b840 air power car

27
CHAPTER 1 INTRODUCTION One of the major problems most developing countries facing today is air  pollution and the major source of which is automobiles running on road. To reduce the world’s pollution problems there is no one optimum soluti on, but one thing is for sure; the automobile must clean up its act. Automobile factors like an increase in fossil fuel consumption eventually emissions of HC, NO x , and CO 2 will be increased in accordance with these factors. The huge number of vehicles in the developing countries will give a serious environmental load and therefore current technologies like engine control and catalyst should be transferred to developing countries to minimize automobile emissions. The CO 2 emission ratio during actual use is extremely large compared to other  process. Therefore; it would be very effective to develop high fuel economy and low fuel consumption from CO 2 emissio n point of view. Concerning resource availability there has been a strong warning indicating that petroleum resources may be depleted in the relative near future. Gasoline which has been the main source of fuel for the history of cars is  becomin g more and mo re ex pe nsive an d impr ac ti ca l, especia ll y from an envi ronmenta l stan dpoi nt. In the proc ess of burning gasoline, it produces carbon monoxide, Nitrogen oxides and unburned hydrocarbons which are the main pollutants and are responsible for bad effects of pollution. There comes need to think about alternatives such as Biodiesel and natural gas, Electric cars, Hybrid cars, Hydrogen fuel cells but, these alternative fuels also have some drawbacks which are discussed in detail in chapter 4 as comparative study. One possible alternative fuel is the compressed air. There are ongoing projects that are developing a new type of car that will run on compresse d air. In this seminar repo rt of AIR POWERED CARS , we will learn about the technolo gy behin d compressed air cars being developed and how these cars are best options providing most comprehensi ve answer to today’s urban pollution problems in simple economic and most inoffensive manner which makes car users to replace their present cars running on gasoline in the coming years as these cars are safe to use safe to users and are also environment friendly. 1

Upload: csayali

Post on 09-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 1/27

CHAPTER 1

INTRODUCTION

One of the major problems most developing countries facing today is air 

 pollution and the major source of which is automobiles running on road. To reduce

the world’s pollution problems there is no one optimum solution, but one thing is for 

sure; the automobile must clean up its act. Automobile factors like an increase in

fossil fuel consumption eventually emissions of HC, NOx, and CO2 will be increased

in accordance with these factors. The huge number of vehicles in the developing

countries will give a serious environmental load and therefore current technologies

like engine control and catalyst should be transferred to developing countries to

minimize automobile emissions.

The CO2 emission ratio during actual use is extremely large compared to other 

 process. Therefore; it would be very effective to develop high fuel economy and low

fuel consumption from CO2 emission point of view. Concerning resource availability

there has been a strong warning indicating that petroleum resources may be depleted

in the relative near future.

Gasoline which has been the main source of fuel for the history of cars is  becoming more and more expensive and impractical, especially from an

environmental standpoint. In the process of burning gasoline, it produces carbon

monoxide, Nitrogen oxides and unburned hydrocarbons which are the main pollutants

and are responsible for bad effects of pollution.

There comes need to think about alternatives such as Biodiesel and natural

gas, Electric cars, Hybrid cars, Hydrogen fuel cells but, these alternative fuels also

have some drawbacks which are discussed in detail in chapter 4 as comparative study.

One possible alternative fuel is the compressed air. There are ongoing projects

that are developing a new type of car that will run on compressed air. In this seminar 

report of  AIR POWERED CARS, we will learn about the technology behind

compressed air cars being developed and how these cars are best options providing

most comprehensive answer to today’s urban pollution problems in simple economic

and most inoffensive manner which makes car users to replace their present cars

running on gasoline in the coming years as these cars are safe to use safe to users and

are also environment friendly.

1

Page 2: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 2/27

CHAPTER 2

HISTORICAL DEVELOPMENT

One of the versions of an air-powered car is being developed by Abe

Hertzberg and his team of researchers at the University of Washington using the

concept of a steam engine, except there is no combustion. The Washington

researchers use liquid nitrogen as the propellant for their LN2000 prototype air car.

The researchers decided to use nitrogen because nitrogen makes up about 78 percent

of the Earth's atmosphere.

The liquid nitrogen, stored at -320 degrees Fahrenheit (-196 degrees Celsius),

is vaporized by the heat exchanger. The heat exchanger is the heart of the LN2000's

cryogenic engine, which gets its name from the extremely cold temperature at whichthe liquid nitrogen is stored. Air moving around the vehicle is used to heat the liquid

nitrogen to a boil. Once the liquid nitrogen boils, it expands to about 700 times the

volume of its liquid form. This highly pressurized gas is then fed to the expander,

where the force of the nitrogen gas is converted into mechanical power by pushing on

the engine's pistons. The only exhaust is nitrogen, and since nitrogen is a major part of 

the atmosphere, the car gives off little pollution.

Some of the leftover heat in the engine's exhaust is cycled back through the

engine to the economizer, which preheats the nitrogen before it enters the heat

exchanger, increasing efficiency. Two fans at the rear of the vehicle draw in air 

through the heat exchanger to enhance the transfer of heat to the liquid nitrogen.

The Washington researchers have developed a crude prototype of their car,

using a converted 1984 Grumman-Olson Kubvan mail truck. The truck has a radial

five-cylinder that produces 15 horsepower with the liquid nitrogen fuel. It also

features a five-speed manual transmission.

But LN2000 had developed some drawbacks like;

1) Mainly—the fact that frost builds up and reduces the efficiency of the car.

2) Also with exhaust LN2000 emits cold nitrogen gas which freezes water 

vapor in the air to form small clouds behind the vehicle.

3) It consumes about five gallons of nitrogen fuel per mile also it reaches a top

speed of only 22 m. p. h. and fails to accelerate up on hills.

4) Also the motor operates at less than 20 percent of efficiency.

Thus LN2000 has failed due to lack of power, performance and fuel economy

2

Page 3: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 3/27

With the same basic principle the next version of air car has been developed

 by Guy Negre, an engineer from the little town of Carros, France, both literally and

figuratively. During his career of designing engines for lightweight aircraft and

formula one race car engines he became familiar with isotherm dynamics, a process

that creates power by expanding air at an almost constant temperature. Instead of 

using liquid nitrogen Negre theorized that by heating and expanding super-cooled

compressed air he could power a nonpolluting car. Compressed air is used to start

Formula One cars, but in this case the compressed air is the fuel driving a motor with

classic components such as pistons and valves. To power the pistons, negre’s two

cylinder motor uses a combination of heated outside air and super compressed air 

from tanks stored under the car.

The car can be refueled at home in four hours by a small compressor in the car 

linked to the house electricity supply. While the air is free, the electricity used to

refuel the tank at home would cost less than $2. A rapid recharge, using a high-

 pressure air pump, charges the air tanks in 2 - 3 minutes at a compressed air filling

station. The basic principle of air car is protected world-wide by more than 20 patents

owned by MDI.

The MDI patents cover not only the basic principal, but also the means of 

making it economically feasible. For this purpose, the conventional cylinders, pistons

and connecting-rods have been redesigned. Systems for the recuperation of energy

have been developed as well as a new power transmission assembly.

To demonstrate the viability of the concept, three prototype vehicles equipped

with air, mono-energy, engines were developed. A taxi called "TOP" (Taxi zero

Pollution), a delivery van and a pickup truck were built. In May 1998, the first road

tests of these prototypes were done in Brignoles, France. The potential market for the

"clean engine" concept is immense: e.g., vehicles such as taxis, buses, vans, delivery

trucks, industrial warehouse tractors, golf buggies, lake or canal boats and many other 

applications in which fixed engines are primarily used in urban or restricted areas.

A version of the MDI engine can, in addition to air, also function with the use

of traditional fuel after vehicle reaches 60 kmph which is electronically controlled.

To manage the development process successfully, MDI has contracted its

 product research and development activities to CQFD Air Solution, a company based

in Brignoles, France. Here, under the direction of Guy Negre, some 20 engineers and

technicians have at their disposal the most modern equipment for engine and vehicle

3

Page 4: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 4/27

development, testing and production, supported by the latest in information

technology.

Until now, the main activities of this group have been to perfect the engine

and vehicle prototypes. After the first applications of the MDI mono-energy engine

have demonstrated, the engine will be introduced to major car manufacturers in order 

to study its adaptation for their common models. The engine will be produced by the

manufacturers within their existing structures. The engine is significantly lighter less

expensive to produce, maintain and utilize, pollutes less when it runs on fuel and is

totally pollution free when it runs on air.

Mr. Negre’s silent, odour-free engine design was chosen for the world's most

 polluted city after a worldwide search by the Mexican authorities that included tests

on dozens of electric and other non-polluting experimental vehicles. The taxis,

 produced by Motor Development International (MDI) in Brignoles, France, will hit

the streets of Mexico City. Remarkably, these vehicles don't stop at zero pollution but

they actually remove pollution from the air. When a driver brakes, the MDI vehicle

takes in polluted air and filters it, expelling the cleaned air upon acceleration. MDI

vehicles are expected to be released internationally at an average price of $13,000.

A Mexican licensee, Dina, has signed a contract to produce an estimated

40,000 ZP taxis and urban delivery vehicles a year. It hopes to replace all of Mexico

City's 87,000 petrol and diesel taxis.

The car is being studied by other countries, including the Netherlands, because

it can also clean up air that has been polluted by petrol vehicles.

But it may take even longer to persuade automobile manufacturers to build it.

Because car companies have set mentalities, they have already spent a great deal of 

money on the electric car, which turned out be heavy and expensive, so they don't

want to listen to another new idea. The Mexican government, on the other hand, is all

ears. It's backing an order for 40.000 Z.P. Taxis to replace the gasoline and diesel

models in Mexico City, which suffers from probably the worst air pollution in the

world due to its high altitude. Mexico's City first pollution-free taxis will hit the

streets in two years. While they are not yet ready to displace fossil fuels, zero-

 pollution vehicles can still play an important role in reducing the level of greenhouse

gases. If we start with taxis, then move to buses and vans, it will take very little time

to improve the pollution problem in our cities.

4

Page 5: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 5/27

Page 6: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 6/27

Figure no. 3.1: composition of air tank.

Figure no. 3.2: manufacturing of air tanks on special machines.

Figure no. 3.3: location of air tank with a protective plate fixed on chassis.

6

Page 7: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 7/27

3) Air Filter:

The MDI engine works with air that is taken from the atmosphere and air pre-

compressed in tanks. Air is compressed by the on-board compressor or at service

stations equipped with a high-pressure compressor.

Before compression, the air must be filtered to get rid of any impurities that

could damage the engine. Carbon filters are used to eliminate dirt, dust, humidity and

other particles which, unfortunately, are found in the air in our cities.

It is the first time that a car eliminates and reduces existing pollution rather 

than emitting dirt and harmful gases. The exhaust pipe on the MDI cars produces

clean air, which is cold on exit (between -15º and 0º) and is harmless to human life.

With this system the air that comes out of the car is cleaner than the air that went in.

4) Electrical system:

Guy Nègre, inventor of the MDI Air Car, acquired the patent for an interesting

invention for installing electrics in a vehicle. Using a radio transmission system, each

electrical component receives signals with a microcontroller. The MDI vehicles have

only one wire weighing less than one kilo, thus only one cable is needed for the whole

car. So, instead of wiring each component such as headlights, dashboard lights, lights

inside the car, etc, one cable connects all electrical parts in the car. This wire acts as a

wave-guide to convey the commands to microchips that actually operate all electric

  parts in the car. So the vehicle functions like a mini-Internet network, for 

communication between vehicles. The advantages are the ease of installation and

repair and the removal of the approximately 22 kg of wires. What’s more, the entire

system becomes an anti-theft alarm as soon as the key is removed from the car.

The MDI vehicles will be nothing like “cars.” They will take customers into a

new era of advanced, significantly safer and more secure, clean, low cost, mobility.

5) Engine of Air Car:

Characteristics: Single energy bi-cylindrical 1200cc engine with a pause at the

Peak Rest Point for 70°, variable volume expansion chamber, Power limited to

25cv.

Expansion cylinder: 1200cc

Year of invention: 2000/2001

Advantage: Impressive torque motor curve.

7

Page 8: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 8/27

Disadvantage: The utilization of two connecting crank-shafts for gears caused

vibration problems.(Refer figure no.3.5 & 3.6)

Figure no. 3.4: Chassis of Air Car

Figure no. 3.5: Engine used in Air Car

8

Page 9: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 9/27

Figure no. 3.6: Engine details

• Special features : The pistons are mounted on rollers to minimize friction and

the loss of due lateral force on the liner. The marginal lubrication is provided

 by a low pressure oil pump which uses very little energy. It utilizes the boxer design and the pause at PRP with just one crank.

6) Body:

The MDI car body is built with fibre and injected foam, as are most of the cars

on the market today. This technology has two main advantages: cost and weight.

 Nowadays the use of sheet steel for car bodies is only because of cost - it is cheaper to

serially produce sheet steel bodies than fibre ones. However, fibre is safer because it

doesn’t cut like steel and is easier to repair i.e. it is glued, also it doesn’t rust etc. MDI

is currently looking into using hemp fibre to replace fibre-glass, and natural varnishes,

to produce 100% non-contaminating bodywork (Refer figure no.3.7&3.8)

• Other features of air car:

Total mass: 820 kg.

Engine cut out during standstills.

Variable opening distribution. Low consumption.

Con-rod system with pause of piston at top dead centre which allow alower pressure injection (30 bars).

Classic distribution seal with reduced friction due to use of rollers.

Three-stage expansion, almost isothermic.

Maximum power (25hp) 18.3 Kw @ 3000 rpm.

Maximum torque 6.3 kg-m @ 2500 rpm.

Rear mount engine and Rear wheel drive.

Automatic continuously variable transmission.

Suspension: Front: coil springs and Rear: pneumatic.

Disk brakes.

Rack and pinion steering.

Tires: classic tyres replaced with "green" tyres increase mileage by 5%

9

Page 10: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 10/27

Figure no. 3.7: Actual picture of body of Air Car

 

Figure no. 3.8: Location of engine and air tank 

On chassis of Air Car

10

Page 11: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 11/27

CHAPTER 4

WORKING OF AIR POWERED CAR 

• Basic principle:

Air at -100 degree Celsius and 300 bar pressure is used as a fuel. When this air 

is allowed to expand at atmospheric conditions its volume is increased many times

this energy produced is used to drive pistons of air powered car.

Although the technology is new, the idea isn't completely unknown to

Formula One car, since every Formula One engine starts with a shot of compressed-

air as an Energy-Booster. Guy Negre has simply extended this concept for running the

engines by heating and expanding super-cooled compressed air.

• About working cycle:

The secret of the working of Air powered motor is simply to - decompress the

air in stages and in so doing efficiently release energy at each point in the chain.

This process is repeated as many times as possible to extract the maximum

energy efficiency from the compressed air.

Its secret is isotherm dynamics.

Isotherm dynamics is a process that creates power by expanding air at an

almost constant temperature, cylindrical expansions are between the isothermic andthe adiabatic. Isothermic expansion is defined by a constant temperature during the

increase in volume. Adiabatic expansion is characterized by a lack of thermic

exchange with the exterior.

In the following figure the green line, represents the ideal transformation of 

the compressed air: in effect, the air temperature is the same coming in and going out

of the cylinder, and power is maximized. (Refer figure no. 4.1)

On the contrary, the worst transformation is the Adiabatic transformation,

represented by the red line. The derived power is minimal, and the air leaves the

system at a very low temperature indeed.

The blue line, or polytropic curve, represents the transformation that the MDI

motor realises, and the individual stages outlined above can be seen. The

transformation going through the first cylinder is represented by the polytropic line

(somewhere between our ideal isotherm and the adiabatic curve). The temperature rise

 brings the line closer to the isotherm, and allows the second and subsequent stages to

 produce more power.

11

Page 12: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 12/27

.

  Figure no.4.1: PV diagram of working cycle

 Negre theorized that by heating and expanding super-cooled compressed air he

could power a nonpolluting car. Negre’s company, Motor Development International

(MDI), created what it calls the Compressed Air Technology (CAT) car by combining

a lightweight automobile body with a new type of small rear-mounted engine

• Working operations:

Figure no. 4.2: Working steps in air car

• Steps in working cycle:

A. The air is released through the main line firstly to an alternator B where the first

stage of decompression takes place. The now cold air passes through a heat exchanger 

C which adds thermal energy to the air using the warmth of external air. and providesa convenient opportunity for air conditioning D. The warmed compressed air now

12

polytropic

isothermic

reheating

adiabatic

Page 13: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 13/27

 passes to the motor E. where a two more stages of decompression and re-heating take

 place. The motor drives the rear axle G through the transmission F. Control of engine

speed is through a conventional accelerator pedal H controlling a valve within the

motor. An energy recycler J is under test which uses engine braking K to recompress

air during braking into a secondary storage facility, providing additional energy for 

re-start and acceleration. Conventional hydraulic braking L is supplied.

Finally, the air is passed through carbon filters like those in scuba diving

tanks and expelled as pollutant-free exhaust. The "exhaust" leaves the engine at about

zero degrees Celsius, a result of the expansion and cooling action. The exhaust is

totally pure and fit to breathe.

The vehicle can be refilled by using the onboard compressor M or by refilling

the tank at an air station at N. (Refer figure no.4.2)

• Air car by Zero pollution motors:

Another version of the air powered car has been produced by ZPM (Zero

Pollution Motors). This French company has designed a two cylinder air powered car 

called the e.Volution. The first cylinder in the engine is the intake/compression

cylinder, and the second is an exhaust/expansion cylinder, with an air injector on each

cylinder In between these 2, with the transfer and the chamber inlet valves into each

cylinder, is the combustion chamber.

  Figure no. 4.3: Engine of air car

13

Page 14: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 14/27

1) The air is expanded here straight from the compressed air tank, and then

compressed in the first cylinder, during the first cycle of the engine

2) Then passed to the second where it expands, where the pistons pause for a

while at that time small amount of compressed air from the tank is released into the

expansion chamber to create a low pressure, low temperature volume of about 149psi.

• Articulated con-rod:

The MDI con-rod system allows the piston to "pause" at top dead centre

during approximately 70 degrees of the rotation of the crankshaft allowing expansion

at constant volume. Due to the piston pause at the TDC gets sufficient time to

establish the correct pressure which gives engine a high torque at high RPM. So the

force exerted on the crankshaft is less substantial than in a classic system.

(Refer figure no.4.4)

Figure no.4.4: Articulated con rod

3) Shortly before the valve to the expansion cylinder is opened, a high speed

shutter connects the compression and the expansion chamber.

4) This sudden pressure and temperature difference between the two chambers

create pressure waives in the expansion chambers, thereby producing work in the

exhaust chamber that drives the piston to power the engine, and turning the

crankshaft.

5) It is then passed out of the exhaust having gone through a chemical filter,

rather like a catalytic converter, before going back into the atmosphere. This is

commonly because in typical urban use, the air is much polluted, and so the air 

expelled from the air powered car is cleaned.

14

Page 15: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 15/27

• Power transmission:

Gear changes are automatic, powered by an electronic system developed by

MDI. A computer which controls the speed of the car is effectively continuously

changing gears.The moto-alternator connects the engine to the gearbox.

It has many functions:

It supports the CAT´s motor to allow the tanks to be refilled.

As an alternator it produces brake power 

It starts the vehicle and provides extra power when necessary

Its steering-wheel is equipped with a 5kW electric moto-alternator.

This motor is simultaneously:

the motor to compress air 

the starting motor 

the alternator for recharging the battery

an electric moderator/brake

a temporary power supply (e.g. for parking)

 No clutch is necessary. The engine is idle when the car is stationary and the

vehicle is started by the magnetic plate which re-engages the compressed air. Parking

manoeuvres are powered by the electric motor.

• Duel energy system:

The Series 34 CAT´s engines can be equipped with and run on dual energies -

fossil fuels and compressed air - and incorporate a reheating mechanism (a continuous

combustion system, easily controlled to minimize pollution) between the storage tank 

and the engine. This mechanism allows the engine to run exclusively on fossil fuel

which permits compatible autonomy on the road.

While the car is running on fossil fuel, the compressor refills the compressed

air tanks. The control system maintains a zero-pollution emission in the city at speeds

up to 60 km/h.

• Distribution and valves:

To ensure smooth running and to optimize energy efficiency, CAT’s engines

use a simple electromagnetic distribution system which controls the flow of air into

15

Page 16: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 16/27

the engine. This system runs on very little energy and alters neither the valve phase

nor its rise. 

• Brake power recovery:

The MDI vehicles will be equipped with a range of modern systems.For example, one mechanism stops the engine when the car is stationary i.e. at traffic

lights, junctions etc. Unlike conventional cars, the engine does not operate in traffic

 jams, which thus saves on fuel. Another interesting feature is the pneumatic system

when the car brakes, the kinetic energy from braking is used to drive a pump that

helps to restore some of the lost pressure.

The CAT's motor does require a small amount of oil, about 0.8 ltrs that the

driver will have to change just every 31,000 miles (50,000 km). Air tanks fixed is

filled with normal air to a pressure of 300kPa an hold about 300 liters of air. This

compressed air can travel up to 200 km at a top speed of 96.5 kph.

• Refueling: The air tanks could be refilled in one of two ways i.e.

1) Either by using a household electrical source, it takes about four hours to refill the

compressed air tanks. Tanks are refilled by plugging the car into a mains socket to

feed the motor-alternator which compresses the air with the motor-compressor .

2) Or by means of a special system, i.e. a rapid three-minute recharge is possible,

using a high-pressure air pump at air stations. (Refer figure no. 4.5 & 4.6)

These methods consume electrical energy which loads the power stations also

leading to increase pollution since power stations depend on fossil fuels for power 

generation. Hence some alternative sources of refueling which can be used in future

are; wind energy, hydraulic systems, fuel cells, photovoltaics etc can be used.

• Efficiency:

 Zero Pollution Motor vehicles would run at a cost of 1c/km. It would cost

R250 (33c US) to fill the tank with air and the engine would have to be serviced only

once every 50,000km, because it runs cold. The engine weights just 32 kg, but it can

do 90 kph. When seating five people, the car the engine is lodged in, can accelerate

from 0-90 in 7 seconds.

It’s super-efficient, and since it uses no combustion, it produces no air 

 pollution; ironically, the air from the exhaust is cleaner than the air that goes in -

 because of an internal filter. There is even an option for a hybrid model that would

automatically switch to a combustion engine mode -- burning traditional fuels -- when

16

Page 17: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 17/27

Page 18: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 18/27

Page 19: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 19/27

Page 20: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 20/27

traffic lights, junctions etc. Unlike conventional cars, the engine does not

operate in traffic jams, which thus saves on fuel.

5) Another interesting feature is the pneumatic system when the car brake, the

kinetic energy from braking is used to drive a pump that helps to restore some

of the lost pressure.

6) During refueling the natural air is passed through carbon filter where the

impurities of the air are removed and henceforth the air expelled from the car 

gives negative pollution i.e. it removes pollution from the surrounding air.

7) Air expelled from the engine has very less temperature below zero degrees

which can be used for the AC’s of the car. Also the air expelled from the car 

has low temperature which gives cooling effect to surrounding.

8) For refueling at compressed air stations it requires only 3 minutes and also it

can be refueled at home within 4 hours.

9) Though the carrying capacity of the car is 5 persons, it can accelerate from 0

to 50 mph within 7 secs.

10) To refuel the air tank of 300 ltrs at 300bars it requires approx $5.00 with

which it can travel upto 200 kms or can run for 10 hrs in city traffic. Thus

average running cost per km is 1 cent only.

11) Electrics and existing cars require some 25 to 30 kg of wiring for functioning

of various parts whereas air powered cars uses single wire less than 1 kg for 

various functioning and works like mini internet network.

12) The cost factor for air powered cars is one-tenth to the cost of gasoline cars.

• Air powered cars also have some disadvantages like:

a) The power needed to develop compress air is electricity, and for generation of 

electricity fuels are used which creates pollution at power stations.

 b) While operation the engine creates noise due to sudden expansion of air.

c) Considering power point of view air powered cars are still behind gasoline

cars.

But these drawbacks are not much serious and can be removed by,

Using wind, hydraulic systems, fuel cells and photovoltaic to fill up air 

tanks

By encasing the engine to reduce noise

20

Page 21: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 21/27

By increasing air carrying capacity we can increase power output of air 

car.

Thus air cars are the best options suitable to current conditions around us.

CHAPTER 6APPLICATIONS

Though air powered cars are meant mainly for individual consumers in urban

areas most of the early adopters will be businesses like taxi services and local

transport.

Also products are manufactured for the retail and fleet customer market and

are mainly used for local transportation. Each vehicle is equipped with the same type

of engine power output of 25HP with a maximum speed of 68mph.Following are some of the models developed by MDI :

(1) Family car:

Description : A spacious car with seats which can face different directions. The

vehicles design is based on needs of typical family

Features: Airbag, air conditioning, 6 seats (Refer figure no. 6.1)

(2) Van:

Description: Design for daily use in industrial urban or rural environmentswhose primary drivers would be tradesmen farmers and delivery drivers.

Features : Airbag, air conditioning, 2 seats, 1.5 m3 (Refer figure no. 6.2)

Figure no. 6.1: Family car Figure no.6.2: van

(3)Taxi: 

Description: Inspired by London taxi with numerous ergonomic and comfort

advantages for the passenger as well as drivers.

21

Page 22: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 22/27

Features : Airbag, air conditioning, 6 seats (Figure no. 6.3)

(4)Pick up car:

Description: The Pleasure car designed for excursions outdoor sports or water 

sports. Also suitable for small business & tradesmen

Features : Airbag, air conditioning, 6 seats (Figure no. 6.4)

 

Figure no. 6.3: Taxi  Figure no. 6.4: Pick up car

• Specifications which are common to above models:

1) Dimension: 3.64m, 1.72m, 1.75m 2) Weight: 750 Kg

3) Maximum speed: 110 Kmph 4) Mileage: 200-300 Km

5) Maximum load: 500 Kg 6) Recharge time: 4hr (mains) & 3min (at stn)

5) Minicat:

Description: The smallest and most innovative: three seats, minimal

dimensions with the boot of a saloon: a great challenge for such a small car 

which runs on compressed air. The Minicat is the city car of the future.

Features: Airbag, air conditioning, ABS, 3 seats, 1.5 m3. (Figure no. 6.5)

22

Page 23: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 23/27

EMBED Word.Picture.8

Figure no. 6.5: Minicat

• Specifications which are uncommon those of above mentioned are:

1) Dimensions: 2.65m, 1.62m, 1.64m 2) Maximum load: 270 Kg

 • Future Applications:

MDI has developed various vehicles and systems which promise to drastically

change the outlook of public transportation and energy use.

Figure no. 6.6: Zero pollution Public transportation concepts

THE ZERO-POLLUTION PUBLIC TRANSPORTATION CONCEPT: "CAT's

inside"

A new concept in public transportation, the MULTICAT is a train, consisting of a

number of carriages: (Refer figure no. 6.6 & 6.7)

• General Overview: Figure no 6.7: Driver’s car

23

The driver’s car (Locomotive)

Passenger carriages(Wagons)

Page 24: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 24/27

Each carriage is self-powered and runs on an MDI CAT´s (Compressed Air 

Technology systems)

Each passenger carriage is attached to the driver’s car and has its own steering

which reproduces the same changes in direction as the driver’s car and ensure perfect

co-ordination:

Easy to drive

Urban agility

Acceleration and braking in the passenger carriages are co-ordinated with the

driver’s car, and highly accurate inter-carriage sensors maintain the distance between

each carriage. The driver’s car controls the passenger carriage features such as:

opening and closing the doors, lights, heating, air conditioning and more.

The driver and passenger cars benefit from the non-contaminating technology

developed by MDI:

Glued aluminum chassis.

Two-part body with a layer of polyurethane foam.

Single-cable electric system.

Carriages are equipped with pneumatic suspension

• Non-combustion generation and co-generation:

Patented by MDI, the CAT´s Series 34 moto-compressors/ moto-alternators

are also non-combustion generators, very safe and very powerful.

While running, the moto-alternator, working as an engine gets its energy from

the city’s mains supply and moves the moto-compressor, working as a compressor to

replenish or maintain the high pressure of the air in the tanks.

In the case of a power cut, the moto-compressor automatically becomes anmotor and, powered by the compressed air from the tanks, forces the moto-alternator 

to switch into an alternator to provide electricity.

The basic 34 P02 engine can produce generator sets of 15 - 20 kW at a very

attractive price.

For higher power, MDI proposes an original and economical solution (also

 patented) according to which various low-powered generator sets are grouped into a

rack, interconnected and controlled by an energy station. The moto-compressor/

moto-alternators can thus be turned on as required, one at a time or all together.

24

Page 25: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 25/27

• Fossil fuel generator set:

For uninterrupted supply, the CAT´s Series 34 moto-compressor moto-

alternator is perfectly adaptable to generation with combustible fuels such as gas,

 petrol and diesel. Using fossil fuel a CAT´s Series 34 can produce approximately 40kW. Used in a multi-rack format, with 25 motors interconnected, up to 1000 kW can

 be reached. In parallel to providing electricity, the set of CAT´s Series 34 generators

can supply compressed air to a filling station.

• Advantages of the CAT´s generator sets:

(1)No worry about combustible provision (2) Complete starter safety

(3) Safety of use (4) Attractive buying price

(5) Unprecedented running costs

Thus Air vehicles are also perfectly adopted to public transport also

CHAPTER 7

CONCLUSION

The pollution of world is increasing continuously so we need to find the ways

to find our power needs maintain quality of life and protect the environment so there

is an obvious need to stop pollution just because we are not able to give up a means of transport such as cars.

Present cars pollute clean air create health problems and poor air quality so its

time to wake up and start being responsible for future generations.

In urban areas pollution caused by traffic is responsible for diseased such as

chronic bronchitis and asthma attacks equally serious is the economic impact of this

 pollution.

If we really want to live in a globalised world we have to know that pollution

have no bound when each of us owns a diesel or petrol car we will have millions of 

exhaust pipes producing pollutions that we can hardly imagine.

There are various excellent solutions existing outside the world of petroleum

and its time to realize it. One of them is air powered vehicles as it is the only one

system which works against pollution and its side effects such as global warming.

The different versions of air powered vehicles provide equation most

comprehensive answer to urban pollution. They cost less to operate and are arguably

more environmental friendly.

25

Page 26: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 26/27

These produce zero pollution not only that during there operation they actually

remove pollution from air i.e. when driver brakes the air powered cars, the car takes in

the polluted air and filters it expelling the clean air upon acceleration.

Also during working the air expelled from the car is at temperature below zero

degrees Celsius so unlike the traditional cars it doesn’t add heat to surrounding

instead it makes surrounding colder thus preventing global warming effect produced

 by traditional cars.

Thus the AIR POWERED CARS are the best options which provide most

comprehensive answer to the present urban pollution problems in simple, economic

and inoffensive manner. Thus these vehicles are safe to manufacture, safe to use, safe

to users and also environment friendly.

*****

REFERENCES

(1.) www.howstuffworks.com

(2.) www.aircar.com

(3.) www.zeropollution.com

(4.) www.bellwetherinteractive.com

(5.) www.globalstewards.org

(6.) www.planetsave.com

(7.) www.zevcat.com

(8.) www.indranet.com

(9.) www.carstreet.com

(10.) www.technologyreview.com

(11.) Mathur Sharma “IC Engines” Dhanpat Rai Publications (1999)

(Disadvantages of Traditional Fuels)

(12.) Domkundwar, Domkundwar “I.C.Engines” Dhanpat Rai publications (1999)

(Disadvantages of Alternative Fuels)

(13.) Patrick Ponticel “High time for Hybrids” Automotive Engg. Int., Feb 2002

(Disadvantages of Hybrid cars)

(14.) Dr. Harton Anderson “Making Cleaner, Cheaper Fuel cells”,Clean edge news 27 Aug 2001, (Disadvantages of Hydrogen Fuel Cells)

26

Page 27: b840 Air Power Car

8/8/2019 b840 Air Power Car

http://slidepdf.com/reader/full/b840-air-power-car 27/27

(15.) Abe Hertzberg “Why Air Cars are Better than Electric Cars”,

Washington Education 29 Aug 2001, (Disadvantages of Electric car Batteries)