bahan tetulang/reinforcement whiskerswhiskers flakeflake partikelpartikel gentiangentian

26
Bahan Bahan tetulang/Reinforcement tetulang/Reinforcement Whiskers Whiskers Flake Flake Partikel Partikel Gentian Gentian

Upload: reilly-reynold

Post on 01-Apr-2015

227 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

Bahan Bahan tetulang/Reinforcementtetulang/Reinforcement

Bahan Bahan tetulang/Reinforcementtetulang/Reinforcement

• WhiskersWhiskers• FlakeFlake• PartikelPartikel• GentianGentian

Page 2: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

Tetulang: Whiskers• Single crystals grown with nearly zero

defects a re termed whiskers• They are usually discontinuous and short

fibers made from several materials like graphite, silicon carbide, copper, iron, etc.

• Whiskers differ from particles where whiskers have a definite length to width ratio greater than one

• Whiskers can have extraordinary strengths upto 7000 MPa

Page 3: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

• Metal-whisker combination, strengthening the system at high temperature

• Ceramic-whisker combinations, have high moduli, useful strength and low density, resist temperature and resistant to mechanical and oxidation more than metallic whiskers

Page 4: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

Tetulang: Flake• Often used in place of fibers as they

can be densely packed• Flakes are not expensive to produce

and usually cost less than fibers• Metal flakes that are in close contact

with each other in polymer matrices can conduct electricity and heat

• Flakes tend to have notches or cracks around the edges, which weaken the final product.

• They are also resistant to be lined up parallel to each other in a matrix, causing uneven strength

Page 5: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

Tetulang: Partikel• The composite’s strength of

particulate reinforced composites depends on the diameter of the particles, the interparticle spacing, volume fraction of the reinforcement, size and shape of the particles.

Page 6: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

Flaky particle + polymerSpherical particle + polymer

Page 7: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

Gentian/Fiber:Continuous and Aligned Fiber Composites

a) Stress-strain behavior for fiber and matrix phases

-Consider the matrix is ductile and the fiber is brittle-Fracture strength for fiber is σ*f and for the matrix is σ*m - Fracture strain for fiber is ε*f and for the matrix is ε*m (ε*m > ε*f )

Page 8: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

b) Stress-strain behavior for a fiber reinforced composites

-Stage I-the curveis linear, the matrixand resin deformelastically-For the composites,the matrix yield anddeform plastically (at ε*ym)-The fiber continueto stretch elastically,the fracture strengthof the composite ishigher than tensilestrength of fiber

Page 9: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

Elastic Behaviora) Longitudinal Loading

• Consider the elastic behavior of a continuous and oriented fibrous composites and loaded in the direction of fiber alignment

• Assumption: the interfacial bonding is good, thus deformation of both matrix and fibers is the same (an isostrain condition)

Page 10: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

• Total load sustained by the composites Fc is equal to the sum of the loads carried by the matrix phase Fm and the fiber phase Ff

• From definition of stress, F=σA, thus

• Then dividing through by the total cross-sectional area of the composite, Ac; then we have

• Am/Ac and Af/Ac are the area fractions of the matrix and fiber phases, respectively.

• If the composite, matrix and fiber phase lengths are all equal, Am/Ac is equivalent to the volume fraction of the matrix, and likewise for the fibers, Vf=Af/Ac.

Eq. 1

Page 11: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

• Hence the equation 1 becomes,

• Based on previous assumption of an isostrain state;

• Devide Eq. 2 by its respective strain

• Modulus elasticity of a continuous and aligned fibrous composites in the direction of alignment is

or

• The ratio of the load carried by the fibers to that carried by the matrix is

Eq. 2

Page 12: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

Exercise• A continuous and aligned glass-

reinforced composite consists of 40% of glass fibers having a modulus of elasticity of 69 GPa and 60% vol. of a polyester resin that when hardened, displays a modulus of 3.4 GPa

Page 13: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

a) Compute the modulus of elasticity of this composite in the longitudinal direction

b) If the cross-sectional area is 250 mm2 and a stress of 50 MPa is applied in this direction, compute the magnitude of the load carried by each of the fiber and matrix phases

c) Determine the strain that is sustained by each phase when the stress in part (b) is applied

Page 14: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

b) Transverse loading

• A continuous and oriented fiber composites may be loaded in transverse direction, load is applied at a 90º angle to the direction of fiber alignment

• In this case, the stresses of the composite, matrix and reinforcement are the same.

Page 15: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

• For this situation the stress of the composites and both phases is the same;

• The strain or deformation of entire composites,

• For isostress condition, the equation becomes which reduce to

Page 16: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

Modulus Elastik vs Vf dibawah keadaan isostress dan isostrain, perhatikan bahan yg dibebankan dlm keadaan isostrain menunjukkan modulus yg tinggi

Page 17: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

Exercise 1

• Pertimbangkan komposit epoksi ditetulangkan oleh gentian karbon, gentiannya tersusun selanjar, satu arah dan berisipadu 70%. Modulus Young bagi gentian karbon dan epoksi masing-masing ialah 360 x 103 MPa dan 6.9 x 103 MPa

Page 18: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

i) Hitungkan modulus komposit ini di bawah keadaan sama-tegasan dan sama-terikan

ii) Lakarkan graf tegasan melawan terikan bagi gentian, matriks dan komposit ini di bawah keadaan sama-tegasan dan sama-terikan sebagai contoh pada terikan=0.02. Anda perlu menunjukkan cara kiraan untuk menghasilkan graf tersebut

Page 19: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

iii) Hasilkan lakaran graf kebergantungan modulus komposit, Ec terhadap pecahan isipadu (Vf) gentian karbon di bawah keadaan sama-tegasan dan sama-terikan

(Nota: Gunakan sekurang-kurangkan 4 nilai Vf)

Page 20: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

• Komposit yang ditetulangi gentian selanjar dan tersusun telah dihasilkan daripada 30% isipadu gentian aramid dan 70% isipadu matriks polikarbonat. Anggapkan komposit ini mempunyai luas keratan rentas sebanyak 320mm2 dan dikenakan beban pada arah membujur sebanyak 44500 N. (Modulus kenyal bagi gentian aramid ialah 131 GPa dan polikarbonat ialah 2.4 GPa). Untuk komposit ini, kira:

Exercise 2

Page 21: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

i) Modulus kenyal pd arah membujurii) Nisbah beban gentian-matriksiii) Beban sebenar yang ditanggung oleh

fasa-fasa gentian dan matriksiv) Magnitud tegasan yg dikenakan ke

atas fasa-fasa gentian dan matriksv) Terikan yang dikenakan ke atas

kompositvi) Anggapkan tegasan dikenakan pd arag

merentas lintang drp arah gentian, kirakan modulus kenyal. Bandingkan nilai yang diperolehi dengan nilai di bhg.(i)

Page 22: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

Indicate whether the statements are TRUE of FALSE

1) Usually the matrix has a lower Young’s Modulus than the reinforcement

2) The main objective in reinforcing a metal is to lower the Young’s Modulus

3)The properties of a composite are essentially isotropic when the reinforcement is randomly oriented, equiaxed particles

Page 23: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

Mark the correct answers

The matrixa) Is always fibrousb) Transfers the load to the reinforcementc) Separates and protects the surface of

the reinforcementd) Is usually stronger than the

reinforcemente) Is never a ceramic

Page 24: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

• The specific modulusa) Is given by 1/E where E is

Young’s modulusb) Is given by Eρ where ρ is densityc) Is given by E/ ρd) Is generally low for polymer

matrix compositese) Is generally low for metallic

materials

Page 25: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

• Hybridsa) Are composites with two matrix

materialsb) Are composites with mixed fibersc) Always have a metallic constituentsd) Are also known as bidirectional woven

compositese) Are usually multilayered composites

Page 26: Bahan tetulang/Reinforcement WhiskersWhiskers FlakeFlake PartikelPartikel GentianGentian

• Compared with a ceramic, a polymer normally has a

a) Greater strengthb) Lower stiffnessc) Lower densityd) Better high temperature

performancee) Lower hardness