bee 312 portfolio final

14
EcoHydraulic Engineering Homework 5 Engineered Log Jam Design Coral West Feburary 11, 2015 PROBLEM STATEMENT Opal Creek Ancient Forest Center is facing lateral erosion on a steep stream bank toe. It is desirable to build an engineered log jam (ELJ) structure to prevent further lateral erosion. Seven locally sourced Doug Fir trees will be used at no cost to build the structure. The logs will be an average 35 feet in length with root wads intact. It is requested by the property owner that the bank be protected up to the 25 RYI. The method for designing an EJL incorporates a factor of safety (FOS) of at least 2.0 for all calculations. The factor of safety in this instance is high due to the unpredictable and complex nature of the structure and its surroundings. It is imperative for the owner to use a high FOS, regardless of extra cost. Catastrophic failure can cause flooding and other high costs to the owner. The buoyancy FOS will affect the size and number of boulders used to stabilize the structure against the force of buoyancy. The sliding FOS is the determining factor for calculating the effective obstructed area by the ELJ. The Froude number is utilized to estimate scour depths, which are important for creek fauna habitat but can also cause failure in the structure. Using the ELJ Calculator and Rock Density Cost Spreadsheets recommendations were provided. It is recommended that there be three base, two stacked, and two top members of the ELJ. There are more logs as base members are recommended to keep more of the structure in contact with the bed in order to promote scour and pool formation. In order to keep the structure stabilized fourRfoot boulders are suggested with a total of 25 boulders evenly distributed throughout the structure. These recommendations provide a buoyancy FOS of 2.0 with a cost of $1,380 for the boulders. Utilizing the Sliding FOS spreadsheet, the effective waterway area obstructed by the EJL was calculated to get a FOS above 2.0. This area was calculated to be 138Rft 2 . Last, the Froude number was used to estimate scour depths caused by the ELJ. It was calculated that for Froude numbers 0.3 and 1.2, the scour depths were of considerable concern and action should be taken to decrease these values.

Upload: coral-west

Post on 25-Jan-2017

125 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BEE 312 Portfolio Final

!!

EcoHydraulic,Engineering,Homework,5,Engineered(Log(Jam(Design(

Coral(West((Feburary(11,(2015(!

PROBLEM,STATEMENT(! Opal!Creek!Ancient!Forest!Center!is!facing!lateral!erosion!on!a!steep!stream!

bank!toe.!!It!is!desirable!to!build!an!engineered!log!jam!(ELJ)!structure!to!prevent!

further!lateral!erosion.!!Seven!locally!sourced!Doug!Fir!trees!will!be!used!at!no!cost!

to!build!the!structure.!!The!logs!will!be!an!average!35!feet!in!length!with!root!wads!

intact.!It!is!requested!by!the!property!owner!that!the!bank!be!protected!up!to!the!25!

RYI.!!!

! The!method!for!designing!an!EJL!incorporates!a!factor!of!safety!(FOS)!of!at!

least!2.0!for!all!calculations.!!The!factor!of!safety!in!this!instance!is!high!due!to!the!

unpredictable!and!complex!nature!of!the!structure!and!its!surroundings.!!It!is!

imperative!for!the!owner!to!use!a!high!FOS,!regardless!of!extra!cost.!!Catastrophic!

failure!can!cause!flooding!and!other!high!costs!to!the!owner.!The!buoyancy!FOS!will!

affect!the!size!and!number!of!boulders!used!to!stabilize!the!structure!against!the!

force!of!buoyancy.!!The!sliding!FOS!is!the!determining!factor!for!calculating!the!

effective!obstructed!area!by!the!ELJ.!!The!Froude!number!is!utilized!to!estimate!

scour!depths,!which!are!important!for!creek!fauna!habitat!but!can!also!cause!failure!

in!the!structure.!

! Using!the!ELJ!Calculator!and!Rock!Density!Cost!Spreadsheets!

recommendations!were!provided.!!It!is!recommended!that!there!be!three!base,!two!

stacked,!and!two!top!members!of!the!ELJ.!!There!are!more!logs!as!base!members!are!

recommended!to!keep!more!of!the!structure!in!contact!with!the!bed!in!order!to!

promote!scour!and!pool!formation.!!!

In!order!to!keep!the!structure!stabilized!fourRfoot!boulders!are!suggested!

with!a!total!of!25!boulders!evenly!distributed!throughout!the!structure.!!These!

recommendations!provide!a!buoyancy!FOS!of!2.0!with!a!cost!of!$1,380!for!the!

boulders.!!Utilizing!the!Sliding!FOS!spreadsheet,!the!effective!waterway!area!

obstructed!by!the!EJL!was!calculated!to!get!a!FOS!above!2.0.!!This!area!was!

calculated!to!be!138Rft2.!!!

Last,!the!Froude!number!was!used!to!estimate!scour!depths!caused!by!the!

ELJ.!It!was!calculated!that!for!Froude!numbers!0.3!and!1.2,!the!scour!depths!were!of!

considerable!concern!and!action!should!be!taken!to!decrease!these!values.!!!

!

Page 2: BEE 312 Portfolio Final

Example!of!ELJ:!

!a) Recommendations!for!base,!stacked,!and!top!members!(Buoyancy!FOS!Sheet):!

o Log!Characteristics:!

! Root!Wad!Diameter!=!5’!

! Root!Wad!Length!=!2.5’!

! Proportion!of!Voids!=!20%!

! Stem!Diameter!=!2.8’!

! Average!Length!=!35’!

o I!recommend!3!key!“base”!members,!2!stacked!“middle”!members,!and!2!top!

members.!!The!factor!of!safety!can!be!used!as!a!design!criterion!to!ensure!

that!the!logjam!will!not!float!and!be!sufficient!against!the!force!of!buoyancy.!

More!logs!as!base!members!are!recommended!to!keep!more!of!the!structure!

in!contact!with!the!bed!in!order!to!promote!scour!and!pool!formation.!

b) Boulder!size!and!number!recommendation!(Buoyancy!FOS!Sheet!&!Rock!Density!Cost!Sheet):!

o I!recommend!boulders!4!feet!in!size.!!According!to!the!table!below,!2!foot!

boulders!would!be!less!expensive,!however,!due!to!the!vast!amount!of!

boulders!needed!to!provide!a!factor!of!safety!of!2!and!the!likelihood!of!

boulders!shifting!due!to!forces!such!as!buoyancy!and!sliding,!one!should!

consider!a!larger!boulder.!!With!the!fourRfoot!boulder,!I!recommend!that!13!

be!submerged!and!12!be!above!water.!!Balancing!the!boulders!throughout!

the!structure!should!create!stability!in!the!case!of!a!flood!or!other!fast!

changes!in!flow.!!

!

!

!

!

!

!

!

Page 3: BEE 312 Portfolio Final

!

!

Boulder Size (ft) Cost ($)

1 $1,372.50 2 $1,345.50 3 $1,398.00 4 $1,382.50 5 $1,402.70 6 $1,492.00 7 $1,481.00 8 $1,768.40 9 $1,888.50

10 $1,727.00 o !

c) !Effective!obstructed!(by!ELJ)!area!recommendation!(Sliding!FOS!Sheet):!o Simple!estimation!of!effective!waterway!area!obstructed!by!ELJ:!

3 2.8!!" ∗ 35!!" = 295!!"!!o This!is!a!rough!estimation,!not!taking!into!effect!unique!root!wad!shape,!

changing!tree!diameter,!and!the!fact!that!some!layers!of!the!logjam!would!be!

perpendicular!against!flow.!!With!this!estimated!area!obstructed,!the!factor!

of!safety!for!sliding!is!1.2.!!

o If!we!were!to!calculate!the!estimated!area!obstructed!with!the!middle!tree!

layer!being!perpendicular!to!flow:!

! Bottom!Layer:!

3(2.8!!") ∗ 2.8!!" = 24!!"!!! Middle!Layer:!

2.8!!" ∗ !35!!" = 98!!"!!! Top!Layer:!

2(2.8!!") ∗ 2.8!!" = 16!!"!!! Total:!138!ft2!

! Factor!of!Safety!=!3.0!

d) Froude!Number!Calculations!and!Scour!Depth:!o Fr!=!0.3!!

! Scour!Depth!=!19!feet!

o Fr!=!1.2!

! Scour!Depth!29!feet!

o These!scour!depths!are!of!considerable!concern!considering!that!they!are!

both!deeper!than!the!ELJ!is!tall.!!The!Froude!number!is!velocity!over!the!

wave!celerity.!At!values!above!one,!the!flow!is!considered!to!be!supercritical!

with!a!fast!rapid!flow.!!While,!values!below!one!are!considered!to!be!

subcritical!with!a!slower,!tranquil!flow.!Rapid!supercritical!flow!is!going!to!

hug!the!stream!bank!and!create!considerably!more!scour!than!a!slower!flow.!

The!denominator!of!the!Froude!number!has!the!value!of!hydraulic!depth.!!As!

Page 4: BEE 312 Portfolio Final

depth!increases,!the!Froude!number!decreases!and!becomes!a!more!

desirable!value.!!If!possible,!I!recommend!considering!constructing!a!ELJ!in!a!

deeper!part!of!the!river!so!scour!will!not!be!such!a!large!issue.!!!

Page 5: BEE 312 Portfolio Final

KEY "BASE" MEMBERSNumber of Logs with Rootwads NL = 3Specific Gravity of Large Wood SL = 0.50 specific gravityAverage Rootwad Diameter DRW = 5 feet Wood Volume = 255 cubic feet per memberAverage Rootwad Length LRW = 2.5 feetProportion of Voids in Rootwad p = 0.2 decimal %Tree Stem Average Diameter DTS = 2.8 feetTree Stem Average Length LTS = 35 feet FBL = 23,843 pounds

STACKED "MIDDLE" MEMBERSNumber of Logs with Rootwads NL = 2Specific Gravity of Large Wood SL = 0.50Average Rootwad Diameter DRW = 5 feet Wood Volume = 255 cubic feet per memberAverage Rootwad Length LRW = 2.5 feetProportion of Voids in Rootwad p = 0.2 decimal %Tree Stem Average Diameter DTS = 2.8 feetTree Stem Average Length LTS = 35 feet FBL = 15,896 pounds

TOP MEMBERSNumber of Logs with Rootwads NL = 2Specific Gravity of Large Wood SL = 0.50Average Rootwad Diameter DRW = 5 feet Wood Volume = 255 cubic feet per memberAverage Rootwad Length LRW = 2.5 feetProportion of Voids in Rootwad p = 0.2 decimal %Tree Stem Average Diameter DTS = 2.8 feetTree Stem Average Length LTS = 35 feet FBL = 15,896 pounds

BOULDER BALLASTSpecific Gravity of Boulders SS = 2.65

equivalent Diameter of Boulder DB = 4.0 feetNumber of Boulders Submerged NB = 13

Number of Boulders above water level NBU = 12 W' = 3,450 (pounds) effective weight per submerged boulderW = 5,541 (pounds) weight per boulder

Total Effective Weight for all Boulders = 111,339 pounds

FACTOR OF SAFETY: BUOYANCY

FSB = 2.0

Buoyancy Calculations for Engineered Log Jam Spreadsheet developed by Scott Wright, P.E. - NRCS Oregon - revision 1.2

Methodology based on a physics approach and information adapted from D'aoust & Millar (2000). The designer should attain a minimum factor of safety of 2.0 for the ELJ and the ELJ should act as a fully connected structure.

A simplified approach is used to estimate buoyancy where the logs and ballast boulders in the log jam are fully submerged. In addition, the log jam and boulders act as a composite structure and are assumed fully connected. Water velocity inside the log jam is highly turbulent and near zero, therefore vertical uplift forces are assumed negligible.A minimum factor of safety against buoyancy should be 1.5 with an ideal F.O.S. greater than 2.0.

LLwRWRWTSTS

BL NSgpLDLDF ⋅−⋅##$

%&&'

(−⋅+= )1()1(

44

22

ρππ

)1(6

3

−⋅=# SwB SgDW ρ

π

∑∑ "+

=BL

B FWW

FS)(

LLwRWRWTSTS

BL NSgpLDLDF ⋅−⋅##$

%&&'

(−⋅+= )1()1(

44

22

ρππ

LLwRWRWTSTS

BL NSgpLDLDF ⋅−⋅##$

%&&'

(−⋅+= )1()1(

44

22

ρππ

Douglas-fir, intermediate

Douglas-fir, intermediate

Douglas-fir, intermediate

Page 6: BEE 312 Portfolio Final

Rock Unit Weight 165.0 lb/ft^3Water Unit Weight 62.4 lb/ft^4

Rock Specific Gravity 2.7

Size (ft) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0Volume 0.5 4.2 14.1 33.5 65.4 113.0 179.5 267.9 381.5 523.3

Weight lbs 86.4 690.8 2331.5 5526.4 10793.8 18651.6 29618.1 44211.2 62949.2 86350.0Weight ton 0.0 0.3 1.2 2.8 5.4 9.3 14.8 22.1 31.5 43.2

Cost/ton 20.0Cost/rock 0.9 6.9 23.3 55.3 107.9 186.5 296.2 442.1 629.5 863.5

60 3 ft. 1398.930 5 ft 3238.1

4637.0

Page 7: BEE 312 Portfolio Final

Cross-sectional area from HEC-RAS output, upstream of ELJ A = 1840 sq. ft.Effective waterway area obstructed by ELJ AELJ = 138 sq. ft.

Drag Coeff. CD = 1.3Max Stream Velocity at ELJ V = 8.00 fps

Type of streambed sediment GravelФ = 35 degrees

APPARENT DRAG COEFFICIENT

CDapp = 1.52

FD = 13016 pounds

Friction Factor of Logs on streambed f = 0.70 tangent of internal angle of streambed material

FF = ( W' - FBL - FLB ) f = 39,005 pounds

FSS = 3.0

FACTOR OF SAFETY: SLIDING

Horizontal Drag Force on ELJ

Sliding Calculations for Engineered Log Jams Ballasted by Boulders

Spreadsheet developed by Scott Wright, P.E. - NRCS Oregon - revision 1.0

Horizontal Streambed Friction Resistance on ELJ

Calculations make several simplifying assumptions including 1) no resistance from burial of ELJ elements, 2) ELJ isa solid structure, 3) frictional resistance is based on streambed material and normal force, and 4) ELJ is fully submerged.

wELJappDD

VACF ρ⋅⋅⋅=2

2

∑∑=

DB

FS F

FFS

AA

BwhereBCC ELJDapp

D =−

= 2)1(

Page 8: BEE 312 Portfolio Final

!!!

EcoHydraulic,Engineering,Stable!Channel!Design!

Coral!West!Feburary!19,!2015!

!

PROBLEM,STATEMENT!The!city!of!Corvallis!is!in!need!of!a!bypass!channel!to!divert!dangerous!

flood!flows!around!the!city.!The!channel!is!going!to!be!on!a!slope!of!0.012.!!The!median!bed=material!size!is!given!to!be!55mm!(D50)!with!a!Manning’s!n!of!0.03.!!The!flow!rate!is!known!to!be!35!m3/s.!!! Two!approaches!were!taken!to!estimate!two!different!channel!dimensions.!!The!first!approach!utilizes!the!USBR!tractive!force!figure!to!identify!the!critical!shear!stress!for!the!given!D50!grain!size.!Using!the!shear!stress!equation,!the!depth!was!found.!!Width!of!the!channel!was!calculated!using!the!Manning’s!Equation.!!! The!second!approach!applied!the!Hjulstrom!Diagram!to!identify!the!velocity!in!order!to!avoid!erosion!and!sedimentation.!!The!velocity!is!then!used!in!the!Manning’s!Equation!to!find!the!second!channel!dimensions.!!! The!USBR!tractive!force!figure!yields!a!critical!shear!stress!of!4!kg/m2.!!The!shear!stress!diagram!yields!a!depth!of!0.3!meters.!!Utilizing!the!Manning’s!equation!give!a!width!of!12.4!meters.!!The!velocity!with!these!dimensions!is!about!9.4!m/s.!!According!to!the!Hjulstrom!Diagram,!this!velocity!will!most!likely!have!erosion!of!particles!from!bed.!!! Using!the!Hjulstrom!Diagram,!the!optimal!velocity!is!around!3.5!m/s.!!The!resultant!estimated!diameter!of!the!channel!has!a!width!of!7.2m!and!a!depth!of!1.4m.!These!results!will!avoid!issues!pertaining!to!erosion!and!deposition!in!the!bed.!!However,!the!depth!may!have!issues!because!of!the!high!resulting!shear!stress.!! Risks!of!erosion!and!deposition!in!a!flood!bypass!are!severe!and!should!be!avoided.!Both!erosion!and!deposition!can!cause!failure!by!changing!the!boundary!conditions.!Erosion!can!cause!unraveling!of!the!channel!and!a!factor!of!safety!should!be!built!into!the!procedure.!!One!possible!way!to!avoid!erosion!is!to!line!the!channel!with!grass.!!!! It!is!suggested!that!the!City!of!Corvallis!utilize!the!dimensions!found!with!the!Hjustrom!Diagram.!!The!channel!should!be!lined!with!a!suitable!grass!to!prevent!erosion!and!a!factor!of!safety!should!be!utilized!to!ensure!the!shear!stress!would!not!cause!failure!to!the!channel.!!

Page 9: BEE 312 Portfolio Final

Considering!a!rectangular!channel:!

!!Critical!Shear!Stress!Approach!

1) Critical!Shear!Stress!for!given!grain!size=!4500!g/m2!(0.0098N/g)!=!44!N/m2!

!

2) Calculate!y!using!! = !"#,!! = !!" =

(!!"!!)(!.!!!! )

(!"#$ !!!)(!.!"#)

= !0.3!!"#"$%!!!

Page 10: BEE 312 Portfolio Final

a. Where:!!!(Shear!Stress)!=!4!kg/m2!!

!!(Water!Density)!=!9810!N/m3!S!(Slope)!=!0.012!

!3) Calculate!Width:!!

!Manning’s!Equation:!

! = !" = !! ∗ !!! ∗ !

!!

! !

! ∗ !!! = ! ∗ !

!!!

= 9.6!

given!values:!

! = 35!!

! !! = 0.012!! = 0.03!! = 0.3!!!

!! = ! ∗ !!! = !

!" =! ∗ !! + 2!!

0.3b ∗ ( 0.3!! + 0.6)

!/! = 9.6!∴ b = !12.4!meters!

!!Therefore,!according!to!USBR!tractive!force!figure!the!critical!shear!stress!is!!4Vkg/m2.!!Utilizing!Manning’s!equation!the!resultant!dimensions!of!the!channel!is!0.3!meters!deep!and!12.4!meters!wide.!!!!!!!!!

!!!!!!!

Page 11: BEE 312 Portfolio Final

Critical!Velocity!Approach!!4) Critical!Velocity!is!between!2!and!5!m/s!according!to!this!Hjulstrom!Diagram!

(~3.5!m/s).!!

!5) Calculating!Width!

a. Manning’s!equation!!

! = ! !!!!!

!!

! !

!!!!!!

!!= !! = 3.5 ∗ 0.03

0. 012!!

!!≅ 1!!

Q = VA!

A = QV =

35!!s

3.5!!= 10!!!

R = ! !!" =10!!

!" = 1!WP = 10m!

!One!possible!area!of!the!channel!is!a!width!of!7.2!m!and!a!depth!of!1.4!m.!!!!!

Page 12: BEE 312 Portfolio Final

EcoHydraulic,Engineering,Comparing*Discharge*Estimates*

Coral*West*Febuaray*26,*2015*

!

PROBLEM,STATEMENT*! The!discharge!on!Oak!Creek!needs!to!be!established!for!management!purposes.!!Three!techniques!will!be!used!to!find!the!most!reliable!value!in!cubic!feet!per!second!(cfs).!!The!first!technique!is!directly!measuring!velocity!using!a!current!meter.!!This!method!is!commonly!used!within!the!USGS!and!will!provide!data!for!the!second!technique,!which!is!using!an!empirical!formula!known!as!Manning’s!Equation.!!The!third!technique!utilizes!rating!curves!established!over!30!years!of!recorded!stage!measurements.!!!! Using!a!Price!AA!meter!is!a!tool!to!find!current!data!on!a!river.!!The!process!involves!going!out!to!the!river,!and!collecting!data!in!small!sections.!!The!data!is!then!manipulated!to!find!total!discharge.!!The!area!collected!from!the!field!is!then!used!to!find!the!wetted!perimeter.!!The!wetted!perimeter,!slope,!and!Manning’s!n!of!the!river!is!then!used!to!calculate!discharge!with!Manning’s!Equation.!!Data!from!rating!curve!is!established!over!time!to!record!a!relationship!between!stage!and!corresponding!discharge!in!the!river.!!!! The!results!from!the!three!techniques!are!listed!in!the!table:!

Technique*

Discharge*

(cfs)*

Price*AA*

meter* 20*

Manning's*

Equation* 20*

Rating*

Curves* 18*

Mean* 19.33333333*

Standard*

Deviation* 1.15*

!! The!Price!AA!meter!and!Manning’s!Equation!seem!to!be!the!most!reliable!methods.!!They!are!empirical!and!based!on!current!data!of!the!stream.!!I!believe!that!the!rating!curve!method!is!the!least!reliable!because!the!stageNdischarge!relationship!could!change!over!time!due!to!erosion!and!deposition!of!sediment.!!!!!

Page 13: BEE 312 Portfolio Final

point*

distance*

from*left*

edge*of*

water*(ft)*

Depth*from*

water*

surface*(ft)*

Area*(ft2)*

C*(number*

of*clicks*per*

60*seconds)*

Velocity*(ft/s)*discharge*

(ft3/s)*

1* 9.2* 1.2* 1.44* 4* 0.164786667* 0.2372928*

2* 10.4* 1.3* 1.56* 9* 0.34852* 0.5436912*

3* 11.6* 1.3* 1.56* 5* 0.201533333* 0.314392*

4* 12.8* 1.4* 1.68* 18* 0.67924* 1.1411232*

5* 14* 1.7* 2.04* 52* 1.928626667* 3.9343984*

6* 15.2* 1.7* 2.04* 54* 2.00212* 4.0843248*

7* 16.4* 2* 2.4* 50* 1.855133333* 4.45232*

8* 17.6* 2.1* 2.52* 33* 1.23044* 3.1007088*

9* 18.6* 2.3* 2.3* 26* 0.973213333* 2.238390667*

10* 20.5* 0.3* 0.57* 0* 0.0178* 0.010146*

* * * * *

Total*

Discharge* 20.05678787*

!*Areas!shaded!in!grey!are!calculated,!all!other!values!are!measured.!!

!XNaxis!is!depth!in!feet!!Example!Calculations:!!Area:!

! = !"#$%&'(!!"#$!!"#$!!"#!!!"!!"#$% ∗ !!"#ℎ!!"#$!!"#$%!!"#$%&'!!! = 10.4− 9.2 !" ∗ 1.2!" = 1.44!"!!

!Velocity:!

! = 2.2048 ∗ !"#$%&!!"!!"#!$%!!"#!!"#$%& + 0.0178!

0!

0.5!

1!

1.5!

2!

2.5!

distance!from!left!edge!of!water!(ft)! 9.2! 10.4! 11.6! 12.8! 14! 15.2! 16.4! 17.6! 18.6! 20.5!

River&Cross&Section&

Page 14: BEE 312 Portfolio Final

!! = 2.2048 ∗ 960 + 0.0178 = 0.35 !"! !Discharge:!

! = !"#$ ∗ !"#$%&'(!!! = 1.44!"! ∗ 0.43852 !"! = 0.54 !"

!

! !!Manning’s!Equation!!

!!!!Average*

Depth*(ft)* 1.53*

Width*(ft)* 20.5*

Total*Area*

(ft)* 18.11*

P*(ft)* 23.56*

S* 0.001*

n* 0.035*

R*(ft)* 0.77*

Q*(ft^3/s)* 20.5*

!Rating!Curves!!

o For!Z>0.85’:!!Q(cfs)!=4.2902(Z^!1.6965)!o For!Z<0.85’:!!Q(cfs)!=7.1228(Z^1.7513)!

Using!the!deepest!part!of!the!channel,!Z!=!1.7!ft!!

! !"# = !4.2902 2.3!"!.!"!# = 18.37 !"!

! !!