batteries and supercapacitors for ... · cathode chemistry defines the name of the batteries (lfp,...

48
Patrice SIMON 1,2 1 Université Paul Sabatier, CIRIMAT UMR-CNRS 5085 Toulouse – FRANCE, [email protected] 2 Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459 Batteries and Supercapacitors for electrochemical energy storage: state- of-the art and next challenges

Upload: dinhdung

Post on 05-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Patrice SIMON 1,2

1 Université Paul Sabatier, CIRIMAT UMR-CNRS 5085 Toulouse – FRANCE,

[email protected] Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459

Batteries and Supercapacitors for

electrochemical energy storage: state-

of-the art and next challenges

Electrochemical Energy Storage

Batteries:

- high energy (100-200 Wh/kg)

- low power: < 1kW/kg

- time constant: ~ 1h

Capacitors: Power

- high power density (>50 kW/kg)

- low energy density: <0,1 Wh/kg

- time constant: ~ 1 ms

Supercapacitors:

- high power (10-20 kW/kg)

- medium energy: 5 Wh/kg

- time constant: ~ 5 s

D’après P. Simon, Y. Gogotsi , Nature Materials, 7 (2008) 845-854

Combustion

(oil)

Outline

1. Batteries

- Basics

- Li-ion batteries

- Perspectives

3. The French Network on Batteries

2. Supercapacitors

- Basic principe

- Applications

- Microporous carbons

1.1 Batteries : basic principle

∆Ecell = E+-E- (V) Qcell (mAh) and Energy = ∆E x Q (Wh)

Rechargeable cells� Accumulators (Batteries)

5

(-) LiC6 � C6 + Li+ + e; E = 0.5 V vs Li, C=372 mAh/g

� Lithium ion intercalated (Li+) : Li-ion batterie

1.2 Li-ion Batteries: starting point (1990, Sony)

Anode: C graphite

(+) Li0.5CoO2 + 0.5 Li+ + 0.5 e ⇔ LiCoO2 ; 177 mAh/g

∆E = 3.7V ; C = 60 Ah/kg ; W = 150 Wh/kg

Li – ion intercalation at both electrodes

Cathode: LiCoO2

Caracteristics:

- Li+ intercalation

- no Li metal

- Non aqueous Electrolyte

1.2 Li-ion batteries: a large family…

Cathode chemistry defines the name

of the batteries (LFP, NMC, NCA…)

1.2 Current Li-ion batteries: the cathode chemistries

From M. Winter, AABA Conference 2011, Mainz

8

� LiNi1/3Mn1/3Co1/3O2 (1/3): NMC chemistry

Only Ni2+

(active)

Mn +4: no Ni4+

(Mn un-active)

Co+3: Active redox

CoO6

Li

CoO6

Li

CoO6

Li 1-xCoO2 + xLi+ + x e- ↔ LiCoO2

LiCoO2: E=3.8 V, energy �

BUT

- C limited to 150 mAh/g

- Thermal stability issue

(Co-O)

1.2 2D LiCoO2-based cathodes: NMC chemistry

Cathode 3D : [LiFePO4 nano + C]

LiFePO4 (LFP); 1 Li+ per mole

- E=3.45 V vs Li

- - C=170 mAh.g-1

� no thermal runaway (P-O stable)

LiFePO4

- high power (charge and discharge)

- thermal stability (no runaway)

BUT

- lower energy density (120 Wh/kg)

- Fe solubility issue for T>50°C

- needs for carbon coatings (conductivity)

www.saftbatteries.com

1.2 Cathodes 1D: LFP

FePO4 + xLi+ + xe- ↔ xLiFePO4 + (1-x)FePO4

From M. Winter, AABA Conference 2011, Mainz

Lithium-Mangenese Oxide (LMO)

LiMn2O4 spinel structure AB2O4

xLi+ + xe- + Li(1-x)Mn2O4 ↔ LiMn2O4

0.8 Li per Mn2O4; C=120 mAh/g,

Pros :

• low cost,

• high cell voltage

• high power and thermal stability

Cons :

• -20% Capacity vs NMC

•T >50°c: Mn3+ dissolution

2Mn3+ � Mn2+ (dissolution) + Mn4+ (solid).

1.2 3D cathodes : LMO spinel

L. Croguennec, ICMCB Bordeaux

0

500

1000

1500

2000

2500

3000

3500

4000

4500

In C Bi Zn Te Pb Sb Ga Sn Al As Ge Si

Ca

pa

city

in

mA

h/g

1.3 Advanced Li-ion batteries: Li alloys as anodes

Sn, Si BUT

Huge volume change (+300%)

leading to mechanical stress

No cyclability

Cgraphite limited to 370 mAh/g � higher capacitve anodes?

M° + xLi + xe- ⇔ LixM, with x ≤ 4.4Li alloying reaction:

M°LixM°⇔

1.3 Advanced Li-ion avancé: Si-based anodes

Ex of Silicium-based anodes: mechanical buffer

Nano-sizing helps in buffering mechanical stress� improved capacity (1,000 mAh/g)

Other strategies possible (ink formulation) ; commercialization in progress

G. Yushin et al., Nature Materials 2010

1.3 Advanced cathodes: Li-rich NMC phases

Classical cationic redox mechanism

Li[Li0.2Ni0.14Mn0.54Co0.13]O2

+4 +3+2

0.4 e-

Fundamental problem

� Origin of this extra capacity

Li[Li0.2Ni0.14Mn0.54Co0.13]O2

NiMnCo

Li excess

2007: Li-rich phase (M. Tackeray et al.)

Whycapacity > 280 mAh/g?

?0.9 e−

Capacity (mAh/g)

ChargeDischarge

Charge/discharge at constant current

Direct evidence of cumulative cationic (Mn+ � M(n+1)+)

and anionic (O2− � O22−) redox

processes!!

N. Yabuuchi et al. ECS meeting November 2013

Feasibility of using previously

disregarded heavy 4d-metals!!

� Opens new paths for high capacity materials

J.M. Tarascon et al, Nature Materials 9 (2013) 827-835; JM Tarascon et al., Nature (Materials 2014)

Identical capacity> 260 mAh/g

1.3 Advanced cathodes: Li-rich NMC phases

1.4 Perspectives : what technology for the futur ?

1.4 Perspectives : Li-O2 batteries

K. M. Abraham, Z. Jiang, J. Electrochem. Soc. 143 1 (1996)

T. Ogasawara et al. J. Am. Chem. Soc. 128 1390 (2006)

� Instability vs Li° and high polarization

� low reaction kinetics

� reaction G + L � S: low power

� Precipitation of Li2O2 (insulating)

� No cycle life

� Catalyst + porous material: key

Theoretically : 800-900 Wh/kg

E Theoretical : 2300 Wh/kg

0 200 400 600 800 1000

2.0

2.5

3.0

3.5

4.0

4.5

Pot

entia

l vs

Li+ /L

i0 (V

)

C apac ity o f O 2 e lec trode (m Ah/g)

Charge

2.96 V

catalyst

DischargeO2 (g) + 2Li+ + 2e- → Li2O2 (s)

=

O2 + e- → O2-.

O2-. + Li+ → LiO2 (s)

LiO2 → Li2O2 (s) + O2

Li2O2 (s) →O2 (g) + 2Li+ + 2e-

(-) 2Li ↔ 2Li+ + 2e-

(+) O2 (g) + 2e- ↔ O22- ∆E = 4V BUT

Dominique Larcher, LRCS, Amiens

Few avantages and …. Lot of issues!!!

October 30th, 20015

Use a redox mediator (I3-/I-) to oxidize OH- in H2O

during charge and dissolve LiO2 in discharge

1.4 Li-O2 batteries: breaking news…

Important improvement in the Li-O2 technology but does not solve all the issues

● Na+ to replace Li+: Na-ion

Cost :

Li2CO3: 0.9 euro/kg

Na2CO3: 0.08 euro/kg

Abundance :

Na+ = Li+ x 105 !

Potential :

Li+/Li: -3.05 V

Na+/Na: -2.71V

Capacity :

Li+/Li: 3860 mAh/g

Na+/Na: 1166 mAh/g

� Alternative to Li-ion at lower cost ; -30% energy density

� Mass storage (renewable, grids…)

1.4 Perspectives : Na vs Li

1.4 Perspectives : Li-S batteries

16Li + S8 � 8Li2S ; OCV = 2.4V

Reactions at the cathode can be schematically described as follows:

3/4 S8 + 2 Li+ + 2ē �Li2S6 (1)

2/3 Li2S6 + 2/3 Li+ + 2/3 ē � Li2S4 (2)

3/4 Li2S4 + 1/2 Li+ + 1/2 ē � Li2S3 (3)

2/3Li2S3 + 2/3 Li+ + 2/3 ē � Li2S2 (4)

1/2Li2S2 + Li+ + ē � Li2S (5)

(3) can be as well Li2S4 + 4e- + 4Li � Li2S2 + 2 Li2S

P. Bruce et al. Nature Materials 11 (2012) 19-29

One solution: sulfur confinement in porous carbon

From confinement to adsorption on polar solid electronic conductor

Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Nature communications 2014

200 nm

Ti4O7 / S composites (70% wt)

Li-S : old-fashion technology (50 years old) but

Recent advances in favor of a fast commercialization

…. well ahead Metal-Air systems!!!

1.4 Perspectives: Li-S batteries

The End of the Li-ion ?????

NATURE, April 8th, 20015

1.5 News: Al-ion battery

Al-ion : - Cell voltage 2 V, C=60 mAh/g, ionic liquid,

- Negative electrode = Al foam, positive = Carbon foam � vol energy??

- One charge per Al complex!!!!

� grav. Energy 5 to 10 times lower, low vol. energy…

� Interesting concept but long and winding road to replace Li !!

1.5 News: Al-ion battery…

23

ENVIA (http://enviasystems.com/) made a recent announcement on the 450

Wh/kg batteries using Si-based anode.

1.5 The ENVIA battery…

400 Wh/kg: very high energy density…

…but: thick electrodes, low rates and soft packaging

Outline

1. Batteries

- Basics

- Li-ion batteries

- Perspectives

3. The French Network on Batteries

2. Supercapacitors

- Basic principe

- Applications

- Microporous carbons

Electrochemical Energy Storage devices

Supercapacitors:

- high power (15-20 kW/kg)

- medium energy: 5 Wh/kg

- time constant: ~ 10 s

From P. Simon, Y. Gogotsi , Nature Materials, 7 (2008) 845-854

Batteries:

- high energy (250 Wh/kg)

- low P : up to kW/kg

- time constant: 10’s min

Batteries and Supercapacitors : complementary devices

2.1 Charge storage mechanism in EDLCs

Charge storage: electrostatic (Double Layer Capacitance)

� Non-aqueous electrolyte

� ∆Emax = 2,7 V

� High Surface Area carbon

SSA ≈ 1500 m².g-1

� > 100 F.g-1 of carbon

Caracteristics :

- Surface Storage: low E but high P

- Vcharge = Vdischarge

- low ∆vol. : cyclability > 1 million cycles

Porous carbon

2 nm

C = (ε0 εr S) / d

C ≈ 10 – 20 µF/cm²

2.2 Applications: power delivery

16 powered by 35 V / 28.5 F modules (Maxwell)

(14 series-connected of 4 SC 100F in parallel)

• A380 door emergency opening

http://www.airbus.com (Maxwell)

2.2 Applications : energy recovery

SC modules:

1) braking energy recovery

2) electric drive (100’s m)

Collaboration Alstom / Batscap

Source : Alstom

Starter/Alternator and recovery

micro-hybrid e-Hdi Citroen C3,

C4, C5 diesel (2012)

• -15 % gasoil

• CO2 < 130g per km

Credit: Argone Nal Lab

http://www.citroen.fr/citroen-ds4/technologies/#/citroen-ds4/technologies/

2.2 Applications: HEV

http://www.leblogauto.com/2011/11/mazda-i-eloop-place-au-

supercondensateur.html

Mazda: i-ELOOP concept

http://www.turbo.fr/peugeot/peugeot-308/essai-auto/410344-essai-peugeot-308/

Peugeot: e-HDI 308 1.6 HDi 110 ch

Blue Tram de Blue Solutions (Bolloré)

- electric drive: supercapacitors

- 1.5 km autonomy

Key interest: charging rate (60 s), cyclability, cost (facteur 10)

Plant opened last February 2015

50 Blue Tram per year

2.2 Applications : electric drive

� high SSA >1500 m2/g

2.3 Active Materials in EDLCs: porous carbons

BUT

Activated carbons

Pore Size

Distribution

Activated Carbon =

Porous carbons

Carbon

powder

Coconut Shell

Capacitance increase in carbon micropores (<1nm), electrolyte AN+1M (C2H5)4+,BF4

-

Capacitance increase in nanopores < 1 nm:

� paradigm change

� new concept to prepare carbonsJ. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon and P.L. Taberna., Science 313, 1760-1763 (2006)

Pores < size of

solvated ions

accessibles to

ions!

Huge

capacitance

increase in

nanopores:

+100%!

2.3 Microporous carbons

C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi and P. Simon JACS, 130 (9), 2730 -2731 (2008)

P. Simon, Y. Gogotsi Nature Materials, 7 (2008) 845-854

Maximum C at ~ 0,72 nm � when ion size ~ pore size... WHY??

No solvent, cation size ≈ anion size:

2.3 CDCs in neat EMI,TFISI electrolyte

AC

Ionic Liquids: no solvent (only molten salts) � no solvation shell

1. Electrolyte is inside pores even at Ψ=0V: not an electrosorption driven process

2.3 MD modeling of BMI,PF6 in CDCs

électrolyte = EMI-PF6 (100°C)

CDC CDC

Potential

1. Electrolyte is inside pores even at Ψ=0V

2. Ion exchange with the electrolyte bulk !

3. Coordination number of ions decreases inside the pores (“desolvation”)

C. Merlet, B. Rotenberg, P.A. Madden, P.L. Taberna, Y. Gogotsi, P. Simon, M. Salanne, Nature Materials (2012)

C. Merlet, C. Pean, B. Rotenberg, P.A. Madden, P.L. Taberna, P. Simon, M. Salanne, Nature Communications (2013) 27010

2.3 MD modeling of BMI,PF6 in CDCs

2.4 Perspectives for supercapacitors

1. Increase carbon capacitance (EDLC)design porous carbons to maximize capacitance

� understand the ion size /carbon pore size

relationship

Increase energy density (E=1/2 C.V²) from 5 to >10 Wh/kg

� tdischarge > 10s

3. Increase the cell voltage� ionic liquids-based electrolytes

� hybrid devices (Li-ion capacitor)

2. Fast redox materials� design nanostructured materials for high

capacitance and high power

Ex: Nano-structured Nb2O5

V. Augustin, J. Come, P.L. Taberna, S. Tolbert, H. Abruna, P. Simon , B. Dunn, Nature Materials 2013

3. The French network on batteries (RS2E)

GOALS

• address scientific and technologic

issues of current and future

electrochemical storage systems for

mobile and stationary applications

• improve knowledge and technology

transfer from research to industry

• develop the French expertise in the

field

RS2E|Réseau sur le Stockage

Electrochimique de l’Energie

= Research network on

Electrochemical Energy StorageWHEN ?SINCE 2011

Director: J.-M. Tarascon

Deputy Director: P. Simon

FUTURE HEADQUARTERS IN AMIENS (12/2016)

3. The RS2E network: organization

Academic Research Center

� 15 National research labs

LRCS , LG (Amiens)

CIRIMAT (Toulouse)

ICG-AIME (Montpellier)

IPREM (Pau)

ICMCB (Bordeaux)

IMN (Nantes)

ICR & MADIREL (Marseille)

CEMHTI (Orléans)

LCMCP, PECSA (Paris)

IS2M (Mulhouse)

LEPMI (Grenoble)

IRCICA (Lille)

Technological Transfer Center

INDUSTRIAL CLUB

RESEARCH TOPICS

CROSS CUTING

RESEARCH

Advanced Li-ion (materials,

formulation, electrolytes…)

Capacitive Storage

(nanostructuredmaterials, carbons,

pseudocapacitives…)

Eco-compatible

Storage (synthesis,

biomineralization, organic redox, ACV-

recycling…)

New Chemistries

(Li-S, Na-ion, redox-flow, solid-state

batteries…)

Smart Materials

(faradic/photovolatïc, 3D microbatteries,

micro SC…)

Safety(ageing, additives,

Thermal and electrochemical

stability)

Theory(combinatory approach,

Transfer limitations,

System modelling)

Instrumentation(in-situ techniques

(XRD, HRTEM, HREELS,

Synchrotron access))

PRE-TRANSFERT

CELLS

(safety, up-

scaling materials,

BMS, pre-

prototyping)

3.1 The RS2E network: research topics

Focus on two recent achievements:

3.2 Recent achievements within the RS2E

1. Advanced Li-ion batteries: improving the capacity (Ah)

- high capacity Li-rich cathode

3. Sodium-ion batteries: an alternative to Li-ion for grid storage?

- Na-ion battery « Task Force »

2. Supercapacitor

� basic understanding of ion transfer in nanopores

3.2 The Li-rich NMC phases

N. Yabuuchi et al. ECS meeting November 2013

Direct evidence of cumulative cationic (Mn+ � M(n+1)+)

and anionic (O2− � O22−) redox

processes!!

Feasibility of using previously

disregarded heavy 4d-metals!!

� Opens new paths for high capacity materials

J.M. Tarascon et al, Nature Materials 9 (2013) 827-835 J.M. Tarascon et al, Nature Materials 14 (2014) 230-238

Focus on two recent achievements:

3.2 Recent achievements within the RS2E

1. Advanced Li-ion batteries: improving the capacity (Ah)

- high capacity Li-rich cathode

3. Sodium-ion batteries: an alternative to Li-ion for grid storage?

- Na-ion battery « Task Force »

2. Supercapacitor

� basic understanding of ion transfer in nanopores

Different storage mechanism with electrode polarity: Positive electrode: anion in / cations out � ion exchange

Negative electrode: cation in (desolvated), anions constant � counter ion adsorption

3.2 Supercapacitor: In-situ NMR

NMR spectra at various potentials: in-pore ion population

0.2

0.4

0.6

0.8

1

1.2

1.4

-1.5 -1 -0.5 0 0.5 1 1.5

ion

popu

latio

n (m

mol

/g)

Cell voltage (V)

Cations �

Anions

constant

anions

cations

PEt4+

BF4−

Cations �

Anions �

PEt4+

BF4−

J. Griffin, A. Forse, W.-Y. Tsai, P.-L. Taberna, P. Simon, C. Grey, Nature Materials, 2015, 14, 812-819

Why ? � Key concerns to address to design optimized carbon structures

Focus on two recent achievements:

3.2 Recent achievements within the RS2E

1. Advanced Li-ion batteries: improving the capacity (Ah)

- high capacity Li-rich cathode

3. Sodium-ion batteries: an alternative to Li-ion for grid storage?

- Na-ion battery « Task Force »

2. Supercapacitor

� basic understanding of ion transfer in nanopores

● Na+ to replace Li+: Na-ion

Cost :

Li2CO3: 0.9 euro/kg

Na2CO3: 0.08 euro/kg

Abundance :

Na+ = Li+ x 105 !

Potential :

Li+/Li: -3.05 V

Na+/Na: -2.71V

Capacity :

Li+/Li: 3860 mAh/g

Na+/Na: 1166 mAh/g

� Alternative to Li-ion at lower cost ; -30% energy density

� Mass storage (renewable, grids…)

1.4 Perspectives : Na vs Li

3. RS2E: Na-ion from Lab…to battery prototypes

Na-ion battery prototypes

i) 90 Wh/kg

ii) 140 Wh/l

(not optimized)

6 patents + several under progress

Next steps:

- tests (rates, cyclabiltiy, ageing with T…)

- improving the performance (material optimization, move to Sb…)

- cost model

Thanks...

Some members of the RS2E team

www.energie-rs2e.com/en

Merci pour votre attention