basic lines-protection.ppt

Upload: muazaminu1422

Post on 07-Aug-2018

221 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/20/2019 Basic Lines-Protection.ppt

    1/31

    Distance Relays 

    Introduction

    1. The impedance relays also called distance relays areemployed to provide protection to transmission lines.

    2. They are comparatively simple to apply, operate with

    extremely high speed, and both primary and backupprotection features are inherent in them.

    3. The impedance relay is made to respond to theimpedance between the relay location and the point

    where fault is incident

    4. The impedance is proportional to the distance to thefault, hence the name distance relay

  • 8/20/2019 Basic Lines-Protection.ppt

    2/31

    !istance "elaying #rinciple

    1. $ distance relay compares the currents and voltages at therelaying point with %urrent providing the operating tor&ue and thevoltage provides the restraining tor&ue. 'n other words animpedance relay is a voltage restrained overcurrent relay, also

    %alled under impedance relay

    2. (ince the operating characteristics of the relay depend upon theratio of voltage and current and the phase angle between them,their characteristics can be best represented on an ")*

    diagram where both +' ratio and the phase angle can be plottedin terms of an impedance "-*.

  • 8/20/2019 Basic Lines-Protection.ppt

    3/31

    Types of !istance "elays

    1. 'mpedance relay

    2. "eactance relay

    3. /ho relay

    4. /odified impedance relay

  • 8/20/2019 Basic Lines-Protection.ppt

    4/31

  • 8/20/2019 Basic Lines-Protection.ppt

    5/31

  • 8/20/2019 Basic Lines-Protection.ppt

    6/31

  • 8/20/2019 Basic Lines-Protection.ppt

    7/31

    1. (ince the distance relays are fed from the secondaries of line %Ts andbus #Tsline %+Ts, the line parameters are to be converted intosecondary values to set the relay as per re&uirements

    2. 0sec 0pri'mpedance ratio

      where 'mpedance ratio #.T."atio%.T."atio

    3. or the lines, the impedance in 5hms per 6/ is approximately asunder7)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))6+ 01 02 8ine $ngle

    )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))132 6+ 9.4 :9 to;9!eg.229 6+ 9.4 ;9 to

  • 8/20/2019 Basic Lines-Protection.ppt

    8/31

  • 8/20/2019 Basic Lines-Protection.ppt

    9/31

     0ones "eactance Time

    )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

    0one ) 1 of 08 instantaneous

    0one ) 2 199> of 08 - 49)=9> of 0(8 9.3 to9.4sec

    0one ) 3 199> of 08 - 129> of 0(8 9.:to9. of 08 - 129> of 088 9.? to1.=sec

    )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))where 08 #ositive se&uence impedance of line to be protected.

    0(8 #ositive se&uence impedance of adacent shortest line.

    088 #ositive se&uence impedance of adacent longest line

  • 8/20/2019 Basic Lines-Protection.ppt

    10/31

    /ain eatures in !istance (cheme

    1. (tarters.

    2. /easuring units.

    3. Timers

    4. $uxiliary relays

  • 8/20/2019 Basic Lines-Protection.ppt

    11/31

    Additional Features in distance schemes

    1. #ower (wing blocking relay

    2. +T fuse failure relay.

    3. (witch onto fault relay

    4. ault locator 

    =. $uto) reclosing scheme.

    :. %arrier communication scheme

  • 8/20/2019 Basic Lines-Protection.ppt

    12/31

    Factors affecting distance relay operation 

    1. ault resistance.

    2. 'nfeed effect.

    3. @ranching)off effect.

    4. 8oad encroachment 

  • 8/20/2019 Basic Lines-Protection.ppt

    13/31

    eeder #rotection

    1 5ver %urrent #rotectiona Time delayed non directional =1

    b Time delayed directional :;

    c 'nstantaneous =9

    2 Around 5ver %urrent #rotection

    a Time delayed non directional =1B

    b Time delayed directional :;B

    c 'nstantaneous =9B

  • 8/20/2019 Basic Lines-Protection.ppt

    14/31

    Instantaneous (50) protection 

    C  Dsed for detecting high magnitude fault current

    C  (ame time delay regardless of fault magnitude or distance

    C  %o)ordination with down stream section cannot be maintained.

  • 8/20/2019 Basic Lines-Protection.ppt

    15/31

    #rotection for 3 #hase (ystem

    a Three 5ver %urrent 5ne

    Earth %urrent relayb Two 5ver %urrent 5ne Earth

    %urrent relay

    Ia

    Ib

    Ic

    In=Ia+Ib+Ic

    Ia

    Ib

    Ic

    In=Ia+Ib+Ic

  • 8/20/2019 Basic Lines-Protection.ppt

    16/31

    E 5% 5% 5%

    Earth ault

    E 5% 5%

  • 8/20/2019 Basic Lines-Protection.ppt

    17/31

    E 5% 5%

    #hase ault

    5%E 5% 5%

  • 8/20/2019 Basic Lines-Protection.ppt

    18/31

    !irectional #rotection

    B d f !i i l % l

  • 8/20/2019 Basic Lines-Protection.ppt

    19/31

    Beed for !irectional %ontrol

    Aenerally re&uired if current can flow in both

    directions through a relay locatione.g. #arallel feeder circuits

      "ing /ain %ircuits

    2.1 9.=9.? 9.11.31.;

    B d f !i ti l % t l

  • 8/20/2019 Basic Lines-Protection.ppt

    20/31

    Beed for !irectional %ontrol

    Aenerally re&uired if current can flow in both

    directions through a relay locatione.g. #arallel feeder circuits

      "ing /ain %ircuits

    rading has no! been lost "

    2.1 9.=9.? 9.11.31.;

    B d f !i ti l % t l

  • 8/20/2019 Basic Lines-Protection.ppt

    21/31

    Beed for !irectional %ontrolAenerally re&uired if current can flow in both

    directions through a relay locatione.g. #arallel feeder circuits

      "ing /ain %ircuits

    Relays operate for current flo! in direction indicated

    (#ypical operating times sho!n)

    9.? 9.19.= 9.?9.=9.1

    "i / i %i it

  • 8/20/2019 Basic Lines-Protection.ppt

    22/31

    "ing /ain %ircuitFith ring closed 7

    @oth load and fault current may flow in either

    direction along feeder circuits

    Thus, directional relays are re&uired

    Bote7 !irectional relays look into the feeder 

    Beed to establish setting philosophy

    =1 :;

    =1

    8oad

    :; :;

    8oad

    :;:; :;

    8oad

    "i / i %i it

  • 8/20/2019 Basic Lines-Protection.ppt

    23/31

    "ing /ain %ircuit$rocedure %

    &' pen ring at A

    rade % A'  *'  D'  '  ,'

    -' pen ring at A'

    rade % A , D *

    #ypical operating times sho!n'

    .ote % Relays ,/ / D/ * may be nondirectional'

    1.39.1

    9.1 9.?9.=

    9.?

    9.=

    @

     $

    @

    E E

     $

    1.;

    !

    !

    1.;

    1.3

    % %

    "i ( t ith T (

  • 8/20/2019 Basic Lines-Protection.ppt

    24/31

    "ing (ystem with Two (ources

    !iscrimination between all relays is not possible due to different re&uirements

    under different ring operating conditions.

    or 1 7) @G must operate before $G

    or 2 7) @G must operate after $G

    .ot

    ompatible}

    @ @ % %

    ! !

    F&

    @

    F-

     $

     $

    "i ( t ith T (

  • 8/20/2019 Basic Lines-Protection.ppt

    25/31

    "ing (ystem with Two (ources

    5ption 1

    Trip least important source instantaneously then treat as normal ring main.5ption 2

    it pilot wire protection to circuit $ ) @ and consider as common source

    busbar.

     $

    @

    5ption 15ption 15ption 1

    5ption 2 5ption 2

    =9

    #F #F

    # ll l d

  • 8/20/2019 Basic Lines-Protection.ppt

    26/31

    #arallel eeders

    Bon)!irectional "elays 7)

      H%onventional AradingI 7)

    Arade J$G with J%G

    and Arade J@G with J!G

      "elays J$G and J@G have

      the same setting.

    =1

    =1

     $

    !

    8oad

    =1 @

    =1 %

     $ K @

    % K !

    ault level

    at JG

       5  p  e  r  a   t   i  n  g   T   i  m  e

    # ll l d

  • 8/20/2019 Basic Lines-Protection.ppt

    27/31

    #arallel eeders

    %onsider fault on one feeder 7)

    "elays J%G and J!G see the same fault current

    I2. $s J%G and J!G have similar settings bothfeeders will be tripped.

    =1  $ =1%

    =1 @ =1!

    85$!

    I& + I-I1

    I2

    # ll l d

  • 8/20/2019 Basic Lines-Protection.ppt

    28/31

    #arallel eeders

    (olution7) !irectional %ontrol at J%G andJ!G

    "elay J!G does not operate due to currentflow in the reverse direction.

    =1 $ :;%

    =1 @ :;!

    85$!

    I& + I-I1

    I2

    #arallel eeders

  • 8/20/2019 Basic Lines-Protection.ppt

    29/31

    #arallel eeders

    (etting philosophy for directional relays

    8oad current always flows in Jnon)operateG

    direction. $ny current flow in JoperateG direction is

    indicative of a fault condition.

    =1  $ :;

    E

    =1 @ :;

    %

    !

    8oad

    =1

  • 8/20/2019 Basic Lines-Protection.ppt

    30/31

    #arallel eeders

    Dsually, relays are set 7)

    ) =9> of full load current note thermal

    rating

    ) '!/T rather than !T

    ) /inimum T./.(. 9.1

    #arallel eeders $pplication Bote

  • 8/20/2019 Basic Lines-Protection.ppt

    31/31

    #arallel eeders ) $pplication Bote

    #

    @

    @

    !

    !

    8oad

    8oad

    If1

     $ %

    If1If22   If2

    @%

    !

    Ifmax

     $

    Arade $ with @ with %

    at If 1single feeder in service

    Arade @ with ! at If 3'f 1upper feeder open at #

    Arade $ with @ at If 2both feeders in service

    ) check that sufficient margin exists forbus fault at L when relay $ sees total

    fault current If 2, but relay @ sees only

    If 22.

    If&

    If-

    /

    / /argin/

    /

    L