barra and simmaco

Upload: cookoopony

Post on 10-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Barra and Simmaco

    1/5

    205f ecus

    References

    8 Kunz, 1). A., Reddy, G. S. and Vatvarc, A. (1985) App l. Errvivon.Mitn~ brol. 50, X31-836

    9 Bruce, N . C., Wilma. C. J., Jordan, K. N., Trrbilcock, A. E.,Gray Ste phem. L. D. and Lowe, C. R. (1990) flrc/l . Miuobiol. 154,465-470

    10 Hail% A. M. and Bruce, N. C. (1993) Appi Ewnvr. .\/i~-mhiol. 59,2166-2170

    11 Bruce, N. C., Wilmot, C. J., Jordan, K. N., Gray Stcphem , L. D. andLowe, C. R. (1991) Bio&m .J. 274, 875Gi80

    12 Bruce, N. C., Caswell, D. A., French, C. E., H&s, A. M., Long,M. 1. and Willey, D. L. (1994) A t~n. 1vYAciul. Sti. 721, 85-100

    13 Cameron, 2. W. W., Jordxl, K. N., Holt, P. J,, Raker, 1. B.,Lowe, C. 11. and Bruce, N. C. (1994) App l. Ewirorr. ~!&mh iul.60,3881-3883

    14 Holt, 1. J., Gray Stephens, L. I)., Bruce, N. C. and Lowe, C. R.Riosors. Bioclecrm. m press)

    15 Rathbonr, D. A., Holt, 1. J., Bruce, N. C. and Lowe, C. R. .4rwihiY Atud. &I. (III j

  • 8/8/2019 Barra and Simmaco

    2/5

    Xenopus laevisMagaininiPGSPGLaXPFBombina speciesBombininBombtnin HPhyllomedusa speciesDermaseptinAdenoregulinLitoria speciesCaerin-1.1Caeridin-1Rana speciesBrevinin-1Brevinln-l EGaegurin-6RanalexinBrevinin-2Brevinin-2EGaegurin-2

    Figure 1Amino acid sequence s of antimicroblal peptldes from different amphibian specie s.Representative members of the different peptide families are presented: peptldyl-glyclne-senne (PGS); peptldyl-glyclne-leucine carboxyamide (PGLa); xenopsin precur-sor fragment (XPF). Amidated C-terminal residues are represented by d; o-alloisoleuc ineis represented by 1*. The bars represent disulphlde bridges.

    dif ferent amphibian species were studied in moredetail. The production ofantimicrobial peptides is partof the innate immune system and is widespread inNature,. This system was firs t discovered in insecthaemolymph when the synthesis of antimicrobial pep-tides, such as cecropins and dofensins, is induced inresponse to lllicrobial infection. A similar systenl wassubsequently shown to operate in the lung and gastro-intestinal tract of nlanmlals; indeed, the system showsstriking similarities to the vertebrate acute-phaseimnunc response. In alnphibians, the production ofantinlicrobial pcptides appears to be constitutivc, butthey are released in response to an external stimulus;this is probably mediated by epinephrine. Althoughthis innate immunity lacks the memory and speci-fic ity of acquired inumunity based on itmmunoglobu-lins directed against specif ic antigens, it has at least twoadvantages: the peptides are inimediately availablefront a reservoir in the cutaneous granular glands, andthey usually have act ivi ty against a broad spectrunz ofniici-oorgaliisiiis.

    So far, relative ly few frog species from a limitednumber of fanlilies have been studied. While all the

    antinlicrobial skin peptides studied to date are cationic,it is already clear that large differences exist in featuressuch as size, the prcscnce of disulphide bonds, andother structural niotifs .Mechanism of action

    A large nunlber of antimicrobial peptides frormaniphibian skin can adopt an anlphipathic a-helicalstructure in hydrophobic environments, suggestingthat oligomers ofsuch helices would forni pores in thephospholipid bilayer of target niembranes. Inhibitionof cell growth and cell death may then result frorm thedisturbance of rnenlbrane functions. This hypothesisis confirmed by the results of experiments perfonledwith synthetic peptides containing only I)-amino acids:an amphipathic left-handed a-helix is fornled, but thebiological act ivi ty of the natural I counterpart isretained. Therefore, an interaction with chiral bind-ing sites of receptors, enzynles or other melnbrancproteins can be ruled out. The select ivity of sonle ofthese peptides for bacterial membranes rmay be relatedto the number, and distribution, of positive charges. Itis known that bacterial nienibranes contain higheranlounts of anionic phospholipids than the erythro-cyte niembrane, for example. However, nluch less isknown about the mechanisnl by which other types ofantimicrobial peptides, which do not fornl amph-pathic helices, inhibit cell growth or cause cell death.The interaction of peptides sucl~ as bornbinin H andbrevinil l-IE (Fig. 1) with bacterial and niodel men-branes reniains to be investigated.Peptide structure and antimicrobial act ivit y

    In recent years, antinlicrobial peptides have beenisolated and characterized front the skin of Xerro~~rrsIacv is, Bmbirra varicpfa and B. wimtali~, W~yl1orrrc~1rr.wralrqri and I? h/w, Litovia spkrdida and L. cacvrrlcn,and several species o f Rorritlac~. In the original studieson X. lawis, the skin secretion was investigated in greatdetail, and was found to contain the magainins/pep-tidyl-glycine-scrine (PGS) peptides,, peptidyl-glycine-leucine carboxyarnide (PGLa), and a multi-tude of fragments derived from the precursors of,among others, caerulein, xenopsin and laevitide.These peptides, each of which contains nlore than 20anlino acids, and can form amphipathic helices, havea broad spectrum of antimicrobial act ivi ty againstGrant-positive and Gram-negative bacteria, fungi andprotozoa 1 . In addition, Imixtures of these peptidesshow strong synergistic effect s, which lead toan enhancement of the antimicrobial action of thesecretion.

    Two different families of skin peptides from Bornbinaspecies have been described: the bonibinins, andthe type H bombinins 14. The bombinins are a groupof antibacterial peptides with identical C-terminalsequences, but with variable N-terminal sequencesrelated to the original bonlbinin4,,. Type Hbonlbinins are Imore hydrophobic molecules, possess-ing both antibacterial and haernolytic activities1z-4.Surprisingly, it was found that sonle type H bonibinin

    TIET ECH JUNE 1995 (VO L 13,

  • 8/8/2019 Barra and Simmaco

    3/5

  • 8/8/2019 Barra and Simmaco

    4/5

  • 8/8/2019 Barra and Simmaco

    5/5

    209f ecus

    5 Hev~ns, C. L. and Zatloff, M. (1990) A wur. Rw. B iotkem. 59,395-414

    6 Csordas, A. and Michl, H. (1970) M~~narsh. Clwm. 101, 182-1897 Boman, H. G. (1991) Cell 65, 205-2078 Zas loK M. (1092) Cur. Opin. Immunol. 4, 3-79 Zasloff, M. (lY87) Proc. &II/ Ac ad. Sri. USA 84, 5449-545310 Giovannini, M. G., Poulter, L., Gibson, B. W. and William s, D. H.

    (1987) Biorkem.]. 243, 113-12011 Soravia, E., Martini, G. and Zaslo& M. (1988) FEBS Mt. 228,

    337-34012 Simmaco, M. et al. (1991) E ur.]. Biochem. 199, 217-22213 Gibson, B. W., Tang, D., Mandrell, R., Kelly, M. and Spmdel, E. R.

    (1991)]. Biol. Chw. 266, 23103~2311114 Mignogna, G., Sirnm aco, M., Kre il, G. and Barra, D. (1993) EMBO

    J. 12, 4829-483215 Enpamer, V. et al. (1989) Pror. N&l Acad. Sri. 1JSA 86, 5188-519216 Kuzhter, K., Egger, R. and Kreil, G. (1987) Scienc e 238, 198-20217 Mar, A ., N,ggyen, V. H., Delfour, A., Migliore-Sam our. D. and

    Nicola,, I. (1991) Bivclwmistry 30, 8824-883018 Ihly, W. J. ef al. (1992) I&. hatl Acad. Sri. USA 89, 1096(&1096319 Mar, A. and Nicolas , P . (1994) Ew.j. Biockm. 219, 145-15420 Stone, D. J. M., Waugh, R. J,, Bowie, J. H., W allace, J. C. and Tyler,

    M. J. (1992)j. Cherw. Sot. P&in Tram. 1, 3173-317821 Waugh, R. J., Stone, D. J. M., Bowie, J. H., W allace, J. C. and Tyler,

    M. J. (lYY3)J. Clam. Sot. Perkin Tram. 1, 573-57622 Horikawa, R., Parker, D. S., Herring, 1. L. and Pisano, J. (1985) Fed.

    Pm 44, 69523 Morikawa, N., Hagwara, K. and Nakajima, T. (1992) Biockem.

    Biopkys. R es. Common. 189, 1X4-19024 Simmaco, M., Mignogna, G., Barra, D. and Bossa, F. (1994)). Bbl.

    Ckem. 269, 11956-11961

    25 Clark, D. P., Dwe ll, S., Malay, W. L. and Zaslo ff, M. (1994)]. Bio l.Ckem. 269, 10849-10855

    26 Park, J . M., Jung, J -E. and Ler, B. J. (1994) Biockem. Bic1phy.c. Ra.Commun.205,948-954

    27 Habetmann, E. and Jentsch , J. (1967) Hoppe-Seylers Z. Pkysiol. Ckem.348, 37-50

    28 Hultmark, D., EngstrGm, A ., Andersson, K., Steiner, H., Bennich, H.and Boma n, H. G. (1983) EMBO]. 2,571-576

    29 Amiche, M., Ducancel, F., Mar, A., Boulain, J. C., Menez, A. andNicolas, P. (1994) 1. Biol. Ckem. 26 9, 17847-17852

    30 Steiner, H., Hultmark, D., Engstriim, A., Bemuch, H. and Boman,H. G. (1981) Nature 29 2, 246-248

    31 Caste&, P., Ampe, C., Jacob s, F., Vaeck, M. and Tempst, P. (1989)EMBOJ. 8, 2387-2391

    32 Selsted, M. E., Hanvig, S. S., Ganz, T ., Schilling, J. W. and Lehrer,R. 1. (1985) 1. C/in. Invest. 76, 1436-1439

    33 Romeo, D., Skerlavaj, B., Bologne si, M. and Gennaro R. (1988)J Biol. Ckem. 263, 9573-9575

    34 Selsted, M. E., Novotny, M. J., Monis, W. L., Tang, Y-Q., Smith, W.and Cullor, J. S. (1992)]. Biol. Ckem. 267,4292-4295

    35 Agerberth, B. et al. (1991) Eur.]. Biockem. 202, 849-85436 Nakamwa, T. et al. (1988)J. Biol. Ckem. 263, 16709-1671337 Boman, H. G., Marsh, J. and Goode, J. A., eds (1994) A nrimicmbial

    Peptides (Ciba Foundation Symposium 186), John Wiley & Sons38 Wade, D. et al. (1990) Pm. Natl Aca d. Sci. USA 8 7, 4761-476539 Ca steels, P. and Tempst, P. (1994) Biockem. Biopkys. Rex. Common.

    199,339-34540 Piers, K. L., Brown, M. H. and Hancock, R. E. W. (1993) Gene 134,

    7-1341 Sharma, A. ~1 al. (1994) Pm. Nat/ Acad. Sc i. USA 91, 9337~934142 Gallo, 1~. L. et al. (1994) Pm IVdr/ Acad. Sri. USA 91, 11035-l 1039

    TIBTECHJUNE 1995 WOL13)