bathymetric monitoring of submarine active …...18 june 2015 in the sea areas of japan exist about...

1
Taisei MORISHITA, Tomozo ONO; Hydrographic and Oceanographic Dept. of Japan Coast Guard (JHOD) Bathymetric monitoring of submarine active volcanoes: an example of island-forming eruption of Nishi-no-shima volcano Fig. 10 Autonomous survey boat “Manbo II” (left), her mother vessel “Shoyo” (upper right), and a MBES (R2sonic2022) mounted on the Manbo II (lower right). Manbo II was designed for survey of active submarine volcanoes and was commissioned in 1998. Fig. 11 Bathymetric map with Manbo II survey lines (indicated by red lines). Frequency 350kHz (200kHz400kHz) Beam width (1°×1° at 400kHz2°×2°at 200kHz) Number of beam 256 Swath angle 130° (max.160°) Survey speed ~2 knot (relative to the water) survey line 25-50 m spacing, total length of 110 km Table.1 Specifications for MBES bathymetric survey Fig.14 A representative topographic profile along the line AOD, comparing topography before the eruption (blue line) and as of July 2015 (red line). A significant bathymetric change is recognized in the eastern shelf edge, and vice versa in the northwestern shelf edge. (a) before eruption (b) as of July 2015 (c) difference (b)(a) Fig.13 DEMs constructed; (a) before eruption, (b) as of July 2015, and (c) difference between (a) and (b). The grid size of the DEMs is 10 m. Difference between (a) and (b) over the shelf edge (shown in pale blue) is considered as a bias between oldfashioned and modern echosounders. Nishinoshima Island View from SW Depth: ~3500m sea surface Sea bottom surveyed in July 2015 Sea bottom surveyed before the eruption Volcanic edifice (before eruption) “New” volcanic product A (NW) D (E) (km) Topography (m) 1. JCG’s mission on active volcanoes in the seas around Japan 26 Dec. 2013 Connected !! Covered !! 17 Oct. 2014 20 Nov. 2013 31 May 1973 14 Sep. 1973 3 Aug. 1974 (after the eruption) July 1984 Oct. 2004 lava opening summit crater fume 18 June 2015 In the sea areas of Japan exist about 40 active volcanoes (volcanic islands/submarine volcanoes) (Fig.1). For securing safety of navigation, Japan Coast Guard (JCG) conducts (1) aerial monitoring of the volcanoes (regularly and in an emergency), and (2) bathymetric mapping as well as marine geophysical and geological surveys of the volcanoes. Fig.1 Distribution of active volcanoes in the seas around Japan (red triangles) which JCG conducts monitoring and surveys. 2. Nishi-no-shima volcano and its eruption events Nishinoshima volcano, which is located about 1000 km south of Tokyo, Japan (see Fig.1), is one of the active submarine volcanoes on the volcanic front. The volcanic edifice rises ~3,500 m above the surrounding seafloor (Fig.4). Its summit forms Nishinoshima Island. Two eruption events occurred at the Nishinoshima volcano (197374 and 20132015). (1) Aerial monitoring of the volcanoes (2) Bathymetric mapping of the volcanoes Tokyo Fig.2 Examples of discolored water due to activities of a submarine volcano, “Fukutokuokanoba”. Discolored water (Fig.2) is an indication of subaqueous volcanic activities at a relatively shallow water. In case that discolored water or other signs of eruptions are observed, JCG immediately issues Navigational Warnings for notifying mariners of volcanic activities. Bathymetry of submarine volcanoes provide the primary information for understanding the nature of the volcanoes and assessing possible volcanic hazards. July 3, 2005 Dec. 13, 2007 5 km (a) (b) Fig.3 Comparison of two mapping results of a submarine volcano, Kaikata Seamount. (a): survey in 1985 using “SEABEAM”; (b): survey in 2009, using “SEABEAM2112”. The new survey data (b) shows that 1. Kaikata Seamount consists of four major volcanic peaks KC, KM, KN and KS, 2. the KC peak underwent multiple calderaforming events, and 3. the KM has a conicalshaped edifice with a flat top (wavecut surface). Kaikata Seamount MinamiIo To Island (1) Eruption in 1973–1974 The 1973–1974 eruption is the first event in recorded history and lasted for one year. Immediately after the eruption ceased, a newborn island was connected to the prehistoric Nishinoshima Island due to drifted sediment, forming a single island (Fig.5). Fig.4 Bathymetric map of Nishinoshima volcano (left) and its 3D bathymetric view (right). Nishinoshima Island prehistoric Nishinoshima I. Fig.5 Aerial photographs of the 19731974 eruption of Nishinoshima volcano and change of the island’s shape. After the eruption, the island has greatly changed its shape due to wave erosion and sedimentation. (2) Eruption in 2013–2015 The eruption and occurrence of a new islet was discovered on November 20, 2013 (Fig. 6). The new island merged with the preexisting island and almost fully covered it one year later. The eruption lasted for two years. The total area of the island (2.68 km 2 ) is twelve times as large as that of the preexisting island (0.22 km 2 ) (Figs.7 and 8). Newborn Island (20 Nov. 2013) Preeruption island 500m 3 Feb. 2016 (after eruption) In June to July 2015, JCG conducted bathymetric mapping around the growing Island, which was the first seafloor mapping after the eruption began. As of June to July 2015, growth of the island by lava flows was active (see Fig.9). The MBES mapping, therefore, was conducted using autonomous survey boat “Manbo II” (Fig.10). 17 Nov. 2015 “Last explosion” observed by JCG prehistoric Nishinoshima I. Fig.6 Aerial photographs of the 20131974 eruption and growth of the newborn land. Fig.9 Aerial photographs (upper) and aerial thermal image (right) of Nishinoshima Island on 18 June 2015. Fig.8 Growth of the newborn land area Fig.7 Change of Nishinoshima Island during the 20132015 eruption Nishi-no-shima 3. Bathymetric change during the 2013-2015 eruption of Nishi-no-shima volcano MBES Tonnage : 3000 t Length : 98 m S/V “Shoyo” “Mambo II” Tonnage : 5 t Length : 9.8 m (1) Bathymetric mapping in JuneJuly 2015 (2) Construction of Digital Elevation Models (DEMs) (3) Bathymetric change and volume of erupted lava In 1998, JCG started a mapping campaign for the active volcanoes shown in Fig. 1. This campaign is still ongoing. The survey lines were designed as a series of similarityshaped polygons with the minimum spacing of 25 meter. The survey line closest to the shoreline was set 200 meters away from the shoreline. Manbo II surveyed the area with the water depth of ca.10200 m around the Island in five days (Fig. 11). Two DEMs were constructed by combination of bathymetric data with land topography data from GSI*; one for topography before the eruption (Old DEM) and the other for topography as of July 2015 (New DEM) (Figs.12 and 13). *GSI: Geospatial Information Authority of Japan Fig.12 Schematic diagram on construction of the DEMs. Red arrows point to overridden data sets. [off shore] [near shore] digitized data (SBES/MBES* data collected in 1992) *SEABEAM MBES data collected in June to July 2015 (R2sonic2022) GSI’s 1mgrid DEM surveyed on 21 Nov. 2013 GSI’s 2.5mgrid DEM surveyed on 28 July 2015 Old DEM New DEM [Land] contour map sounding sheet MBES data collected in 2010 2012 (Seabeam2112) Comparison between the Old and New DEMs revealed bathymetric change during the period from Nov. 2013 to July 2015. Except for land area, significant bathymetric change due to sedimentation of volcanic products is limited to the eastern to southern shelf edge, and reaches up to 7080 meters (Figs. 13 and 14). The total volume of erupted lava was estimated as ~0.16 km 3 (~0.074 km 3 below the sea level and ~0.085 km 3 on land), which is 9 times as large as that of the previous eruption. Fig.2 Fig.3 Monaco Vatican City * Not include remaining parts of the pre-eruption island 18 June 2015 17 Oct. 2014 17 Nov. 2015

Upload: others

Post on 21-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bathymetric monitoring of submarine active …...18 June 2015 In the sea areas of Japan exist about 40 active volcanoes (volcanic islands/submarine volcanoes) (Fig.1). For securing

Taisei MORISHITA, Tomozo ONO; Hydrographic and Oceanographic Dept. of Japan Coast Guard (JHOD)

Bathymetric monitoring of submarine active volcanoes: an example of island-forming eruption of Nishi-no-shima volcano

Fig. 10 Autonomous survey boat “Manbo II” (left), her mother vessel “Shoyo” (upper right), and a MBES (R2sonic2022) mounted on the Manbo II (lower right). Manbo II was designed for survey of active submarine volcanoes and was commissioned in 1998.

Fig. 11 Bathymetric map with ManboII survey lines (indicated by red lines).

Frequency 350kHz (200kHz-400kHz)

Beam width (1°×1° at 400kHz-2°×2°at 200kHz)

Number of beam 256

Swath angle 130° (max.160°)

Survey speed ~2 knot (relative to the water)

survey line 25-50 m spacing, total length of 110 km

Table.1 Specifications for MBES bathymetric survey

Fig.14 A representative topographic profile along the line A‐O‐D, comparingtopography before theeruption (blue line) and asof July 2015 (red line).   A significant bathymetric change is recognized in the eastern shelf edge, and vice versa in the  northwestern shelf edge.   

(a) before eruption (b) as of July 2015 (c) difference (b)‐(a)

Fig.13 DEMs constructed; (a) before eruption, (b) as of July 2015, and (c) difference between (a) and (b). The gridsize of the DEMs is 10 m.  Difference between (a) and (b) over the shelf edge (shown in pale blue) is considered as a bias between old‐fashioned and modern echosounders. 

Nishi‐no‐shima Island

View from SW

Depth: ~3500m

sea surface

Sea bottom surveyed in July 2015

Sea bottom surveyed before the eruption

Volcanic edifice(before eruption)

“New” volcanic product 

A (NW) D (E)

(km)

Topo

grap

hy (m

)

1. JCG’s mission on active volcanoes in the seas around Japan

26 Dec. 2013

Connected !! Covered !! 17 Oct. 201420 Nov. 2013

31 May 1973 14 Sep. 1973

3 Aug. 1974 (after the eruption) July 1984 Oct. 2004

lava opening

summit crater

fume

18 June 2015

In the sea areas of Japan exist about 40 active volcanoes (volcanic islands/submarine volcanoes) (Fig.1).  For securing safety of navigation, Japan Coast Guard (JCG) conducts(1) aerial monitoring of the volcanoes (regularly 

and in an emergency), and (2) bathymetric mapping as well as marine 

geophysical and geological surveys of the volcanoes.

Fig.1 Distribution of active volcanoes in the seas around Japan (red triangles) which JCG conducts monitoring and surveys. 

2. Nishi-no-shima volcano and its eruption eventsNishi‐no‐shima volcano, which is located about 1000 km south of Tokyo, Japan (see Fig.1), is one of the active submarine volcanoes on the volcanic front.  The volcanic edifice rises ~3,500 m above the surrounding seafloor (Fig.4). Its summit forms Nishi‐no‐shima Island.  Two eruption events occurred at the Nishi‐no‐shima volcano (1973‐74 and 2013‐2015).

(1) Aerial monitoring of the volcanoes 

(2) Bathymetric mapping of the volcanoes

Tokyo

Fig.2 Examples of discolored water due to activities of a submarine volcano, “Fukutoku‐okanoba”.

Discolored water (Fig.2) is an indication of subaqueous volcanic activities at a relatively shallow water.  In case that discolored water or other signs of eruptions are observed, JCG immediately issues Navigational Warnings for notifying mariners of volcanic activities. 

Bathymetry of submarine volcanoes provide the primary information for understanding the nature of the volcanoes and assessing possible volcanic hazards.

July 3, 2005 Dec. 13, 2007

5 km

(a) (b)

Fig.3  Comparison of two mapping results of a submarine volcano, Kaikata Seamount.  (a): survey in 1985 using “SEABEAM”; (b): survey in 2009, using “SEABEAM2112”.   The new survey data  (b) shows that 1. Kaikata Seamount consists of four major volcanic peaks KC, KM, KN and KS,   2. the KC peak underwent multiple caldera‐forming events, and3. the KM has a conical‐shaped edifice with a flat top (wave‐cut surface).   

KaikataSeamount

Minami‐Io To Island (1) Eruption in 1973–1974      The 1973–1974 eruption is the first event in recorded history and lasted for one year. 

Immediately after the eruption ceased, a newborn island was connected to the pre‐historic Nishi‐no‐shima Island due to drifted sediment, forming a single island (Fig.5). 

Fig.4 Bathymetric map of Nishi‐no‐shima volcano (left) and its 3‐D bathymetric view (right). 

Nishi‐no‐shima Island

pre‐historic Nishi‐no‐shima I.

Fig.5  Aerial photographs of the 1973‐1974 eruption of Nishi‐no‐shima volcano and change of the island’s shape.  After the eruption, the island has greatly changed its shape due to wave erosion and sedimentation. 

(2) Eruption in 2013–2015      The eruption and occurrence of a new islet was discovered on November 20, 2013 (Fig. 6).  The 

new island merged with the pre‐existing island and almost fully covered it one year later.  The eruption lasted for two years.  The total area of the island (2.68 km2) is twelve times as large as that of the pre‐existing island (0.22 km2) (Figs.7 and 8). 

Newborn Island(20 Nov. 2013)

Pre‐eruption island

500m

3 Feb. 2016(after eruption)

In June to July 2015, JCG conducted bathymetric mapping around the growing Island, which was the first seafloor mapping  after the eruption began.  As of June to July 2015, growth of the island by lava flows was active (see Fig.9). The MBES mapping, therefore, was conducted using autonomous survey boat “Manbo II” (Fig.10).  

17 Nov. 2015

“Last explosion” observed by JCG pre‐historic Nishi‐no‐shima I.

Fig.6  Aerial photographs of the 2013‐1974 eruption and growth of the newborn land.  

Fig.9  Aerial photographs (upper) and aerial thermal image (right) of Nishi‐no‐shima Island on 18 June 2015.  

Fig.8  Growth of the newborn land area   Fig.7  Change of Nishi‐no‐shima Island during the 2013‐2015 eruption  

Nishi-no-shima

3. Bathymetric change during the 2013-2015 eruption of Nishi-no-shima volcano

MBES

Tonnage : 3000 tLength : 98 m

S/V “Shoyo”“Mambo II”

Tonnage : 5 tLength : 9.8 m

(1) Bathymetric mapping in June‐July 2015

(2) Construction of Digital Elevation Models (DEMs) 

(3) Bathymetric change and volume of erupted lava 

In 1998, JCG started a mapping campaign for the active volcanoes shown in Fig. 1.   This campaign is still ongoing.  

The survey lines were designed as a series of similarity‐shaped polygons with the minimum spacing of 25 meter.  The survey line closest to the shoreline was set 200 meters away from the shoreline.  Manbo IIsurveyed the area with the water depth of ca.10‐200 m around the Island in five days (Fig. 11).

Two DEMs were constructed by combination of bathymetric data with land topography data from GSI*; one for topography before the eruption (Old DEM) and the other for topography as of July 2015 (New DEM) (Figs.12 and 13).    *GSI: Geospatial Information Authority of Japan

Fig.12 Schematic diagram on construction of the DEMs. Red arrows point to overridden data sets.

[off shore][near shore]

digitized data (SBES/MBES* data collected in 1992)

*SEABEAM

MBES data collectedin June to July 2015

(R2sonic2022)

GSI’s 1m‐grid DEMsurveyed on 21Nov. 2013

GSI’s 2.5m‐grid DEMsurveyed on 28 July

2015

Old DEM

New DEM

[Land]contour map sounding sheet

MBES data collected in 2010 ‐2012(Seabeam2112)

Comparison between the Old and New DEMs revealed bathymetric change during the period from Nov. 2013 to July 2015.  Except for land area, significant bathymetric change due to sedimentation of volcanic products is limited to the eastern to southern shelf edge, and reaches up to 70‐80 meters (Figs. 13 and 14).  The total volume of erupted lava was estimated as ~0.16 km3 (~0.074 km3 below the sea level and ~0.085 km3 on land), which is 9 times as large as that of the previous eruption.

Fig.2

Fig.3

Monaco

Vatican City

* Not include remaining parts of the pre-eruption island

18 June 2015

17 Oct. 2014

17 Nov. 2015