bandwidth, treewidth, separators, expansion, and universality filebandwidth, treewidth, separators,...

43
Bandwidth, treewidth, separators, expansion, and universality Bandwidth, treewidth, separators, expansion, and universality Julia B ¨ ottcher Technische Universit¨ at M ¨ unchen Topological & Geometric Graph Theory, 2008 (joint work with Klaas P. Pruessmann, Anusch Taraz & Andreas W¨ urfl) Julia B ¨ ottcher TU M¨ unchen TGGT ’08

Upload: others

Post on 06-Nov-2019

12 views

Category:

Documents


0 download

TRANSCRIPT

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, expansion, anduniversality

Julia Bottcher

Technische Universitat Munchen

Topological & Geometric Graph Theory, 2008

(joint work with Klaas P. Pruessmann, Anusch Taraz & Andreas Wurfl)

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeBandwidth:

Let G be a graph on n vertices. Then bw(G) ≤ b if there is a labelling ofV (G) by 1, . . . , n s.t. for all {i, j} ∈ E(G) we have |i − j | ≤ b.

i j

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeBandwidth:

Let G be a graph on n vertices. Then bw(G) ≤ b if there is a labelling ofV (G) by 1, . . . , n s.t. for all {i, j} ∈ E(G) we have |i − j | ≤ b.

i j

Examples:

Hamiltonian cycle: bandwidth 2

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeBandwidth:

Let G be a graph on n vertices. Then bw(G) ≤ b if there is a labelling ofV (G) by 1, . . . , n s.t. for all {i, j} ∈ E(G) we have |i − j | ≤ b.

i j

Examples:

Hamiltonian cycle: bandwidth 2

Star: bandwidth ⌊(n − 1)/2⌋

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeBandwidth:

Let G be a graph on n vertices. Then bw(G) ≤ b if there is a labelling ofV (G) by 1, . . . , n s.t. for all {i, j} ∈ E(G) we have |i − j | ≤ b.

i j

Examples:

Hamiltonian cycle: bandwidth 2

Star: bandwidth ⌊(n − 1)/2⌋Grid: bandwidth

√n

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeBandwidth:

Let G be a graph on n vertices. Then bw(G) ≤ b if there is a labelling ofV (G) by 1, . . . , n s.t. for all {i, j} ∈ E(G) we have |i − j | ≤ b.

i j

Examples:

Hamiltonian cycle: bandwidth 2

Star: bandwidth ⌊(n − 1)/2⌋Grid: bandwidth

√n

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeTheorem CHUNG’88

Let T be a tree on n vertices and maximal degree ∆(T ) ≤ ∆. Then T hasbandwidth at most O(n/ log∆ n).

Examples:

Hamiltonian cycle: bandwidth 2

Star: bandwidth ⌊(n − 1)/2⌋Grid: bandwidth

√n

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The bandwidth of planar graphs of bounded degreeTheorem CHUNG’88

Let T be a tree on n vertices and maximal degree ∆(T ) ≤ ∆. Then T hasbandwidth at most O(n/ log∆ n).

Question: What about planar graphs?

Let ∆ be constant. Do planar graphs G on n vertices with ∆(G) ≤ ∆ havebandwidth o(n)?

Star: bandwidth ⌊(n − 1)/2⌋Grid: bandwidth

√n

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

tree decomposition

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

width

tree decomposition

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

≤ 23n

23n ≥ o(n)

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

G is (b, ε)-bounded:

For all G ′ ⊆ G on n ′ ≥ b verticesthere is U ⊆ V (G ′) with |U| ≤ n ′

2such that |N(U)| ≤ ε|U|.

G

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

G is (b, ε)-bounded:

For all G ′ ⊆ G on n ′ ≥ b verticesthere is U ⊆ V (G ′) with |U| ≤ n ′

2such that |N(U)| ≤ ε|U|.

G

G ′ ⊆ G

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

G is (b, ε)-bounded:

For all G ′ ⊆ G on n ′ ≥ b verticesthere is U ⊆ V (G ′) with |U| ≤ n ′

2such that |N(U)| ≤ ε|U|.

G

G ′ ⊆ G

U N(U)

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Theorem LIPTON & TARJAN ’79

Planar graphs G on n vertices have (o(n), 2/3)-separators.

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth, treewidth, separators, and expansionTheorem B, PRUESSMANN, TARAZ, WUERFL

Let G be a hereditary class of graphs with max. degree ∆. Then t.f.a.e.:

All n-vertex G ∈ G have bandwidth o(n),

All n-vertex G ∈ G have treewidth o(n),

All n-vertex G ∈ G have(

o(n), 2/3)

-separators,

All n-vertex G ∈ G are(

o(n), ε)

-bounded.

Theorem ALON, SEYMOUR, THOMAS ’90

F -minor free G on n vertices have (|F |3/2o(n), 2/3)-separators.

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth versus path partition width

Path partition

A partition V (G) = V1 _∪ . . . _∪Vt of G such that edges of G only run withinthe Vi and between Vi and Vi+1.The width of this partition is maxi |Vi |, and ppw(G) is the minimal width ofa path partition of G.

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth versus path partition width

Path partition

A partition V (G) = V1 _∪ . . . _∪Vt of G such that edges of G only run withinthe Vi and between Vi and Vi+1.The width of this partition is maxi |Vi |, and ppw(G) is the minimal width ofa path partition of G.

V1 V2 Vt

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Bandwidth versus path partition width

Path partition

A partition V (G) = V1 _∪ . . . _∪Vt of G such that edges of G only run withinthe Vi and between Vi and Vi+1.The width of this partition is maxi |Vi |, and ppw(G) is the minimal width ofa path partition of G.

V1 V2 Vt

Observation

For all G we have ppw(G) ≤ bw(G) ≤ 2 ppw(G).

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

S

R1 R2

Rt

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

S

R1 R2

Rt

Bi := {v : v ∈ Rj , i < j,dist(v , S) = i}

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

S

R ′

1 R ′

2

R ′

t

B Bi := {v : v ∈ Rj , i < j,dist(v , S) = i}

B :=⋃

Bi , R ′

j := Rj \ B

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

S

R ′

1 R ′

2

R ′

t

B Bi := {v : v ∈ Rj , i < j,dist(v , S) = i}

B :=⋃

Bi , R ′

j := Rj \ B

|S|, |R ′

j | = o(n)

⇒ |Bi | ≤ ∆t |S| = o(n)

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

S

R ′

1 R ′

2

R ′

t

B Bi := {v : v ∈ Rj , i < j,dist(v , S) = i}

B :=⋃

Bi , R ′

j := Rj \ B

|S|, |R ′

j | = o(n)

⇒ |Bi | ≤ ∆t |S| = o(n)

V1 := S

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

The proof

All n-vertex G = (V , E) ∈ G have(

o(n), 2/3)

-separators ⇒

All n-vertex G ∈ G have bandwidth o(n).

Goal: Find path partition V = V1 _∪ . . . _∪Vt+1 of G with Vi = o(n).

G

S

R ′

1 R ′

2

R ′

t

B Bi := {v : v ∈ Rj , i < j,dist(v , S) = i}

B :=⋃

Bi , R ′

j := Rj \ B

|S|, |R ′

j | = o(n)

⇒ |Bi | ≤ ∆t |S| = o(n)

V1 := S

Vi+1 := R ′

i _∪Bi

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

A consequence: universality for planar graphs

Theorem

Every n-vertex graph H with min. degree δ(H) ≥ (34 + γ)n contains every

n-vertex planar graph G with max. degree ∆.

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

A consequence: universality for planar graphs

Theorem

∀γ > 0, ∆∃n0 ∀n ≥ n0

Every n-vertex graph H with min. degree δ(H) ≥ (34 + γ)n contains every

n-vertex planar graph G with max. degree ∆.

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

A consequence: universality for planar graphs

Theorem

∀γ > 0, ∆∃n0 ∀n ≥ n0

Every n-vertex graph H with min. degree δ(H) ≥ (34 + γ)n contains every

n-vertex planar graph G with max. degree ∆.

Universality for Graphs of Bounded Bandwidth B,SCHACHT,TARAZ’08

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0 s.t. for all n ≥ n0

χ(G) = k , ∆(G) ≤ ∆, bw(G) ≤ βn

δ(H) ≥ ( k−1k + γ)n =⇒ H contains G

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

A consequence: universality for planar graphs

Theorem

∀γ > 0, ∆∃n0 ∀n ≥ n0

Every n-vertex graph H with min. degree δ(H) ≥ (34 + γ)n contains every

n-vertex planar graph G with max. degree ∆.

Universality for Graphs of Bounded Bandwidth B,SCHACHT,TARAZ’08

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0 s.t. for all n ≥ n0

χ(G) = k , ∆(G) ≤ ∆, bw(G) ≤ βn

δ(H) ≥ ( k−1k + γ)n =⇒ H contains G

Theorem KUHN, OSTHUS, TARAZ 2005

Every n-vertex graph H with min. degree δ(H) ≥ (23 + γ)n contains some

n-vertex planar triangulation G.

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

A consequence: universality for planar graphs

Theorem

∀γ > 0, ∆∃n0 ∀n ≥ n0

Every n-vertex graph H with min. degree δ(H) ≥ (23 + γ)n contains every

n-vertex planar graph G with max. degree ∆ and chromatic number 3.

Universality for Graphs of Bounded Bandwidth B,SCHACHT,TARAZ’08

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0 s.t. for all n ≥ n0

χ(G) = k , ∆(G) ≤ ∆, bw(G) ≤ βn

δ(H) ≥ ( k−1k + γ)n =⇒ H contains G

Theorem KUHN, OSTHUS, TARAZ 2005

Every n-vertex graph H with min. degree δ(H) ≥ (23 + γ)n contains some

n-vertex planar triangulation G.

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Concluding remarks

Let G be a hereditary class of graphs with max. degree ∆. Then

Bandwidth, treewidth, separators, expansion are sublinearlyequivalent for G.

Each of them implies that all H with δ(H) ≥ ( r−1r + γ)n are universal

for the class of r -chromatic graphs in G.

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Concluding remarks

Let G be a hereditary class of graphs with max. degree ∆. Then

Bandwidth, treewidth, separators, expansion are sublinearlyequivalent for G.

Each of them implies that all H with δ(H) ≥ ( r−1r + γ)n are universal

for the class of r -chromatic graphs in G.

Question

Let G be an r -chromatic expander on n vertices (i.e. ∀U ⊆ V (G) with|U| ≤ n

2 we have |N(U)| ≥ εU for some constant ε > 0).Is it true that there is an n-vertex H with δ(H) ≥ ( r−1

r + γ)n but G 6⊆ H forγ > 0 sufficiently small?

Julia Bottcher TU Munchen TGGT ’08

Bandwidth, treewidth, separators, expansion, and universality

Concluding remarks

Let G be a hereditary class of graphs with max. degree ∆. Then

Bandwidth, treewidth, separators, expansion are sublinearlyequivalent for G.

Each of them implies that all H with δ(H) ≥ ( r−1r + γ)n are universal

for the class of r -chromatic graphs in G.

Question

Let G be an r -chromatic expander on n vertices (i.e. ∀U ⊆ V (G) with|U| ≤ n

2 we have |N(U)| ≥ εU for some constant ε > 0).Is it true that there is an n-vertex H with δ(H) ≥ ( r−1

r + γ)n but G 6⊆ H forγ > 0 sufficiently small?

Merci beaucoup.Julia Bottcher TU Munchen TGGT ’08