Ball Type Erection System

    Therearetwomaintypesofballstylelevellingorerectionsystemsusedonartificialhorizonsorattitudegyros:

    ballcagetype

    rollingballtype.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    43/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page35of56

    B2-13h Instruments Gyroscopic

    Ball Cage Type

    Theballcagetypeusesanumberofsteelballsusuallybetween5and8suspendedbelowthe gyroand free to roll across a radiused discwith hooks locatedaround the perimeter.Thesehookscapturetheballsastheirmassmovesandapplyaprecessionforcetoerectthegyro.Intheverticalplane,themassofballsiscentredandthereforenoprecessionforceisapplied.Theprecessionalforceappliedwillerectthegyro.

    Rolling Ball Type

    Therollingballtypesystemwhenusedasalevellingdeviceincorporatesaslotteddiscwithaballfreetotravelinsidetheslot.Theslotisdriveninatauniformspeedapproximately30rpm.Whentheassemblyistiltedtheballexertsaneffectonthedisc.Whentilted,theballrollstothelowerendandwaitsuntilthebottomoftheslotcatchesup.Goinguphilltheballispushedbythedisc.Thismeansthattheaverageweightonthedownhillsideislessthantheuphill and therefore produces a torque effect which is related to tilt angle. This torqueprecessesthegyroassemblyinthedesireddirectiontomovethegyrobacktothevertical

    position.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    44/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page36of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    45/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page37of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    46/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page38of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    47/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page39of56

    B2-13h Instruments Gyroscopic

    Erection Systems for Electrically Driven Gyros

    Torque Motors and Sensors

    The application of torquemotors is themost commonlyused formofgyro correctionandpossiblytheeasiesttouse.Thetorquemotorissimilartoasmallelectricmotorexceptthatthe output shaft applies a twistingmotion or forcewhich is called torque, to the erection

    gimbal systemwhenenergised. The power issupplied through levelling switchesand thetorquemotorsaresituatedbetweenthegimbalandthenextsupportingframe.

    Becauseoftheforceofprecession,agyrospinningabouttheverticalaxisrequiresthepitchtorquemotortobepositionedbetweentheinnerandoutergimbalandtherolltorquemotorpositionedbetweentheoutergimbalandframe.

    Mercury Switches

    Alevellingswitchmountedparalleltotheaircraftslongitudinalandlateralaxis(pitchandroll)detect any deviation from leveland therefore control current flow to the torquemotors byapplying a torque opposite to the force creating it. The levelling switches can be eitherstraightorcurved,thecurvedvarietyrequiringagreaterforcetooperate.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    48/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page40of56

    B2-13h Instruments Gyroscopic

    Torque Motors

    The erectiontorquemotors are squirrel cagemotors witha laminated iron rotor,mountedconcentricallyaboutthestator.Theironcorestatorhastwowindings,areferencewinding

    andacontrolwinding.Thereferencewindingisprovidedwithaconstantfieldandinnormaloperation, that is, nodisplacement, it has current flowing via a capacitor and is thereforephaseshiftedby90 degrees. The controlwinding is intwo partsand isable toprovideareversiblefield.ThiscircuitissuppliedfromthesameACsource,asitisdirectlyconnectedtothesupply there isnophaseshift, leading thereferencewinding.Thecombinedmagneticfield interactswith the field inthe stator and the result controlsthe direction of the torquemotorandprovidescorrectionaltorqueto thegyroassembly.Inthenormalpositionthereisnocurrentflowinginthetorquemotorcircuitsduetothelevellingswitchbeinginthelevelposition.

    DC Coils and Permanent Magnets

    Both systems use the resultant flux lines to impart a magnetic field which will tend to

    magnetically displace the gyro and therefore impart a precessional force. A permanentmagnet isusedwhereaconstantcorrectionforceis required toact,as isthecaseforthecorrectionofapparentdrift.Thesuccessofthistypeofpermanentfieldwilldependontheoperating environment of the aircraft, and the drift rate of the location. DC coilsoffer theabilityofbeingabletobeswitchedonoroffthroughtheuseofcutoutswitches,limitswitches,mercuryswitchesorsimplyasameansoffasterectionofthegyro.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    49/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page41of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    50/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page42of56

    B2-13h Instruments Gyroscopic

    Erectionsystemsarenecessaryforerectingandmaintainingthegyrospinaxisinaverticalorhorizontalpositionrelativetotheearthssurface.Foranattitudeindicatortobeaccuratethegyrosspinaxismustbekeptvertical,thisisachievedbytheerectiondevicesdetectinganderectingthegyrotothelocalvertical.Duetotheconstructionoferectiondevices,theywillbe

    displacedwhenevertheaircraftchangesairspeedoraltersdirection.Unless provision ismade to counter act the acceleration and turning forces, the erectiondeviceswillprecessthegyroaxistoafalseverticalandindoingsowillpresentanincorrect

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    51/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page43of56

    B2-13h Instruments Gyroscopic

    indicationoftheaircraftsattitude.Theimportanceoferectionsystemsandtheircorrectionmethodsmustbeclearlyunderstood.

    Erection Errors

    The erectionerrors caused byacceleration deceleration and turning forces actingon theconducting medium in the electrical leveling switches, or pendulous vanes used in themechanicalerectionsystemscanbecompensatedforbyusingthecharacteristicsofrigidityandprecessiontocorrecttheerrors.

    Erection Error Correction

    Tocorrectfortheerectionerrorsencounteredduringaccelerationordecelerationandturningforces,acorrecting torque isappliedto theoutergimbal.Thisresults inprecessionoftheinnergimbaltocounteractthefalseverticalerror.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    52/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page44of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    53/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page45of56

    B2-13h Instruments Gyroscopic

    Caging

    Thegyrocanbecagedmanuallybyaleverandcammechanismtoproviderapiderection.When the instrument is not getting sufficient power for normal operation, an "OFF" flagappearsintheupperrightfaceoftheinstrument.

    Theinstrumentpermits360ofrotationaboutthepitchandbankaxeswithouttumblingthegyro.Theexpandedmotionofthehorizonbarprovidessensitivepitchindicationsnearthelevelflightposition.

    Whentheaircraftexceedsthemaximumof27inpitchupordown,thehorizonbarisheldinextremepositionandthespherebecomesthenewreference.Acontinuedincreaseofclimbordiveangleapproachingtheverticalattitudeisindicatedbygraduationsonthesphere.

    When the aircraftnears vertical, the sphere begins torotate 180.Assoonasthe aircraftdeparts from the vertical, the instrument again indicates the attitude of the aircraft. Thismomentary rotation of the sphere is known as controlled precession and should not beconfusedwithgyrotumbling.Theattitudeoftheaircraftabouttherollaxisisshownbythe

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    54/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page46of56

    B2-13h Instruments Gyroscopic

    anglebetweenthehorizonbarandtheminiatureaircraft,andalsobythebankindexrelativetothedegreemarkingonthebezelmask(faceplate).

    Errors

    Followingrecoveryfromunusualattitudes,displacementofthehorizonbarinexcessof5inpitchand/orbankmayresult.Oncetheinstrumentsensesgravitationalforces,theerectionmechanismwillimmediatelybegintocorrecttheprecessionerrorsatarateof3to6persecond. Inanormal turn,centrifugal forceacting on the erectionmechanismwill producenormalprecessionerrorsinpitchand/orbankupto5onreturntostraight-and-levelflight.Accelerationordecelerationwillalsoresultinprecessionerrorsinproportiontothedurationandmagnitudeofthespeedchange.Followingacceleration,theaircraftpitchattitudewillbelowerthantheinstrumentindication;followingdeceleration,theaircraftattitudewillbehigherthanthepitchindicationuntiltheerectionmechanismrealignsthegyro.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    55/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page47of56

    B2-13h Instruments Gyroscopic

    Aircraft Gyro Vacuum Systems

    Aircraftgyroinstrumentscanbepoweredbyvacuum(air)orelectricity.ElectricgyroscanrunoffACorDCpower,dependinguponwhattheyweredesignedfor.

    Airdrivengyroscanrunonpositivepressure,orvacuumpressure.Airpressureisprovidedbyanenginedrivenvacuumpump,andthevacuum(morepredominantly)isthenplumbedthroughthegyroinstrumentstorunupthegyrorotors.Invacuumgyrosystemsthefiltersarevery important items as any contamination entering the gyro will dramatically shorten itsserviceablelife.Filtersmustberegularlyserviced

    Aircraftuseaventurisystemwhentheydonothavethefacilityforanenginedrivenvacuumpumptopowertheirairdrivengyros.Theventuritubeisanopenendedmetaltubetaperingtowardsthecentreorthroat.It isfittedtothefuselageormainplanewiththeinletendinlinewiththedirectionofflight,andusuallylocatedinthepropwasharea.

    Inflight,theairisforcedintotheinletendofthetubeandacceleratesthroughthenarrowingsectionorthroatofthetubetoahighervelocity.Thisincreaseinvelocityproducesalowerpressureatthethroatwhichisconnectedthroughtubingtoasuctionreliefvalveandthentothecaseofthegyroinstruments.Thecaseofthegyroisalsoconnectedthroughafilterbacktoatmosphere.As the pressure in the throat of the venturi is lower thanatmosphere, theatmospherecausesaflowofairorsuctionthroughtheinstrumentstotheventurithroatandback toatmosphere as the air leaves the venturi.Venturi tubesasa vacuum source arenormally confined to early light aircraftand some of the later types of simple home builtaircraft.Theventuriisextremelyinefficientandlimitedinitscapacitytodriveinstruments.

    Venturitubesareratedbytheamountofvacuumtheywillproduceat120Mphor104Kts.Thetwo-inch/50mmventuriisusedtoproducetwoinchesofmercurysuctiontodriveoneturn and bank indicator, while the larger four-inch tubesare used for the directional andattitudegyros.Onedesignofthelargertubesiscalledthesuper-venturioreight-inchventuri.Thisventurihasanauxiliaryventuriinitsthroatandiscapableofmoresuctionforthesame

    speed.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    56/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page48of56

    B2-13h Instruments Gyroscopic

    Problems

    Themostcommonproblemwithaventuriisfrom:

    beingstruck

    thetubeassemblybeingdamaged

    beingblockedbyaforeignobject.

    Alwaysmake sure that the tubeand fittingsare clean, free fromobstructionsandhaveagoodphysicalappearance.

    Withtheintroductionofnewaircraft,theaircraftsystemsandinstrumentationbecamemorecomplex.Higherspeedsandincreasedaltituderequiredamoresophisticatedvacuumsupplysource.Themajorproblemwiththeventurisystemistheformationoficeinthethroatandotherdamagebeingsustainedbythetubeassemblystickingoutintheairflow.Thevacuumpoweredgyroscopicflightinstrumentsfittedtothemanytypesofaircraftvaryinthedemandplaced on the vacuum system. The two main types of positive displacement, vane type

    vacuumpumpswhicharedrivenfromtheengineaccessorydrivesare:

    wettype

    drytype

    andareclassifiedaccordingtotheirconstruction.

    Wet Pumps

    Theearliervacuumpumpswerenearlyallofthesteelvanetypewhichwerelubricatedfromtheenginelowpressureoilsystem.Thisoilhasaone-waypassagethroughthepumpandislostwiththedischargeairoverboard,viatheventtube.Insomedesignsthisoilisreturnedto

    theenginecrankcasebyseparatingtheoilfromthedischargeairinanoilseparatorbeforetheairisallowedtoentertheatmospherewhichpreventstheoilcausingstreaksalongthesideofthefuselage.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    57/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page49of56

    B2-13h Instruments Gyroscopic

    Themodern pumpsare dry; that is, theyhave theirwearingpartsmadeofTeflon and orcarbon.Thepumprotorsaremadeofafibrematerialandtherotorbladesareofcarbon.Thepump housing is high grade cast iron finely machined and in some cases the surface isTefloncoated.Thesepumpscannormallybedriveninonlyonedirectionwhichisindicated

    byanarrowonthehousingTopreventmechanicaldamagetotheengineaccessorydrivesystem,thepumpshaveaweak-linksheardrivedesignedtofailshouldthepumpsufferaninternalfault.

    Problems with Vacuum Pumps

    Look for a show of oil or evidence of vibration. The vacuum pump should be smooth inoperationandanerraticoutputischaracterisedbyadifficulttoadjustsuctionreliefvalve.Thevacuumpumpshearlinkmustbecheckedforsignsofstressandthepumpmustappeartobeingoodorder.

    Anaircraftvacuumsourcecanbeeitherfromavacuumpumpwhichisenginedrivenorfrom

    aventuriwhichislocatedinthepropwash,externaltotheaircraft.Thevacuumsupplyinbothcasesisasourceoflowpressure.

    Anaircraftvacuumsourcecanbeeitherfromavacuumpumpwhichisenginedrivenorfromaventuriwhichislocatedinthepropwash,externaltotheaircraft.Thevacuumsupplyinbothcasesisasourceoflowpressure.

    Pressurisedairportedovercupsingyrorotor,orvacuumairsuckedacrosscups.Spinsgyrorotor up to speed and is also used for gyro erection system reference gyro to earth toeliminate transport rate.Onlyever lowpressureair used.Only likely tobe incorporated inlightaircraft.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    58/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page50of56

    B2-13h Instruments Gyroscopic

    Athighaltitudesvacuum-drivengyroscopicinstrumentssufferfromtheeffectsofadecreaseinvacuum due to the loweratmosphericpressure; the resulting reduction in rotor speedsaffecting gyroscopic stability. Other disadvantages of vacuumoperation areweight due topipelines, special arrangements to control the vacuum in pressurized cabin aircraft, and,

    sinceairmustpassthroughbearings,thepossibilityofcontaminationbycorrosionanddirtparticles

    Vacuum-Driven Gyro Horizon

    The rotor ispivoted inball bearingswithina case forming the inner ring,which in turn ispivotedinarectangular-shapedouterring.

    Intherearendcoveroftheinstrumentcase,aconnectionisprovidedforthecouplingofthevacuumsupply.Withthevacuumsystem inoperation, thesurroundingatmosphereentersthe filteredinletandpasses throughthechannelsto the jets.Theair issuingfromthe jetsimpinges on the rotor buckets, thus imparting even driving forces to spin the rotor atapproximately 15,000 RPM. After spinning the rotor, the air passes through a pendulous

    vaneunitattachedtotheundersideoftherotorcasing,andisfinallydrawnoffbythevacuumsource.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    59/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page51of56

    B2-13h Instruments Gyroscopic

    Disadvantages of air driven gyro systems

    Dirtanddustareamajorproblemwithairdriveninstrumentsandthereforeinstrumentfiltersandsystemfiltersmustbechecked,cleanedorchangedatregularintervals.

    Whencigarettesmokingwasallowedonaircraft,theresiduefromthesmokewasamajorproblemforgyroscopicairdriveninstruments.

    Enginedrivenvacuumpumpsmustberegularlycheckedforcorrectoperation.

    Incorporationofmechanicalpumpsaddsanadditionalpieceofequipmentrequiringservicing,inadditiontotheaircraftsalternator/generator.

    Toovercomethedisadvantagesoftheairdrivengyroscopicinstrumentsinhighperformanceaircraft,gyroscopicinstrumentsweredesignedforoperationonelectricalpowerderivedfromthe aircraft power supplies. This power is generally 115V 400Hz three phase alternatingcurrentassuppliedfromtheaircraftalternatorsorinvertersor28Vdirectcurrent,thelatterbeing requiredfor the operation ofsome turnand bank indicators.The alternatingcurrent

    applicationhasbeenusedforthelatertypesofturnandbank,gyrohorizonindicatorsandtheremotely located attitudeand directional gyros associatedwith flight control systems andremote-indicatingcompasssystems.

    Electricalgyrosonlyneedasmallamountofpowerfromtheexistingaircraftpowersupplyhenceanadditionalenginedrivencomponent(thevacuumpump)isnolongernecessary.

    ACelectricallypoweredgyroscanrunmuchfasterthanairdrivengyrossoprovideamorerigidgyroscopicreference.

    Electricallydrivengyrosincorporatemoresolidstatecomponentsandthereforerequirelessmaintenanceeffortcomparedtopneumaticallydrivengyros.

    Aparticularlimitationofairdrivengyrosovermostelectricallydrivengyrosis that thegyro

    should never beremoved fromtheaircraftuntilat least30minuteshavepassed from thetime the vacuum source was disconnected, or rotor has ceased spinning, as the inertiacontainedwithintherotor,andtherelativeabsenceoffrictionwithinthebearings,mayallowtherotortospinforuptothislengthoftime.Electricallydrivengyrosoftenincorporateaformofelectrical ordynamicbrakingwhichwill slow the gyro rotorvery quicklyoncepower isremoved.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    60/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page52of56

    B2-13h Instruments Gyroscopic

    Thedirectcurrentelectricalgyrousesamethodofconstructionwheretherotorisactuallythearmaturewindingandthestatoristhepermanentmagnet.Thisprincipleofconstructionallowsthegreatermasscontainingthearmaturewindingtospinastherotorgivinggreaterrigidity.

    Thisdirectcurrentapplicationutilisesthegyrorotorwhichcontainsthearmaturewindingofasmall permanentmagnet motor. This is supplied with 28 voltsDC via two spring loadedbrushescontactingacommutator,whichismountedontherotorarmatureshaft.Thestatorisatwo-polepermanentmagnetandformspartofthegimbalframe.Inthisapplication(TurnandSlipindicator)therotorspeediskeptatapproximately4,200RPM.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    61/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page53of56

    B2-13h Instruments Gyroscopic

    AC Drive Methods and Motor Types

    AC gyros are usually poweredby a three phase115 volt 400Hz squirrel cage inductionmotor, consistingofa rotor andastator.Anormal inductionmotorhas the rotorrevolvinginsidethestator.Inthisinstancethemotorhasbeenredesignedsothattherotorrotateson

    theoutsideofthestator,thisincreasesthemassoftherotorinordertoprovidetherequiredinertia.

    The115voltsACissuppliedtothestatoranda rotatingmagneticfieldisestablishedinthestator.Thisrotatingfieldcutsthebarsinthesquirrelcagerotorandinducesacurrent,theeffectofwhichproducesamagneticfieldaroundthebarswhichcombinewiththe statorsfieldcausingtherotortospinatapproximately22,500RPM.

    AC Drive Methods and Motor Types

    AC gyros are usually poweredby a three phase115 volt 400Hz squirrel cage inductionmotor, consistingofa rotor andastator.Anormal inductionmotorhas the rotorrevolvinginsidethestator.Inthisinstancethemotorhasbeenredesignedsothattherotorrotatesontheoutsideofthestator,thisincreasesthemassoftherotorinordertoprovidetherequiredinertia.

    The115voltsACissuppliedtothestatoranda rotatingmagneticfieldisestablishedinthestator.Thisrotatingfieldcutsthebarsinthesquirrelcagerotorandinducesacurrent,theeffectofwhichproducesamagneticfieldaroundthebarswhichcombinewiththe statorsfieldcausingtherotortospinatapproximately22,500RPM.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    62/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page54of56

    B2-13h Instruments Gyroscopic

    Electric Gyro Horizon

    Madeupofthesamebasicelementsasthevacuum-driventype,withtheexceptionthattheverticalgyroscope isa3-phasesquirrel-cage inductionmotor (consistingofa rotoranda

    stator).One of the essential requirements of any gyroscope is to have the mass of the rotorconcentrated as near to the periphery as possible, thus ensuring maximum inertia. Thispresents nodifficulty where solidmetal rotors are concerned, but when adopting electricmotors asgyroscopes some rearrangement of theirbasicdesign isnecessary inorder toachieve the desiredeffect. An induction motor normally has its rotor revolving inside thestator,buttomakeonesmallenoughtobeaccommodatedwithinthespaceavailablewouldmeantoosmallarotormassandinertia.However,bydesigningtherotoranditsbearingssothatitrotatesontheoutsideofthestator,thenforthesamerequiredsizeofmotorthemassoftherotorisconcentratedfurtherfromthecentre,sothattheradiusofgyrationandinertiaareincreased.Thisisthemethodadoptednotonlyingyrohorizonsbutinallinstrumentsandsystemsemployingelectricgyroscopes.

    Themotorassemblyiscarriedinahousingwhichformstheinnergimbalringsupportedinbearingsintheoutergimbalring,whichisinturnsupportedonabearingpivotinthefrontcoverglassandintherearcasting.

    The115V400Hz3-phasesupplyisfedtothegyrostatorviasliprings,brushesandfingercontactassemblies.Theinstrumentemploysatorque-motorerectionsystem,theoperationofwhichisdescribedinPallettAircraftInstrumentsonpage136,butwillnotbecoveredhere.

    Whenpowerisswitchedonarotatingmagneticfieldissetupinthegyrostatorwhichcutsthebarsformingthesquirrel-cageintherotor,andinducesacurrentinthem.Theeffectofthis current is toproducemagnetic fields around the barswhich interactwith the statorsrotatingfieldcausingtherotortoturnataspeedofapproximately20,00023,000rev./min.

    FailureofthepowersupplyisindicatedbyaflagmarkedOFFandactuatedbyasolenoid.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    63/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.1GyroscopesIssueB:January2008 Revision2 Page55of56

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    64/104

    Part 66 SubjectAA Form TO-19

    B2-13.8.2.1GyroscopesIssue on Page56of56

    B2-13h Instruments Gyroscopic

    B:January2008 Revisi 2

    Thispageintentionallyleftblank

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    65/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page1of16

    B2-13h Instruments Gyroscopic

    TOPIC 13.8.2.2.1: ARTIFICAL HORIZONS

    Inordertomeasureamovement,youneedareference,andinthisinstancethegyrobecomesthereferenceorstablepoint.Theamountofmovementordeflectionsmadebytheaircraftaroundthisstablepointaremeasuredanddisplayedonthecockpitinstruments.

    GyroSpinaxisisvertical,soplaneofspinishorizontal.Thispermitsrigidityinlateralandlongitudinalaxisandthedisplacementofthegimbalsfromthestablereferenceiswhatprovidestherollandpitchreadout.

    Thegyroisatiedgyroreferencedtotheearthsgravitytomaintaintheverticalspinaxisshouldimperfectionsorerrorscausethegyrotodrift.Theerectionsystemwillre-alignthegyrowithrespecttogravity.

    Mostgyrohorizonshaveapulltocageknobtore-alignthegyroinstraightandlevelflightifitisnotedtobedriftingoff,orifittumblesorsuffersgimballock.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    66/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page2of16

    B2-13h Instruments Gyroscopic

    This form of gyro horizon has a fixed back plate or sky plate and the aircraft symbol isattachedtothegimbalsandmoveswithrespecttothebackplatetoindicatepitchandyawattitudes.Thiswasanoldmethodofdisplayingthisinformationandprobablynotveryoftenseeninmoderntimes.

    Thepitchrestrictionat85istoavoidgimballock.Thisisnotaconcernintherollaxis.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    67/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page3of16

    B2-13h Instruments Gyroscopic

    Thispictureisamoreexactillustrationofthewaythegyrohorizonactuallyprovidesadisplayofpitchandroll.Thedialisfixedandonceuponatimewouldonlyhavehadahorizonlinedrawnacrossthemiddle.Inmorerecenttimegyrohorizonshavebeencolouredwithalight

    colourabove,typicallyblue,torepresenttheskyandadarkercolourbelowtorepresenttheground.

    Whenthehorizonpointer isupand intheblueitmeans theaircraftis climbing,andwhendown in thegreen it is diving. Thehorizonbar is restricted in pitchmovement up to 85otherwisegimballockwilloccur,whereastherollingactionisunrestricted.

    Thedisplaycanthereforeindicateunrestrictedfullbarrellrollsbutifaloopwereperformedthe indicatorwouldshowaclimbup to85 (when the aircraftnose isalmost vertical, notwhenitsatthetopoftheloop)theassemblywouldthenroll180.Thehorizonpointerwouldindicatestraightandlevelinvertedflightcorrespondingwiththeaircraftbeingupsidedownatthetopoftheloop.Astheaircraftcomesdowntocompletetheloopthehorizonbaragainshowstheaircraftheadingforthegrounduntilit ispointingalmoststraightat theearth(85

    nosedown)whenitwillagainspin180.Thismeanstheaircraftsymbolwillcontinuepointingattheearth(indicatingadive).Astheaircraftrecoverstostraightandlevelflightagainatthebottomoftheloopthewholeassemblywillbebackinitsoriginalattitudewiththehorizonbaragainshowingstraightandlevelflight.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    68/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page4of16

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    69/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page5of16

    B2-13h Instruments Gyroscopic

    With thevacuumsystem inoperation,anegativepressure iscreatedso that thecabinairentersthefilteredinletandpassesthroughthechannelstothejetswhicharedirectedontothebucketscarvedintothegyrosrotor.Theairfromthejetshitstherotorbuckets,evenlydriving the rotoratapproximately15,000 rev./min. Afterspinning the rotor, the air passes

    throughapendulousvaneunit attachedtothe underside of the rotorcasing and isfinallydrawntothevacuumsource.Theairisexhaustedthroughthependulousvaneunit,whichappliesacorrectionalorprecessionforcetkeepthegyroperpendiculartotheearthssurface.

    Thisisachievedthroughthemagicofprecessionandasthegyrotiltsofftheverticalanairportisuncoveredpermittingagreaterflowofairfromthatportasitexitsfromthegyrosrotor.Theadditionalairflowexertsaforceonthegyrowhichisfelt90inthedirectionofrotationandwillcausethegyrotoprecessbacktothevertical.

    Operation

    Theoperationoftheinstrumentisbasicallycontrolledbytheprincipleofgyroscopicinertiaorrigidity. Thegyrospinaxis ismaintained ina verticalposition relativetotheearth.Astheaircraft rollsand pitches in flight, the indication isgivenona two colour dial, the top halfrepresentingtheskyandthebottomhalfwhichisdarker,representstheground.

    Thehorizontalgyrospinsabouttheverticalaxisandthereforeitcansenserotationabouttherollandpitchattitudeoftheaircraft.

    Disadvantages of air driven gyro systems

    Dirtanddustareamajorproblemwithairdriveninstrumentsandthereforeinstrumentfiltersandsystemfiltersmustbechecked,cleanedorchangedatregularintervals.

    Whencigarettesmokingwasallowedonaircraft,theresiduefromthesmokewasamajorproblemforgyroscopicairdriveninstruments.

    Enginedrivenvacuumpumpsmustberegularlycheckedforcorrectoperation.

    Incorporationofmechanicalpumpsaddsanadditionalpieceofequipmentrequiringservicing,inadditiontotheaircraftsalternator/generator.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    70/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page6of16

    B2-13h Instruments Gyroscopic

    Toovercomethedisadvantagesoftheairdrivengyroscopicinstrumentsinhighperformanceaircraft,gyroscopicinstrumentsweredesignedforoperationonelectricalpowerderivedfromthe aircraft power supplies. This power is generally 115V 400Hz three phase alternatingcurrentassuppliedfromtheaircraftalternatorsorinvertersor28Vdirectcurrent,thelatter

    beingrequiredfor the operation ofsome turnand bank indicators.The alternatingcurrentapplicationhasbeenusedforthelatertypesofturnandbank,gyrohorizonindicatorsandtheremotely located attitudeand directional gyros associatedwith flight control systems andremote-indicatingcompasssystems.

    Electricalgyrosonlyneedasmallamountofpowerfromtheexistingaircraftpowersupplyhenceanadditionalenginedrivencomponent(thevacuumpump)isnolongernecessary.

    ACelectricallypoweredgyroscanrunmuchfasterthanairdrivengyrossoprovideamorerigidgyroscopicreference.

    Electricallydrivengyrosincorporatemoresolidstatecomponentsandthereforerequirelessmaintenanceeffortcomparedtopneumaticallydrivengyros.

    Aparticularlimitationofairdrivengyrosovermostelectricallydrivengyrosis that thegyroshould never beremoved fromtheaircraftuntilat least30minuteshavepassed fromthetime the vacuum source was disconnected, or rotor has ceased spinning, as the inertiacontainedwithintherotor,andtherelativeabsenceoffrictionwithinthebearings,mayallowtherotortospinforuptothislengthoftime.Electricallydrivengyrosoftenincorporateaformofelectrical ordynamic brakingwhichwill slow the gyro rotorvery quicklyoncepower isremoved.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    71/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page7of16

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    72/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page8of16

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    73/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page9of16

    B2-13h Instruments Gyroscopic

    The need for integrating the functions and indications of certain flight and navigationinstrumentsresultedinthemainfromtheincreasingnumberofspecialisedradioaidslinkingaircraftwithgroundstations.Theseweredevelopedtomeetthedemandsofsafeen-route

    navigationandtocopewithincreasingtrafficcongestionintheairspacearoundtheworldsmajorairports.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    74/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page10of16

    B2-13h Instruments Gyroscopic

    The required information isprocessed by black boxes which can bestowed inelectricalcompartments and radio racks, but in order that the necessary precision flying may beexecuted,informationmuststillbepresentedtothepilot.Thisrequiresmoreinstrumentsandmoreinstrumentscouldmeanmorepanelspace.Themethodofeasingtheproblemwasto

    combinerelatedinstrumentsinthesamecaseandtocompoundtheirindicationssothatalargeproportionofintermediatementalprocessingonthepartofthepilotcouldbebypassedandtheindicationsmoreeasilyassimilated.

    Duringthatphaseofaflightinvolvingtheapproachtoanairportrunway,itisessentialforapilottoknow,amongotherthings,thatheismaintainingthecorrectapproachattitude.Suchinformationcan beobtained from the gyrohorizon and fromaspecial ILS indicatorwhichrespondstoverticalandhorizontalbeamsignalsradiatedbythetransmittersofanInstrumentLandingSystemlocatedattheairport.ItwasthereforealogicalstepinthedevelopmentofintegrationtechniquesinwhataretermedFlightDirectorSystems,toincludetheinformationfromboththegyrohorizonandILSindicator.

    Themethodsadoptedfortheintegrationofsuchinformation,andthemannerinwhichitis

    presentedvarybetweensystems.Acompletesystemnormallycomprisestwoindicators:

    -flightdirector,attitudeflightdirectororanapproachhorizon

    -coursedeviationindicator(CDI)orahorizontalsituationindicator(HSI).

    Theflightdirectorindicatorhastheappearanceofaconventionalgyrohorizon,butunlikethisinstrument thepitchandroll indicatingelementsareelectricallycontrolled froma remotelylocatedverticalgyrounit.

    TheapproachattitudeofanaircraftwithrespecttoitsILSsignalsisindicatedbyindependentpointersmonitoredbytherelevantILSreceiverchannels.Displacementoftheaircrafttothe

    leftorrightofthelocaliserbeamisindicatedbydeflectionsofthelocaliserpointer.Glideslopepointerfunctionsinsimilarfashion.

    AttitudeDirectorsarebasicallyArtificialHorizonswithcommandsteeringbarsincorporated.Theinstrumentprovidesthepilotwithanindicationofpitchandroll,butalsohascommandbarswhichcanbeusedtoguidethepilotontoaselectedcourse,ortoaselectedaltitude.Thecommandbarsappearandthepilotfliestheaircrafttoaligntheaircraftsymbolwiththe

    commandbars.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    75/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page11of16

    B2-13h Instruments Gyroscopic

    Flight Director Indicator FDI)

    Thisinstrumentmaybeknownasanattitudedirectorindicator(ADI)oranattitudereferenceindicator(ARI).Theyallhaveslightlydifferentdisplays,buttheyalloperateinthesameway.Thebasic functionof theFDI is tosupply the pilotwith theaircraftsattitudeandsteeringinformation. This represents a view from behind the aircraft looking forward. Steeringcommandandaircraftattitudearedisplayedaroundafixedaircraftsymbol.

    Attitude Sphere

    Thesphereisfreetomove360inrollanddependingontype,90or360inpitch.Gimballocklimitationminimisedoreliminated

    Bank Pointer

    Thisdisplays thebankangleof theaircraft,andisreadagainstascaleon thecaseof theinstrument.

    Command Bars

    Therearetwocommandbars,oneforpitch,andoneforroll.Theyarecalledcommandbarsbecausetheycommandthepilottoflytheaircraftsymboltowardsthecommandbars.The

    commands are supplied from the flight director computer, which can receive referencesignalsfromarangeofnavigationaidreceiversorINS

    Glideslope Pointer

    This is locatedonthe left sideof the FDI and isusedwhen the aircrafthascapturedtherunwayglideslopebeams,whenlanding.Theaircraftsverticalpositionwithinthebeamsisshownbythepointer.Whenthepointerisonthecentreline,theaircraftisinthecentreoftheglideslope.Whenthepointerisonthedotclosesttothecentreline,thepitchcommandbarcomesintoview,andthepilotfliestowardsit.Figure3.13showstheglideslopepointer.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    76/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page12of16

    B2-13h Instruments Gyroscopic

    Localiser Deviation Indicator

    Localiser pointershows theaircrafts positionin relationto the localiser beams.When thepointerisinthecentreofthescaletheaircraftispositionedinthecentreofthebeams.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    77/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page13of16

    B2-13h Instruments Gyroscopic

    Theflightdirectorindicatorhastheappearanceofaconventionalgyrohorizon,butunlikethisinstrument thepitchandroll indicatingelementsareelectricallycontrolled froma remotelylocatedverticalgyrounit.

    Electricalinterconnectionoftheflightdirectorindicatorcomponentsprimarilyconcernedwithpitch and roll attitude information is shown on the slide. Whenever a change of aircraftattitudeoccurs,signalsflowfrompitchandrollsynchrostothecorrespondingsynchroswithintheindicator.Errorsignalsarethereforeinducedintherotorsandafteramplificationarefedto the servomotors, whichrotate toposition the pitchbar andhorizondisc (or Sphere, or

    cylinder)toindicatethechangingattitudeoftheaircraft.Atthesametime,theservomotorsdrivethesynchrorotorstothenullposition.

    ThesecondcircuitshowstheinterconnectionoftheglideslopeandlocaliserpointerwiththeILS.DuringanILSapproachthereceiveronboardtheaircraftdetectsthesignalsbeamedfromgroundtransmitters inverticalandhorizontalplanes. If theaircraft isabove theglidepath,signalsarefedtothemetercontrollingtheglideslopepointercausingittobedeflecteddownwardsagainstthescale,thusdirectingthepilottobringtheaircraftdownontotheglidepath.Anupwarddeflectionofthepointerindicatesflightbelowtheglidepathandthereforedirectsthattheaircraftbebroughtuptotheglidepath.Thepointerisalsoreferencedagainstthe pitchbar to indicateany pitchcorrection required tocapture and hold the glidepath.Whenthishasbeenaccomplished,theglideslopepointerandpitchbararematchedatthehorizontalcentreposition.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    78/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page14of16

    B2-13h Instruments Gyroscopic

    If,duringtheapproach,theaircraftistotheleftofthelocaliserbeamandrunwaycentre-line,thelocaliserpointerisdeflectedtotherightdirectingthattheaircraftbebankedtotheright.Flighttotherightofthelocalizerbeamcausespointerdeflectiontotheleft,directingthattheaircraftbebankedtotheleft.Wheneitherofthesedirectionshasbeensatisfied,thepointeris

    positionedverticallythroughthecentrepositionofthehorizondisc.

    Flight director indicator houses a number of servo/synchro devices. Aircraft pitch & rollinformation from twin gyro platform positions horizon disc & pitch bar. Additionalservo/synchrodevicestodrivecommandbarsdrivenbysignalsfromflightdirectorcomputer.Typical remote indicator housing servo/synchro systems to repeat informationsensed/processedbyaremoteequipmentrackmountedblackbox.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    79/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssueB:January2008 Revision2 Page15of16

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    80/104

    Part 66 SubjectAA Form TO-19

    B2-13.8.2.2.1ArtificialHorizonsIssue on Page16of16

    B2-13h Instruments Gyroscopic

    B:January2008 Revisi 2

    Thispageintentionallyleftblank

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    81/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.2SlipIndicatorsIssueB:January2008 Revision2 Page1of14

    B2-13h Instruments Gyroscopic

    TOPIC 13.8.2.2.2: TURN AND SLIP INDICTORS

    Turn Indicators

    Theturnandbankindicatororturnandslipindicatorasitismostoftencalled,isoneofthefirst instruments developed for instrument flying. The instrument actually combinesa turnindicatorandaslipindicatorintheoneinstrument.Inearlydaysofflyingtheturn-and-bank,whenusedinconjunctionwiththeaircraftcompassmadeavaluablecontributiontotheartofIFRflying.Itwasthusconsideredtheprimaryblindflyinginstrument.Withdevelopmentsinaircraft instrument technology the turn-and-bank has been replaced as the primary IFRinstrumentbytheAH,althoughinsomelightaircrafttheturn-and-bankisstillconsideredaprimary flight instrument. In larger aircraft the turn-and-bank has become a secondaryinstrumentorisnotused.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    82/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.2SlipIndicatorsIssueB:January2008 Revision2 Page2of14

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    83/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.2SlipIndicatorsIssueB:January2008 Revision2 Page3of14

    B2-13h Instruments Gyroscopic

    Principle of Operation

    The rategyros spinaxis ishorizontaland correspondswith the aircrafts lateral axis, thatmeanstheplaneofspinisthroughthelongitudinalaxisoftheaircraft.Therategyroonlyhas

    onegimbalmountedwithinthe frameorcaseofthe instrumentsoit isonlypermittedonedegreeoffreedomwhichis intilt.Thepivotpoint for thegimbal isforeandaftofthegyrorotorsoitispivotedinthelongitudinalaxisoftheaircraft.

    Thegyrosensesmovementabouttheyawingaxisoftheaircraft.ItiseffectivelymountedlikeaDG, butdoesnot havethe freedomofaDG.When theaircraftyaws the gyrowants toremaininitscurrentattitudeandalignment,butcannotbecausethereisnogimbaltopermitveer.Becausethegyrocannotremainpointinginthesamedirectiontheturningmotionoftheaircrafthasthesameeffectasifsomeoneappliedaprecessiveforcetothefrontandrearofthegyrorotor,tryingtochangeitsheading.Thisforceisfelt90indirectionofrotation,sowill precess the gyro so itwill tilt over. If the gyrowasnot restrainedbysprings itwouldcontinuetoprecessinthetiltaxiswhileevertheyawingmotionwasfelt.Becausethegyroisheldinplacebysprings,whileevertheyawingmotion(orrateofturn)remainsconstantthe

    gyro precession force will remain constant against spring pressure providing a constantindicationoftherateofturn.Iftherateofturnisincreasedtheprecessionforceincreasestiltingthegyrofurtheragainstspringpressure.Whentheturningmotionendstheprecessionforceisremovedsothegyrowillreturntotheoriginalattitude,iespinningintheverticalplanecorrespondingwiththeaircraftslongitudinalaxis.

    Rotoraxisparalleltoaircraftslateralaxis

    Yawingmotionsensed&duetoprecessionrotortriestolieoveragainstspringpressure

    Lieoverangleproportionaltorateofturn&isopposed/restrictedbycalibratedspringtension

    2Minuteand4MinuteTurns

    Gyrodoesntbeginto layoveruntilaftertheturnhasbegun,iewhentheheadingbeginstochange.ThisstatementwillbereferredbacktowhencoveringTurnCoordinators.

    Spinaxisparalleltoaircraftlateralaxis

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    84/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.2SlipIndicatorsIssueB:January2008 Revision2 Page4of14

    B2-13h Instruments Gyroscopic

    Yawingmotionsensedrotortriestolieoveragainstspringpressureduetoprecession

    Lieoverangleproportionaltorateofturn

    Gyrolaysoverwhenheadingchanges

    Rateofprecession(lieoverangle)dependson:

    Rateatwhichheadingischanging

    Rigidityofrotor(rotorspeed)

    Rateofprecessiondependantuponspeedofgyrorotor(gyrorigidity)

    RateofTurnindicatorrotorspeedcritical:

    toofast&instrumentunderreads

    tooslow&instrumentoverreads

    Rateofturnindicatorsincorporaterotorspeedgovernortoensureaccuracyofindications

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    85/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.2SlipIndicatorsIssueB:January2008 Revision2 Page5of14

    B2-13h Instruments Gyroscopic

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    86/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.2SlipIndicatorsIssueB:January2008 Revision2 Page6of14

    B2-13h Instruments Gyroscopic

    The Mechanism of a Typical Direct-Current Operated Turn-and-Bank Indicator

    Directcurrentisfedtothebrushesandcommutatorviaaradiointerferencesuppressorandflexiblespringswhichpermitmovementoftheinnerring.

    The rotor speed is controlled by two identical symmetrically opposed centrifugal cut-outs.Each cut-out consists of a pair of platinum-tipped governor contacts, one fixed and one

    movable,whicharenormallyheldclosedbyagovernoradjustingspring.Eachcut-outhasaresistor across its contacts, which are in series with half of the rotor winding. When themaximum rotor speed is attained, centrifugal forceacting on the contacts overcomes thespringrestraintcausingthecontactstoopen.Thearmaturecurrentthereforepassesthroughtheresistors,thusbeingreducedandreducingtherotorspeed.Bothcut-outsoperateatthesamecriticalspeed.

    Angularmovementof thegimbalringistransmittedto thepointerthroughageartrain,anddampingisaccomplishedbyaneddy-currentdragsystemmountedattherearofthegyroassembly.Thesystemconsistsofadragcup,whichisrotatedbythegimbalring,betweenafieldmagnetandafieldring.

    Apower-failurewarningflagisactuatedbyastirruparmpivotedonthegimbalring.Whenthe

    rotor is stationary, the stirrup arm is drawn forward by the attraction between a magnetmounted on it and an extension (flux diverter) of the permanent-magnet stator. In thisconditiontheflag,whichisspring-loadedintheretractedposition,isdepressedbythestirruparm so that the OFF reading appears through an aperture in the dial. As rotor speedincreases, eddy currents are induced in the rotor rim by the stirrup magnet, and at apredeterminedspeed,reactionbetweenthemagnetandinducedcurrentcausesthestirruparmtoliftandtheOFFreadingtodisappearfromview.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    87/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.2SlipIndicatorsIssueB:January2008 Revision2 Page7of14

    B2-13h Instruments Gyroscopic

    Major Parts

    Rotorspeedandrigidityiscrucialforthisinstrumenttoindicateaccurately.Ifspeeddropsoff,egsclogged filter inanair driven system, the gyrowill slowdownandwill thenprecess

    furtherwithlessforceapplied(rememberfactorsthatcontributedtoamountofprecession,gyrorigidityandlevelofforceappliedtothegyro).Soaslowergyrowilloverread.Speedcontrolisreliableinelectricalinstrumentsbutinairdrivensystemsthepilotmustensurethevacuumgaugeisreadingcorrectly.Agaugereadinganincreasedvacuum(meaningnearly0psi)would indicate that the system filtersweredirtybecause the pump isevacuating thesystemduetothefactthataircannotcomeinthroughthefiltertoreplacetheairthepumpissuckingout.Thisindicationofagreatervacuum(almost0psia)meansthegyrorotorsofallthe air driven instrumentswouldbe running slower,and hence the turnand slip indicatorreadoutwouldbeinaccurate.LossofrigidityintheDGandAHwouldbecomeapparentduetothemdriftingoffmoreoften,buttheirreadoutswouldstillbereasonablereliable,whereastheturnandbankreadoutwouldbecompromised.Rotorspeediscrucialinaturnandbank.

    Noerectionmethodisincorporatedinaturnandbankbecauseitisphysicallypreventedfrom

    drifting off. It does have an earth rate correction in that the gimbals would be weightedappropriatetocounteracttheearthsrotation,butthisformofcorrectionisengineeredintotheturnandbankatthetimeofmanufacture.

    Limitations of the Turn and Slip Indicator

    TurnandSlip indicatorwill not respond toan aircraftbank, itwill only indicatea turn ifayawingmotionissensed.

  • 7/25/2019 B2-13h Instruments Gyroscopic SR

    88/104

    Part 66 Subject

    AA Form TO-19

    B2-13.8.2.2.2SlipIndicatorsIssueB:January2008 Revision2 Page8of14