bayesncsu qtl ii: yandell © 20051 bayesian interval mapping 1.what is bayes? bayes theorem? 2-6...

32
Bayes NCSU QTL II: Yandell © 20 05 1 Bayesian Interval Mapping 1. what is Bayes? Bayes theorem? 2-6 2. Bayesian QTL mapping 7-17 3. Markov chain sampling 18-25 4. sampling across architectures26-32

Upload: may-lewis

Post on 18-Jan-2016

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 1

Bayesian Interval Mapping

1. what is Bayes? Bayes theorem? 2-6

2. Bayesian QTL mapping 7-17

3. Markov chain sampling 18-25

4. sampling across architectures 26-32

Page 2: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 2

• Reverend Thomas Bayes (1702-1761)– part-time mathematician

– buried in Bunhill Cemetary, Moongate, London

– famous paper in 1763 Phil Trans Roy Soc London– was Bayes the first with this idea? (Laplace?)

• basic idea (from Bayes’ original example)– two billiard balls tossed at random (uniform) on table

– where is first ball if the second is to its left (right)?

1. who was Bayes? what is Bayes theorem?

prior pr() = 1likelihood pr(Y | )= 1–Y(1–)Y

posterior pr( |Y) = ?

Y=0 Y=1

firstsecond

Page 3: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 3

what is Bayes theorem?• where is first ball if the second is to its left (right)?• prior: probability of parameter before observing data

– pr( ) = pr( parameter )– equal chance of being anywhere on the table

• posterior: probability of parameter after observing data– pr( | Y ) = pr( parameter | data )– more likely to left if first ball is toward the right end of table

• likelihood: probability of data given parameters– pr( Y | ) = pr( data | parameter )– basis for classical statistical inference

• Bayes theorem– posterior = likelihood * prior / pr( data )– normalizing constant pr( Y ) often drops out of calculation

)(pr

)(pr)|(pr

)(pr

),(pr)|(pr

Y

Y

Y

YY

Y=0 Y=1

Page 4: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 4

where is the second ball given the first?

1 if)1(2

0 if2

)(pr

)(pr)|(pr)|pr( :posterior

2

1)(pr :marginal

1 if1

0 if)|(pr :likelihood

1)pr( :prior

Y

Y

Y

YY

Y

Y

YY

prior pr() = 1likelihood pr(Y | )= 1–Y(1- )Y

posterior pr( |Y) = ?

Y=0 Y=1

first ballsecond ball

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

Y 0

Y 1

pr

|Y

Page 5: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 5

Bayes posterior for normal data

large prior variancesmall prior variance

6 8 10 12 14 16

y = phenotype values

n la

rge

n s

ma

llp

rio

r

6 8 10 12 14 16

y = phenotype values

n la

rge

n s

ma

llp

rio

rp

rio

r

actu

al m

ean

prio

r m

ean

actu

al m

ean

prio

r m

ean

Page 6: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 6

model Yi = + Ei

environment E ~ N( 0, 2 ), 2 known likelihood Y ~ N( , 2 )prior ~ N( 0, 2 ), known

posterior: mean tends to sample meansingle individual ~ N( 0 + B1(Y1 – 0), B12)

sample of n individuals

fudge factor(shrinks to 1)

Bayes posterior for normal data

11

/sumwith

/,)1(~

},...,1{

20

n

nB

nYY

nBBYBN

n

ini

nnn

Page 7: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 7

2. Bayesian QTL mapping• observed measurements

– Y = phenotypic trait– X = markers & linkage map

• i = individual index 1,…,n

• missing data– missing marker data– Q = QT genotypes

• alleles QQ, Qq, or qq at locus

• unknown quantities of interest = QT locus (or loci) = phenotype model parameters– m = number of QTL– M = genetic model = genetic architecture

• pr(Q|X,) recombination model– grounded by linkage map, experimental cross– recombination yields multinomial for Q given X

• pr(Y|Q,) phenotype model– distribution shape (could be assumed normal) – unknown parameters (could be non-parametric)

observed X Y

missing Q

unknown

afterSen Churchill (2001)

M

Page 8: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 8

QTL

Marker Trait

QTL Mapping (Gary Churchill)

Key Idea: Crossing two inbred lines creates linkage disequilibrium which in turn creates associations and linked segregating QTL

Page 9: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 9

2r

1X 2X 3X 4X 5X 6X

5r4r3r1r

pr(Q|X,) recombination modelpr(Q|X,) = pr(geno | map, locus)

pr(geno | flanking markers, locus)

distance along chromosome

Q?

recombination rates

markers

Page 10: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 10

pr(Y|Q,) phenotype model• pr( trait | genotype, effects )• trait = genetic + environment• assume genetic uncorrelated with environment

2

2

2

)var(

)var(

),(~

),|(pr

e

G

eGY

GNY

qQY

Gq

q

q

8 9 10 11 12 13 14 15 16 17 18 19 20

qq QQ

Qq

Y

GQQ

Page 11: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 11

Bayesian priors for QTL• missing genotypes Q

– pr( Q | X, )– recombination model is formally a prior

• effects = ( G, 2 )– pr( ) = pr( Gq | 2 ) pr(2 ) – use conjugate priors for normal phenotype

• pr( Gq | 2 ) = normal• pr(2 ) = inverse chi-square

• each locus may be uniform over genome– pr( | X ) = 1 / length of genome

• combined prior– pr( Q, , | X ) = pr( Q | X, ) pr( ) pr( | X )

Page 12: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 12

Bayesian model posterior• augment data (Y,X) with unknowns Q• study unknowns (,,Q) given data (Y,X)

– properties of posterior pr(,,Q | Y, X )

• sample from posterior in some clever way– multiple imputation or MCMC

),|,,(pr sum),|,(pr

)|(pr

)|(pr)(pr),|(pr),|(pr),|,,(pr

XYQXY

XY

XXQQYXYQ

Q

Page 13: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 13

how does phenotype Y improve posterior for genotype Q?

90

100

110

120

D4Mit41D4Mit214

Genotype

bp

AAAA

ABAA

AAAB

ABAB

what are probabilitiesfor genotype Qbetween markers?

recombinants AA:AB

all 1:1 if ignore Yand if we use Y?

Page 14: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 14

posterior on QTL genotypes• full conditional for Q depends data for individual i

– proportional to prior pr(Q | Xi, )• weight toward Q that agrees with flanking markers

– proportional to likelihood pr(Yi|Q,)• weight toward Q=q so that group mean Gq Yi

• phenotype and prior recombination may conflict– posterior recombination balances these two weights

),,|(pr

),|(pr),|(pr),,,|(pr

ii

iiii XY

QYXQXYQ

Page 15: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 15

posterior genotypic means Gq

6 8 10 12 14 16

y = phenotype values

n la

rge

n la

rge

n s

ma

llp

rio

r

qq Qq QQ

Page 16: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 16

posterior centered on sample genotypic meanbut shrunken slightly toward overall mean

prior:

posterior:

fudge factor:

posterior genotypic means Gq

11

/sum},{count

/,)1(~

,~

}{

2

2

q

qq

qiqQ

qiq

qqqqqq

q

n

nB

nYYqQn

nBYBYBNG

YNG

i

Page 17: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 17

What if variance 2 is unknown?• sample variance is proportional to chi-square

– ns2 / 2 ~ 2 ( n )– likelihood of sample variance s2 given n, 2

• conjugate prior is inverse chi-square 2 / 2 ~ 2 ( )– prior of population variance 2 given , 2

• posterior is weighted average of likelihood and prior– (2+ns2) / 2 ~ 2 ( +n )– posterior of population variance 2 given n, s2, , 2

• empirical choice of hyper-parameters 2= s2/3, =6– E(2 | ,2) = s2/2, Var(2 | ,2) = s4/4

Page 18: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 18

3. Markov chain sampling of architectures

• construct Markov chain around posterior– want posterior as stable distribution of Markov chain– in practice, the chain tends toward stable distribution

• initial values may have low posterior probability• burn-in period to get chain mixing well

• hard to sample (Q, , , M) from joint posterior– update (Q,,) from full conditionals for model M– update genetic model M

NMQMQMQ

XYMQMQ

),,,(),,,(),,,(

),|,,,(pr~),,,(

21

Page 19: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 19

Gibbs sampler idea• toy problem

– want to study two correlated effects– could sample directly from their bivariate distribution

• instead use Gibbs sampler:– sample each effect from its full conditional given the other– pick order of sampling at random– repeat many times

2

1122

22211

2

1

2

1

1),(~

1),(~

1

1,~

GNG

GNG

NG

G

Page 20: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 20

Gibbs sampler samples: = 0.6

0 10 20 30 40 50

-2-1

01

2

Markov chain index

Gib

bs:

mea

n 1

0 10 20 30 40 50

-2-1

01

23

Markov chain index

Gib

bs:

mea

n 2

-2 -1 0 1 2

-2-1

01

23

Gibbs: mean 1

Gib

bs:

mea

n 2

-2 -1 0 1 2

-2-1

01

23

Gibbs: mean 1

Gib

bs:

mea

n 2

0 50 100 150 200

-2-1

01

23

Markov chain index

Gib

bs:

mea

n 1

0 50 100 150 200

-2-1

01

2

Markov chain index

Gib

bs:

mea

n 2

-2 -1 0 1 2 3

-2-1

01

2

Gibbs: mean 1

Gib

bs:

mea

n 2

-2 -1 0 1 2 3

-2-1

01

2

Gibbs: mean 1

Gib

bs:

mea

n 2

N = 50 samples N = 200 samples

Page 21: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 21

MCMC sampling of (,Q,)• Gibbs sampler

– genotypes Q– effects = ( G, 2 )– not loci

• Metropolis-Hastings sampler– extension of Gibbs sampler– does not require normalization

• pr( Q | X ) = sum pr( Q | X, ) pr( )

)|(pr

)|(pr),|(pr~

)|(pr

)(pr),|(pr~

),,,|(pr~

XQ

XXQ

QY

QY

XYQQ ii

Page 22: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 22

Metropolis-Hastings idea• want to study distribution f()

– take Monte Carlo samples• unless too complicated

– take samples using ratios of f• Metropolis-Hastings samples:

– current sample value – propose new value *

• from some distribution g(,*)• Gibbs sampler: g(,*) = f(*)

– accept new value with prob A• Gibbs sampler: A = 1

),()(

),()(,1min

*

**

gf

gfA

0 2 4 6 8 10

0.0

0.2

0.4

-4 -2 0 2 4

0.0

0.2

0.4

f()

g(–*)

Page 23: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 23

Metropolis-Hastings samples

0 2 4 6 8

050

150

mcm

c se

quen

ce

0 2 4 6 8

02

46

pr(

|Y)

0 2 4 6 8

050

150

mcm

c se

quen

ce

0 2 4 6 8

0.0

0.4

0.8

1.2

pr(

|Y)

0 2 4 6 8

040

080

0

mcm

c se

quen

ce

0 2 4 6 8

0.0

1.0

2.0

pr(

|Y)

0 2 4 6 8

040

080

0

mcm

c se

quen

ce

0 2 4 6 8

0.0

0.2

0.4

0.6

pr(

|Y)

N = 200 samples N = 1000 samplesnarrow g wide g narrow g wide g

Page 24: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 24

full conditional for locus• cannot easily sample from locus full conditional

pr( |Y,X,,Q) = pr( | X,Q)= pr( Q | X, ) pr( ) /

constant• constant is very difficult to compute explicitly

– must average over all possible loci over genome– must do this for every possible genotype Q

• Gibbs sampler will not work in general– but can use method based on ratios of probabilities– Metropolis-Hastings is extension of Gibbs sampler

Page 25: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 25

Metropolis-Hastings Step

• pick new locus based upon current locus– propose new locus from some distribution g( )

• pick value near current one? (usually)

• pick uniformly across genome? (sometimes)

– accept new locus with probability A• otherwise stick with current value

),(),|(pr)(pr

),(),|(pr)(pr,1min),(

newoldoldold

oldnewnewnewnewold gXQ

gXQA

Page 26: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 26

4. sampling across architectures • search across genetic architectures M of various

sizes– allow change in m = number of QTL– allow change in types of epistatic interactions

• methods for search– reversible jump MCMC– Gibbs sampler with loci indicators

• complexity of epistasis– Fisher-Cockerham effects model– general multi-QTL interaction & limits of inference

Page 27: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 27

search across genetic architectures

• think model selection in multiple regression– but regressors (QTL genotypes) are unknown

• linked loci are collinear regressors– correlated effects

• consider only main genetic effects here– epistasis just gets more complicated

or 211 qqqqq

GG

Page 28: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 28

model selection in regression

• consider known genotypes Q at 2 known loci – models with 1 or 2 QTL

• jump between 1-QTL and 2-QTL models• adjust parameters when model changes

q1 estimate changes between models 1 and 2– due to collinearity of QTL genotypes

21

1

:2

:1

qqq

qq

Gm

Gm

Page 29: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 29

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

b1

b2

c21 = 0.7

Move Between Models

m=1

m=2

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

b1

b2

Reversible Jump Sequence

geometry of reversible jump

1 1

2

2

Page 30: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 30

0.05 0.10 0.15

0.0

0.05

0.10

0.15

b1

b2

a short sequence

-0.3 -0.1 0.1

0.0

0.1

0.2

0.3

0.4

first 1000 with m<3

b1

b2

-0.2 0.0 0.2

geometry allowing Q and to change

1 1

2

2

Page 31: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 31

reversible jump MCMC idea

• Metropolis-Hastings updates: draw one of three choices– update m-QTL model with probability 1-b(m+1)-d(m)

• update current model using full conditionals• sample m QTL loci, effects, and genotypes

– add a locus with probability b(m+1)• propose a new locus and innovate new genotypes & genotypic effect• decide whether to accept the “birth” of new locus

– drop a locus with probability d(m)• propose dropping one of existing loci• decide whether to accept the “death” of locus

• Satagopan Yandell (1996, 1998); Sillanpaa Arjas (1998); Stevens Fisch (1998)

– these build on RJ-MCMC idea of Green (1995); Richardson Green (1997)

0 L1 m+1 m2 …

Page 32: BayesNCSU QTL II: Yandell © 20051 Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? 2-6 2.Bayesian QTL mapping7-17 3.Markov chain sampling18-25

Bayes NCSU QTL II: Yandell © 2005 32

Gibbs sampler with loci indicators • consider only QTL at pseudomarkers

– every 1-2 cM– modest approximation with little bias

• use loci indicators in each pseudomarker = 1 if QTL present = 0 if no QTL present

• Gibbs sampler on loci indicators – relatively easy to incorporate epistasis– Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 Genetics)

• (see earlier work of Nengjun Yi and Ina Hoeschele)

2211 qqq

G