bas kooijman dept theoretical biology vrije universiteit amsterdam [email protected]

27
partition coefficients & body size have similarities & interactions Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterd [email protected]. nl http://www.bio.vu. nl / thb / Lyon, 2006/05/10

Upload: senta

Post on 04-Jan-2016

38 views

Category:

Documents


1 download

DESCRIPTION

Scaling relationships based on partition coefficients & body size have similarities & interactions. Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam [email protected] http://www.bio.vu.nl/thb /. Lyon, 2006/05/10. Contents. toxicokinetic models one-compartment, film - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Scaling relationships based onpartition coefficients & body size have similarities & interactions

Bas KooijmanDept theoretical biology

Vrije Universiteit [email protected]

http://www.bio.vu.nl/thb/

Lyon, 2006/05/10

Page 2: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Contents

• toxicokinetic models one-compartment, film

• toxic effects

• DEB theory

• QSARs

• body size scaling

• similarities

• interactions

Lyon, 2006/05/10

Page 3: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

1-compartment model

For a given external concentration as function of time:

Page 4: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

1,1-compartment model

compound can cross interface between media with different rates vice versa

interface

medium i

medium j

Page 5: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

1,1 compartment model

Suppose andwhile

Conclusion: relationship between par values follows from model structure

Page 6: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

n,n-compartment models

compound can cross interface between media with different rates vice versa sub-layers with equal rates for all sub-layers

Page 7: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

film models

Steady flux approximation

Kooijman et al 2004Chemosphere 57: 745-753

Page 8: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Elimination rate & partition coeff

log P01 log P01

log

10%

sat

urat

ion

tim

e

1 film 2 filmdiffusivities

low

high

Transition: film 1,1-compartment model

slope = 0.5slope = 0.5

Kooijman et al 2004Chemosphere 57: 745-753

Page 9: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Concentration ranges of chemicals

• too little def: variations in concentration come with variations in effects• enough def: variations in concentration within this range hardly affect physiological behaviour of individuals• too much def: variations in concentration come with variations in effects e.g. water concentration can be too much even for fish

no basic difference between toxic and non-toxic chemicals“too little” and “enough” can have zero range for some chemicalsImplication: lower & upper NEC for each compound

Page 10: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Effects on organisms

• Chemicals, parasites, noise, temperature affect organisms via changes of parameters values of their dynamic energy budget these values are functions of internal concentrations

• Primary target: individuals some effects at sub-organism level can be compensated (NEC) • Effects on populations are derived from that on individuals individuals interact via competition, trophic relationships

• Parameters of the energy budget model individual-specific and (partly) under genetic control

Page 11: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Models for toxic effects

Three model components:

• kinetics external concentration internal concentration example: one-compartment kinetics

• change in target parameter(s) internal concentration value of target parameter(s) example: linear relationship

• physiology value of parameter endpoint (survival, reproduction) example: DEB model

Page 12: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Dynamic Energy Budget theoryfor metabolic organisationUptake of substrates (nutrients, light, food) by organisms and their use (maintenance, growth, development, reproduction) during life cycle (dynamic)

First principles, quantitative, axiomatic set upAim: Biological equivalent of Theoretical Physics

Primary target: the individual with consequences for• sub-organismal organization• supra-organismal organizationRelationships between levels of organisation

Many popular empirical models are special cases of DEB

Page 13: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

1- maturitymaintenance

maturityoffspring

maturationreproduction

Standard DEB scheme

food faecesassimilation

reserve

feeding defecation

structurestructure

somaticmaintenance

growth

Def “standard”:• 1 type of food• 1 type of reserve• 1 type structure• isomorphy

Page 14: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

1- maturitymaintenance

maturityoffspring

maturationreproduction

Modes of action of toxicants

food faecesassimilation

reserve

feeding defecation

structurestructure

somaticmaintenance

growth

assimilation

maintenance costs

growth costs

reproduction costs

hazard to embryo

u

tumourtumour

maint tumour induction6

6

endocr. disruption7

7

lethal effects: hazard rateMode of action affectstranslation to pop level

8

Page 15: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Simplest basis: Change internal conc that exceeds internal NEC

or

with

Change in target parameter

Rationale

• effective molecules operate independently

• approximation for small effects

Page 16: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Effect on survival

Effects of Dieldrin on survival of Poecilia

killing rate 0.038 l g-1 d-1

elimination rate 0.712 d-1

NEC 4.49 g l-1

Hazard model for survival:• one compartment kinetics• hazard rate linear in internal concentration

Page 17: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

QSARs for tox parameters

10lo

g N

EC

, m

M

10lo

g el

im r

ate,

d-1

10lo

g ki

ll ra

te,

mM

-1 d

-1

10log Pow 10log Pow10log Pow

Slope = -1 Slope = 1Slope = -0.5

Hazard model for survival:• one compartment kinetics• hazard rate linear in internal concentration

Alkyl benzenes in PimephalesData from Geiger et al 1990

Assumption:Each molecule has same effect

Page 18: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

QSARs for tox parameters

10lo

g N

EC

, m

M

10lo

g el

im r

ate,

d-1

10lo

g ki

ll ra

te,

mM

-1 d

-1

10log Pow 10log Pow10log Pow

Slope = -1 Slope = 1Slope = -0.5

Benzenes, alifates, phenols in PimephalesData from Mackay et al 1992,

Hawker & Connell 1985

Assumption:Each molecule has same effect

Hazard model for survival:• one compartment kinetics• hazard rate linear in internal concentration

Page 19: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Covariation of tox parameters1

0log

NE

C, m

M

10log killing rate, mM-1 d-1

Slope = -1

PimephalesData from Gerritsen 1997

Page 20: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

QSARs for LC50’s

10log Pow10log Pow

10lo

g LC

50.1

4d, M

LC50.14d of chlorinated hydrocarbons for Poecilia. Data: Könemann, 1980

Page 21: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Primary scaling relationships

Dependent on max size

K saturation constant

Lb length at birth

Lp length at puberty

{pAm} max spec assim rate

Independent of max size

yEX yield of reserve on food

v energy conductance

[pM] volume-spec maint. costs

{pT} surface-spec maint. costs

[EG] spec structure costs

ha aging acceleration

partitioning fraction

R reproduction efficiency

maximum length Lm = {pAm} / [pM] Kooijman 1986J. Theor. Biol. 121: 269-282

Page 22: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Scaling of metabolic rate

intra-species inter-species

maintenance

growth

weight

nrespiratio3

32

dl

llls

43

32

ldld

lll

EV

h

structure

reserve

32 vll

l0l

0

3lllh

Respiration: contributions from growth and maintenanceWeight: contributions from structure and reserveStructure ; = length; endotherms 3l l

3lllh

0hl

Page 23: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Metabolic rate

Log weight, gLo

g m

etab

olic

rat

e,

w

endotherms

ectotherms

unicellulars

slope = 1

slope = 2/3

Length, cm

O2 c

onsu

mpt

ion,

l

/h

Inter-speciesIntra-species

0.0226 L2 + 0.0185 L3

0.0516 L2.44

2 curves fitted:

(Daphnia pulex)

Page 24: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Von Bertalanffy growth rate

vVkr MB /3/3 3/11

At 25 °C : maint rate coeff kM = 400 a-1

energy conductance v = 0.3 m a-1

25 °CTA = 7 kK

10log ultimate length, mm 10log ultimate length, mm

10lo

g vo

n B

ert

grow

th r

ate

, a-1

)exp()()( 3/13/13/13/1 arVVVaV Bb

3/1V

a

3/1V

3/1bV

1Br

↑0

Page 25: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

SimilaritiesQSAR body size scaling

1-compartment model: partition coefficient (= state) is ratio between uptake and elimination rate

DEB-model: maximum length (= state) is ratio between assimilation and maintenance rate

Parameters are constant for a system, but vary between systems in a way that follows from the model structure

Page 26: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

• uptake, elimination fluxes, food uptake surface area (intra-specifically) elimination rate length-1 (exposure time should depend on size) food uptake structural volume (inter-specifically)

• dilution by growth affects toxicokinetics max growth length2 (inter-specifically)

• elimination via reproduction: max reprod mass flux length2 (inter-specifically)

• chemical composition: reserve capacity length4 (inter-specifically) in some taxa reserve are enriched in lipids

• chemical transformation, excretion is coupled to metabolic rate metabolic rate scales between length2 and length3

• juvenile period length, abundance length-3 , pop growth rate length-1

links with risk assessment strategies

InteractionsQSAR body size scaling

Page 27: Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

DEB tele course 2007

http://www.bio.vu.nl/thb/deb/

Free of financial costs; some 250 h effort investment

Feb-April 2007; target audience: PhD students

We encourage participation in groups that organize local meetings weekly French group of participants of the DEB tele course 2005: special issue of J. Sea Res. 2006 on DEB applications to bivalves

Software package DEBtool for Octave/ Matlab freely downloadable

Slides of this presentation are downloadable from http://www.bio.vu.nl/thb/users/bas/lectures/

Cambridge Univ Press 2000

Audience: thank you for your attention

Organizers: thank you for the invitation