basic mechanical tests

Upload: canpoyrazsag

Post on 05-Apr-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Basic Mechanical Tests

    1/25

    CHAPTER

    FIVEBASIC MECHANICAL TESTS

    5.1. UNIAXIAL TENSION AND COMPRESSION

    Static tensile and compressive testing are the most fundamental tests to define material

    properties. Typically, the tests are carried out by increasing the uniaxial load gradually,i.e., statically, until failure occurs. Properties to be defined through testing include:

    Strengths: yield, ultimate, rupture, etc. Strains: Elastic modulus, Poissons ratio Elongation, and shortening Uniaxial stress - strain relationships

    5.1.1 Tensile Tests

    A tensile test specimen for metal has three portions, the central testing portion and

    two dummy ends for setting in the testing machine, as shown in Figure 5.1. A gradualfillet transit is typically shaped between the testing portion and the end to avoid stress

    concentration. The ends may be of any shape, plain or threaded, to fit the holders of the

    testing matching in such a way that the load is axial.

    Figure 4.1. Typical tension specimens.

  • 7/31/2019 Basic Mechanical Tests

    2/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    Typically around specimen is suitable for bars while a rectangular section specimen is

    suitable for sampling from plates or sheets metals, as well as wood. Figure 5.2 (a) and (b)

    show the ASTM standard tension specimens for ductile metals and cast iron,

    respectively.

    (a)

    (b)

    Figure 5.2. Standard tensile specimens for: (a) ductile metal (ASTM E8); (b) round cast

    iron (ASTM E8, A48).

    69

  • 7/31/2019 Basic Mechanical Tests

    3/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    f tension specimen are also highly sensitive to the manufacturing

    ccuracy and precision. Manufacturing faults, such as eccentricity, inclination, offset,

    nec

    ode of universal

    testing machine. Figure 5.4. illustrates the typical setup, where the tensile load is applied

    to

    The testing results o

    a

    king, etc., can cause a premature failure mode.

    Figure 4.3. Common faults in tensile specimen.

    The tensile tests are typically conducted using the tension testing m

    the specimen ends through gripping jaws or threads. The gripping jaws hold thespecimen ends through a wedge action. A universal testing machine typically can provide

    two types of outputs for tensile testing, i.e., the load through the built in load cell, and the

    loading platen displacement. The loading platen displacement, however, can not be used

    to determine the strain of the specimen, since it involves the deformation of the machine

    system. The true specimen deformation must be detected using the extentiometers. Most

    modern computer controlled universal testing machines allow the connection of

    extentiometers and output the readings.

    70

  • 7/31/2019 Basic Mechanical Tests

    4/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    Figure 4.4. Tensile test setup.

    The standard tension specimens for wood are shown in Figure 5.5. Since the

    echanical properties for wood are highly dependent on the grain orientation, thus,tensm

    ion tests must be conducted for both in-grain and out-of-grain directions.

    Figure 4.5. Standard tensile specimen for wood (ASTM D143).

    For brittle materials, such as concrete, the direct tensile tests are typically very

    ifficult to conduct and offer less meaningful information. The tensile strength of

    con

    .1.2. Compression Test Specimen.

    Compression tests for metals are not conducted as often as tensile tests. One of the

    articularly steel are used primarily as tension or

    ben

    d

    crete is commonly determined by so-called splitting tests, which will be discussed in

    Chapter 6.

    5

    reasons is the because that metals p

    ding members. Another reason is that main information on mechanical properties for

    metals can be obtained through tension test that can be conducted more easily and

    consistently than a compression test for the similar size specimen. However, for brittle

    71

  • 7/31/2019 Basic Mechanical Tests

    5/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    igure 5.6 shows typical compression test specimens for metallic materials. The short

    spe

    nonmetallic materials such as concrete, the situation is completely reversed, as discussed

    in Chapter 7.

    F

    cimens are for testing of bearing metals; medium specimens are for general use; and

    the long specimens are for obtaining the modulus of elasticity in compression.

    Figure 5.6. Compression specimens for metallic materials in other than sheet forms

    .2. SHEAR AND TORSION

    esides tension and compression, which act normal to a plane, shearing stress acting

    .2.1. Direct Shear Tests

    n in Figure 5.7, are often used to determine the direct shear

    stre

    Johnson shear tools are used for single and double shear testing of round or rectangular

    (ASTM E9).

    5

    B

    parallel to a plane is also very important. Direct shear and torsion are the loading

    conditions causing shear stresses.

    5

    Direct shear tests, show

    ngth only, in which shear strain is typically no measured. These types of testing are

    important to determine the strength of structural connections.

    stocks, as shown in Figure 5.8. Other direct shear tests, such as slotted specimens for flat

    metal, and direct shear test for wood are shown in Figure 5.9 and Figure 5.10,

    respectively.

    72

  • 7/31/2019 Basic Mechanical Tests

    6/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    Figure 4.7. Direct shear testing: (a) double shear; (b) single shear.

    (a) (b)

    Figure 5.8. (a) Johnson shear tool for double or single shear tests; (b) Plate punch shear.

    Figure 5.9. Slotted specimen for flat metal.

    Figure 5.10. Method of testing wood in direct shear (ASTM D 143).

    73

  • 7/31/2019 Basic Mechanical Tests

    7/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    5.2.2. Torsion Tests

    Torsion, as shown in Figure 5.11, often exists in machinery structural members and

    parts. Since a pure shear stress state can be obtained, shear stain can be easily measured.

    Torsion test is typically used in determining shear modulus of metal.

    Figure 5.11. Torsion

    As shown in Figure 5.11, the following relationships exist for torsion members,

    stress: max =Tr

    J(5.1)

    where, the J is the polar moment of inertia, and J= r4/36, for circle solid.

    angle of twist: =TL

    JG(5.2)

    Direct torsion test is typically conducted using torsion testing machine, which iscapable to apply and measure the toques. Figure 5.12 shows typical types of failure

    patterns.

    Spring: Helical springs subjected to tension or compression constitute one type of shear

    conditions since stresses developed in the spring wire sections are essentially dominated

    by torsional shear stresses.

    74

  • 7/31/2019 Basic Mechanical Tests

    8/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    Figure 5.12. Failure patterns

    intorsion: (a) solid ductile

    metal bars; (b) solid brittle

    metal bars; (c) ductile metal

    tube; (d) brittle metal tube.

    5.3. STATIC BENDING

    It a piece of material is subjected to forces which induce compression stress over one part

    of a cross section of the piece and tension stress over the remaining part, the piece is

    called in a bending condition. Beams are the structural elements mainly for resisting

    bending. Bending and shear are often occur simultaneously.

    Figure 5.13. Bending of simply supported beams.

    4.3.1 Beam Elastic Theory ReviewAssumptions:

    (i) Small deformation;

    (ii) Plane remain plane i.e. linear distributions for strain in a cross section;

    (iii) = E , linear.

    75

  • 7/31/2019 Basic Mechanical Tests

    9/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    Figure 5.14. Elastic bending.

    Integration of moment by stresses in the section,

    M yA

    = dA, (5.3)

    The most important issue is to find the extreme stress, m. For rectangular section,

    =

    =

    yh

    dA b dy

    m/ 2

    = =

    = +

    = =

    M ydAy

    hbdy

    b

    hy

    b

    h

    h h

    bh

    h

    I

    hS

    h

    h

    h

    h

    m

    m

    h

    h

    m

    m

    m

    m

    /

    /

    /

    /

    /

    /

    /.

    2

    2

    2

    22

    3

    2

    2

    3 3

    2

    1

    3

    2

    3 8 8

    2

    =2

    =2

    12

    3

    (5.4)

    where, the moment of inertia,

    Ibh

    =3

    12(5.5)

    and the section modulus,

    S=I/hbh

    / 2 =6

    2

    (5.6)

    5.3.2. Plastic Moment

    The above theory only works for the case where m < y in elastic range, or m < y. Ifthe extreme stress just equals to the yield strength of the material, then the moment

    reaches thefirst-yield momentcapacity:

    My = Sfy. (5.7)

    76

  • 7/31/2019 Basic Mechanical Tests

    10/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    )

    y

    This moment is the elastic limit for a section, and beyond that the increase in load

    carrying capacity slows down. In order to examine the post yielding performance of a

    bending member, the assumptions must be reconsidered. The first assumption of small

    deformation can be applied for pure bending condition, despite the deformation is not

    small anymore. Experimental evidence indicates that the second assumption can be still

    applicable for post yielding behavior. However, the third one must be modified, i.e., theHookes law must be abandoned. In general, the stress-strain relationship (constitutive

    law) can be expressed as,

    (5.8) = f(

    For perfect elastio-plastic materials:

    (5.9)

    = =

    <

    f

    f

    E

    f

    y y

    y

    y

    ( )

    > y

    Figure 5.15. Post yielding bending.

    As shown in Figure 5.15, the post yielding moment M can be calculated as the

    summation of the moment carried by the elastic core,My, and the moment carried by the

    plastic zones,Mp, given by,

    M=My+Mp (5.10)

    where,My can be obtained,

    M S f b fy y' '= = 2

    6 y. (5.11)

    where, = elastic cone depth.

    77

  • 7/31/2019 Basic Mechanical Tests

    11/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    ( )

    ( ) ( )

    M f bh h

    f b hh

    f b h h

    p y

    y

    y

    '=

    +

    +

    +

    22 2 2 2 2

    1

    2

    1

    2 2 2

    14

    =

    =

    (a)

    thus,

    ( )M b hp '= 1

    4

    2 2 fy (5.12)

    Substituting equations (5.11) and (5.12) to equation (5.10),

    ( )M M M bf

    h b hfy p y' ' '= + = +

    2 2 2 2 2

    6 4 4

    3

    12

    = y (5.13)

    or,

    M S fy y'= (5.14)

    ( )S

    b hy =

    312

    2 2(5.15)

    Compare with S,

    ( ) ( ) ( )S b h h bh b h S b hy = + = + = + 2

    12 6 12 12

    2 2 2 2 2 2 2 2

    Apparently, Sy>S, andM>My, i.e. load can be increased.

    Rewriting Syusing strain ductility factor,

    = = h s

    y

    1 (5.16)

    (S bh bh hy = + 2 2 2 2

    6 121 / ) (a)

    S S Sy = +

    1

    21

    12

    . (5.17)

    When, = 1, Sy = S, M = My.

    78

  • 7/31/2019 Basic Mechanical Tests

    12/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    = = = +, S Z Sy1

    2S

    Plastic modulus,

    Zbh

    =2

    4(5.18)

    Plastic moment for rectangular section,

    M Z fbh

    fp y= =2

    4 y(5.19)

    5.3.3. Moment and Curvature Relationship

    As shown in Figure 5.15, the post-yield curvature can be defined as,

    = = =m

    y

    h/ /2 2

    2 y(5.20)

    The curvature at the first yield of the section,

    y

    y

    h= = y

    h/ 2

    2(5.21)

    Curvature ductility factor can then be defined as,

    = = = =y

    m

    y

    m

    y

    h

    h

    2

    2

    /

    / (5.22)

    i.e., the curvature ductility factor is equal to the strain ductility factor.

    On the other hand, the ratio between the post yield moment and the first yield moment

    can be defined as the over-strength ratio,

    = = = +

    M

    M

    S

    Sy

    y'.1 0 5 1

    12

    . (5.23)

    From equation (5.23), the ductility factor can also be expressed as the over-strength

    factor,

    79

  • 7/31/2019 Basic Mechanical Tests

    13/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    =

    1

    1 2 1M

    My

    (4.24)

    Numerical values, = 1 = 1 = 1.2 = 1.153 = 1.4 = 1.245 = 1.6 = 1.305 = 1.8 = 1.346 = 2 = 1.375 = 4 = 1.469 = 6 = 1.486 = 10 = 1.495 = = 1.5

    Figure 5.16. Moment curvature relationship for rectangular section.

    The post yield moment is dependent on the shape of the section. Figure 5.17 shows the

    moment-curvature relationships for several typical sections.

    80

  • 7/31/2019 Basic Mechanical Tests

    14/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    Figure 5.17. Moment curvature relationships for different sections.

    5.3.4. Curvature Distributions

    In the simply supported beam shown in Figure 5.18, the curvature distribution along the

    beam in the elastic range is linear, similar to the distribution of moment within the shear

    span, l. However, the curvature distribution becomes nonlinear along a segment wherethe sectional moment exceeds the first yield. The length of the nonlinear segment is,

    x

    = 1

    1

    (5.25)

    For example,

    =1.25, x=0.2l, =1.4=1.375, x=0.273l, =2=1.444, x=0.307l, =3=1.5, x=l/3, =

    81

  • 7/31/2019 Basic Mechanical Tests

    15/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    Figure 5.18. Curvature distribution.

    5.3.5 Deflection

    If the beam is within elastic range, i.e., M

  • 7/31/2019 Basic Mechanical Tests

    16/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    12

    2

    1

    3

    1

    2

    22

    2 14 83

    =

    = =

    = =

    =

    B

    c B

    B B

    c B c B

    l

    l l l

    l l

    elastic

    sin sin

    2

    2 2

    (5.26)

    After the beam developed yielding, the deflection can be found by solving the

    following fundamental governing equation,

    d x

    dxx

    2

    2

    ( )( )= (5.27)

    Alternatively, the displacement at the mid-span of the beam can be approximatelycalculated by integrating the approximate curvature distribution, as shown in Figure 5.20.

    Thus,

    + +1

    3 2

    1

    8

    2 Bc

    B Bll

    l" ''

    ' 2cl' (5.28)

    Figure 5.20.

    5.3.6. Bending Test Apparatuses

    The test setup for beam bending tests typically involves loading and supporting blocks,

    which should satisfy the following requirements:

    i. They should be designed and shaped in such way to allow accurate

    measurements of span length.

    ii. The contact areas should be appropriate to avoid stress concentration.

    83

  • 7/31/2019 Basic Mechanical Tests

    17/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    iii. The supports should allow longitudinal adjustment to avoid the secondary

    restraint to the length change.

    iv. The supports and loading blocks should accommodate slight rotational

    adjustment to avoid the build up of torsional stresses.

    v. The arrangement of parts should be stable under load.

    Figure 5.21 shows typical supporting and loading devices for various beam tests.

    Figure. 5.21. Typical beam test setups.

    Illustrating Example 5.1: In order to assess the strength of clay roof tiles, transverse

    break tests on individual tiles should be performed. The one-piece and two-piece clay

    tiles are tested following ASTM standard C1167-94a. Figure 5.22 shows the test setuprecommended by ASTM C1167.

    As shown in Figure 5.22, the tile sample is tested in a simply supported beam

    configuration with the span of 12in. (305mm). The supports and the loading jig are made

    of 1in. (25mm) thick wood blocks with their contact surfaces fitting the tile profile. A

    3/16in. (5mm) thick and 1in. (25mm) wide rubber shim with its hardness no greater than

    Shore Durometer 30 (A scale) is placed between the contact surfaces of the tile and the

    wood blocks, in order to smoothly transfer the load to the tile. All loading and support

    blocks are placed parallel to each other and perpendicular to the center line of the tile.

    Spherical steel bearings are used between the interfaces of the blocks and the loading

    plates of the universal testing machine. The tiles samples should be loaded uniformly and

    continuously without any shock at a loading rate of less than 1000lbf. (4550N)/min. until

    fracture.

    84

  • 7/31/2019 Basic Mechanical Tests

    18/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    Figure 5.22. Setup for bending strength testing of roof tiles.

    5.4. HARDNESS TESTS

    Because that the fundamental nature of hardness is not yet clearly understood, there is no

    single measure of hardness universally applicable to all materials. Generally speaking,

    hardness is the indication of solidity and firmness of a material. Several definitions of

    hardness have been developed for quantitatively expressing the material performance

    under different service conditions, such as,

    i. Indentation hardness: resistance to permanent indentation under static or dynamic

    loads;

    ii. Rebound hardness: energy absorption under impact loads;

    iii. Scratch hardness: resistance to scratching;iv. Wear hardness: resistance to abrasion;

    v. Machinability: resistance to cutting or drilling.

    It is commonly considered that the hardness has something to do with the interatomic

    forces of the material. However, such interatomic forces appear to affect the hardness in

    different way when the measuring methods are different, thus no method of measuring

    hardness uniquely indicates any other single mechanical property. It is obvious that a

    85

  • 7/31/2019 Basic Mechanical Tests

    19/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    given type of test is of practical use only for comparing the relative hardnesses of similar

    materials on a common basis. For example, the results of ball-indentation tests on steel

    serve nicely to evaluate the effectiveness of a series of heat-treatments on a given steel or

    even to classify steels of various compositions, but have no meaning when compared

    with results of such tests performed on rubber.

    5.4.1 Standard Tests

    Static indentation hardness tests are based on the principle of applying a static load

    on an indenter, which in turn permanently deforms the specimen.

    TheBrinell tests consists of pressing a hardened steel ball into a specimen. According

    to ASTM specifications (ASTM E 10), the steel ball is 10mm in diameter and the load

    used is 3000kgf for hard metals, 1500kgf for metals of intermediate hardness and 500kgf

    for soft materials.

    TheRockwell test is similar to the Brinell test in principle, however, the indenters and

    the loads used are smaller (the masses being 60, 100, or 150 kg) and the resultingindentation is smaller and shallower. The test is widely used in industrial work and the

    procedure has been standardized by ASTM E 18. The details of the Rockwell test will be

    discussed in the next section.

    The Rockwell superficial-hardness test uses a special-purpose machine intended

    exclusively for hardness tests where only very shallow indentation is possible and where

    it is desirable to know the hardness of the specimen close to the surface, such as for

    nitrided steel, razor blades, lightly carburized work, brass, bronze and steel sheet.

    The relative size of the indentations made by the Brinell, ordinary Rockwell, and the

    Rockwell superficial-hardness testers for one material are illustrated in Figure 5.23.

    (A) Superficial Rockwell, N diamond cone, 30kg load, 0.046mm.

    (B) Common Rockwell, C diamond cone, 150kg load, 0.13mm.

    (C) Brinell, 10-mm ball, 3000kg load, 0.25mm.

    Figure 5.23. Comparative impressions in steel (Rockwell C39) using Brinell andRockwell testers.

    The Vickers hardness test is also based on the same principle as Brinell test, however

    uses an indenter of diamond point in the shape of a pyramid with a square base. The

    angle between the opposite faces is 136 (ASTM E 92). The advantage of the Vickers testis that more accurate reading can be taken from the diagonal of a square indentation.

    86

  • 7/31/2019 Basic Mechanical Tests

    20/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    5.4.2. Rockwell Tests

    Rockwell tests are conducted in a specially designed apparatus that applies load

    through a system of weights and levers. Figure 5.24 shows the photograph of one model

    of Rockwell tester. The indenter or penetrator may be either a hardened steel ball or a

    diamond cone with an angle of 120 and a somewhat rounded point. Balls with diameter

    of 1.6mm to 12.7mm are also used.

    Figure 5.24. Wilson Rockwell tester.

    Figure 5.25. Operation procedure for Rockwell tester.

    Figure 5.25 illustrates the operation procedure for the Rockwell testing. Rockwell

    tests differ from other hardness tests in that the depth of the indentation is measured,

    rather than the size. An initial load, called a minor load of 10kg is first applied, to set the

    87

  • 7/31/2019 Basic Mechanical Tests

    21/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    indenter on the material and hold it in the reference position. The major load is then

    applied and the final penetration due to the major load is measured. The Rockwell

    hardness is directly read from a dial on the tester. Table 5.1 shows the Rockwell hardness

    scale, which has a maximum useful value around 100. One unit of regular Rockwell

    hardness corresponds to a penetration of 0.002mm. Hence, the hardness number is:

    Table 5.1 Commonly Used Rockwell Hardness Scales

    HRX Mh

    =

    0 002.(5.25)

    where h is the difference of the penetrations caused by the minor and the major loadsmeasured in millimeters;Mis equal to 100 for all scales using the diamond point (A, C,

    and D scale), and equal to 130 for all scales using ball indenters (B, E, M, R, etc., scales).

    For example, 60 HRC indicates 60 points on the C scale.

    5.5 IMPACT TESTS

    Impact is a special dynamic loading in which a load is applied suddenly. Notch-impact

    tests are most widely used to provide information on the resistance of a material tosudden fracture, where a sharp stress raiser or a flaw is present. In these tests, the energy

    required to produce rupture is determined to exhibit relative tendency of brittleness.

    The most common tests of this type are the Charpy V-notch and Izod tets.

    Specimens and loading concepts are illustrated in Figure 5.26. These tests are typically

    performed using a pendulum type of machine, as shown in Figure 5.27. The energy

    required to cause rupture of the sample is determined from an indicator that measures

    88

  • 7/31/2019 Basic Mechanical Tests

    22/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    how high the pendulum swings after breaking the sample. Examples for the broken

    Charpy specimens are shown in Figure 5.28. The Izod test is often used for testing impact

    resistance of polymers (plastics).

    (a) (b)

    (c)

    Figure 5.26. Specimens and loading configurations for (a) Charpy V-notch and (b) Izod

    tests; (c) notch details.

    Figure 5.27. Universal pendulumimpact tester

    89

  • 7/31/2019 Basic Mechanical Tests

    23/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    Figure 5.28. Broken Charpy specimens.

    REFERENCES

    Ref.5-1. H.E. Davis, G.E. Troxell and G.F.W. Hauck, The Testing of Engineering

    Materials, McGraw-Hill Book Company, The fourth edition 1982.

    Ref.5-2. James W. Dally and William F. Riley Experimental Stress Analysis,

    McGraw-Hill, Inc., The third edition, 1991.

    LABORATORY PROJECT

    Project-5.1: Static bending test of mild steel bar.

    Object: Through loading, instrumentation of a simply supported steel bar with arectangular section to observe mild steel performance in bending and to

    estimate the yield moment and the plastic moment.

    Group Assignments: Three groups with three to four students each will be assigned for

    each lab session. Each group is responsible to test one steel bar in bending

    and to conduct necessary analysis. The test configurations are different for

    each group.

    Material Properties: Assume an elastic modulus of 200,000MPa, yield strength of

    390MPa.

    Required Work: Based on the above material properties, predict the yield load, and the

    ultimate load. Conduct bending test of the steel bar to failure and obtain

    the load - displacement data. Compare the test results with the predictions.

    Report Requirements:

    1. Each student should write and submit an individual project report.

    2. Note that the report must use SI unit!

    90

  • 7/31/2019 Basic Mechanical Tests

    24/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    3. The report should cover the followings, but should not exceed 3 A4 pages.

    This page limit should be strictly followed.

    i. A brief description of the project.

    ii. Description of the test including sample dimensions and test setup and

    procedure.

    iii. Pre-test prediction to the first yield load and the ultimate load.iii. Test results of load - deflection curve. Compare the predicted loads in the

    same figure.

    iv. Brief description of the comparison for the yield and ultimate loads. .

    v. A brief conclusion.

    Project-5.2: Hardness tests of steel.

    Object: To study the Rockwell hardness testers and to determine the hardness

    numbers of assigned specimens of steel and compare the effects of carbon

    contents and heat treatment.

    Group Assignments: Four groups with three students each will be assigned for each lab

    session.

    Required Work: Each group is responsible to test three steel samples assigned. Each

    student within a group is responsible to conduct three tests on one

    specimen and record the hardness numbers.

    Report Requirements:

    1. Each group should write and submit an individual project report.

    2. The report should cover the followings, but should not exceed 3 A4 pages..i. A brief description of the project.

    ii. Description of the test including samples and test setup and procedure.

    iii. Tabulate the tested and average hardness numbers for each specimen.

    iv. Brief description of the trend of the hardness related to the carbon content and

    heat treatment.

    v. A brief conclusion.

    Project-5.3: Impact tests.

    Object: To study the pendulum type impact-testing machine and to determine therelative impact resistance of a steel in the form of notched-bar Charpy

    specimens.

    Group Assignments: The full lab session as one group.

    Required Work: Observe the specimens and the machine prior the testing; study the

    operating procedures including safety issues; examine and obtain the

    91

  • 7/31/2019 Basic Mechanical Tests

    25/25

    CE334 Notes, Prof. Y. Xiao

    Chapter 5. BASIC MECHANICAL TESTS

    energy loss by swing the pendulum without a specimen; observe the

    testing; read the impact test results; examine the tested specimens.

    Report Requirements: not required, however, the followings are suggested topics for

    discussion among the group.

    i. How to calculate the impact energy if the machine does not have directreadings for energy?

    ii. How to correct the energy loss due to friction?

    iii. What is the effects of temperature on impact resistance?

    iv. Why are the impact-flexure specimens notched?

    v. What are the differences of failure modes for different steel.

    HOMEWORK PROBLEMS

    IMPORTANT NOTE: None of the following question is required. However, successfulexecution of the testing of question 5.1 and submitting a satisfactory report can be added

    up to 5% to the final score. Three weeks after signing up are allowed for this exercise.

    Also the necessary material and additional cost, if reasonable, will be provided by the

    Structural and Material laboratory.

    5.1 Develop a testing plan to conduct fundamental tests on any material that feasible for

    testing using the universal testing machine. Suggested topics are:

    i. Torsion strength of soda cans;

    ii. Bending strength of bricks or concrete masonry blocks (conform to the

    relevant ASTM standards);

    iii. Compression and bending strengths of 2x4 timbers (conform to the relevantASTM standards);

    iv. Tensile strength of human hair;

    v. etc.

    5.2 A simply supported beam with rectangular section is subjected to a concentric force

    at its mid-span. Using any spreadsheet program to calculate and depict the curvature

    ductility factor distribution along the beam corresponding to the critical moment in

    the beam equal to 1.375, 1.444, and 1.469 times of the first yield moment.