beijing engineering research center of mixed reality and ......2018/02/07  · designed by dominic...

44
Multi-Level Context Ultra-Aggregation for Stereo Matching 1 Beijing Institute of Technology 2 TKLNDST, CS, Nankai University 3 National Key Laboratory of Science and Technology on Blind Signal Processing 4 AICFVE, Beijing Film Academy Guang-Yu Nie 1 , Ming-Ming Cheng 2 , Yun Liu 2 , Zhengfa Liang 3 , Deng-Ping Fan 2 , Yue Liu 1,4 , and Yongtian Wang 1,4 IGTA2019 Beijing Engineering Research Center of Mixed Reality and Advanced Display

Upload: others

Post on 06-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Multi-Level Context Ultra-Aggregation

for Stereo Matching

1 Beijing Institute of Technology 2 TKLNDST, CS, Nankai University

3 National Key Laboratory of Science and Technology on Blind Signal Processing

4 AICFVE, Beijing Film Academy

Guang-Yu Nie1, Ming-Ming Cheng2, Yun Liu2, Zhengfa Liang3,

Deng-Ping Fan2, Yue Liu1,4, and Yongtian Wang1,4

IGTA2019

Beijing Engineering Research Center

of Mixed Reality and Advanced Display

Depth from Stereo

IGTA2019

What is stereo?

Source: http://www.vudream.com/reasons-why-virtual-reality-is-happening-now/3d-brain/

Depth from images is a very intuitive ability

Can we do the same using computers?

Given two images of a scene from (slightly)

different viewpoints, we are able to infer depth

Yes

Designed by Dominic Cheng/Depth from Stereo/February 7, 2018

3D Stereo Scene

IGTA2019

Geometry in stereoDepth from Stereo

Think of images as projections of 3D points

(in the real world) onto a 2D surface (image

plane)

XA is the projection of X, X1, X2, X3, .... onto

the left image

X, X1, X2, X3 will also project onto the right

image

Designed by Dominic Cheng/Depth from Stereo/February 7, 2018

Source: Schairer, Edward, et al. "Measurements of tip vortices from a full-Scale UH-60A rotor by retro-reflective

background oriented schlieren and stereo photogrammetry." (2013).

Left View Right View

IGTA2019

Geometry in stereoDepth from Stereo

Projections of X1, X2, X3 on right image all lie

on a line

This line is known as an epipolar line

Designed by Dominic Cheng/Depth from Stereo/February 7, 2018

Projections of cameras’ optical centers

OA, OB onto the images

Points eA, eB are known as epipoles All epipolar lines will intersect at epipoles

Left image has corresponding epipolar

line

Source: Schairer, Edward, et al. "Measurements of tip vortices from a full-Scale UH-60A rotor by retro-reflective

background oriented schlieren and stereo photogrammetry." (2013).

Left View Right View

IGTA2019

Geometry in stereoDepth from Stereo

What does this give us?

All 3D points that could have resulted in XA

must have a projection on the right image,

and must be on the epipolar line eB− xB

Designed by Dominic Cheng/Depth from Stereo/February 7, 2018

Given just the left/right images and XA, you

can search on the corresponding epipolar

line in the right image. If you can find the

corresponding match XB, you can uniquely

determine the 3D position of X.Source: Schairer, Edward, et al. "Measurements of tip vortices from a full-Scale UH-60A rotor by retro-reflective

background oriented schlieren and stereo photogrammetry." (2013).

Left View Right View

IGTA2019Designed by Dominic Cheng/Depth from Stereo/February 7, 2018

Source: https://www.ivs.auckland.ac.nz/web/calibration.php http://web.stanford.edu/class/cs231a/lectures/lecture6_stereo_systems.pdf

Epipolar lines can be made parallel

through a process called rectification

Simplifies the process of finding a

match and calculating the 3D point

Geometry in stereoDepth from Stereo

IGTA2019

Geometry in stereo

Source: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_calib3d/py_depthmap/py_depthmap.htmlLeft View

x x'x

Right View

Depth from Stereodisparity = '

Bfx x

Z

'

'

x x f

O O Z

Problem statement, reformulated:

Find the disparity for every pixel in the left (or right)

image by finding matches in the right (or left) image

IGTA2019

Basic stereo matching algorithmRelated Research

1. If necessary, rectify the two stereo

images to transform epipolar lines

into scanlines

2. For each pixel x in the first image:

Find corresponding epipolar scanline in

the right image

Search the scanline and pick the best

match x’

Compute disparity x-x’ and set depth(x) =

Bf/(x-x’)

Matching cost

Disparity

Source: https://courses.cs.washington.edu/courses/cse455/16wi/notes/11_Stereo.pdf

Correspondence search

IGTA2019

Related ResearchFailures of correspondence search

Textureless surfaces Occlusions, repetition

Non-Lambertian surfaces, specularitiesSource: https://courses.cs.washington.edu/courses/cse455/16wi/notes/11_Stereo.pdf

IGTA2019

Learning-Based Stereo MatchingRelated Research

Left view

Right view

Share weights

Unary Features

LearningCost Volume Disparity MapInputs

Cost Volume

Regularization

End-to-end training network

Related Research

IGTA2019

GC-Net by Kendall et al.End-to-End Learning of Geometry and Context for Deep Stereo Regression (ICCV’17)

Related Research

IGTA2019

PSM-Net by Chang et al.Pyramid Stereo Matching Network (CVPR’18)

IGTA2019

Learning-Based Stereo MatchingRelated Research

Left view

Right view

Share weights

Unary Features

LearningCost Volume Disparity MapInputs

Cost Volume

Regularization

End-to-end training network

IGTA2019

h0

h1

h2

(a) DenseNets (b) Deep Layer Aggregation

INh3h2h1h0 h4 h6h5 h7 h8

OUT

f

f

IN

h3

f

OUT

Related ResearchDifferent aggregation patterns

Intra-Level combination

2-D feature

Receptive field

(a)

F4 F5 F6 F7 F8F0 F1 F2 F3

1

IN

OUT

Method/MCUAMulti-Level Context Ultra-Aggregation

IGTA2019

1

4

1

2

2-D feature

Receptive field

(a)

F4 F5 F6 F7 F8F0 F1 F2 F3

1

IN

OUT

Connections

IGTA2019

1

4

1

2

MCUA Intra-Level Combination

MCUA

(b)

2-D feature

Connections

Receptive field

AvgPool

P0

F0 F1 F2 F3

Share parameters

(a)

F4 F5 F6 F7 F8F0 F1 F2 F3

IN

OUT

IGTA2019

1

4

1

2

1

1

2 1

4

Inter-Level Combination

Independent child module

AvgPool

(b)

2-D feature

Connections

Receptive field

P0

(a)

F4 F5 F6 F7 F8F0 F1 F2 F3

IN

OUT

IGTA2019

MCUA

1

4

1

2

1

1

2

Inter-Level Combination

Independent child module

(b)

2-D feature

Connections

Receptive field

AvgPool

P0

F0 F1 F2 F3

Share parameters

(a)

F4 F5 F6 F7 F8F0 F1 F2 F3

IN

OUT

IGTA2019

MCUA

1

4

1

2

1

1

2 1

4

Inter-Level Combination

Independent child module

IGTA2019

MCUA

(b)

2-D feature

Connections

Receptive field

AvgPool

P0

F0 F1 F2 F3

(a)

F4 F5 F6 F7 F8F0 F1 F2 F3

IN

OUT

1

4

1

2

1

1

2 1

4

Inter-Level Combination

Independent child module

Share parameters

IGTA2019

(a)

2-D feature

Connections

Receptive field

F4 F5 F6 F7 F8F0 F1 F2 F31

4

1

2

IN

OUT

AvgPool

AvgPool

AvgPool

AvgPool1

1

4

MCUA Dense Connection

IGTA2019

(a)

2-D feature

Connections

Receptive field

F4 F5 F6 F7 F8F0 F1 F2 F31

4

1

2

IN

OUT

AvgPool

AvgPool

AvgPool

AvgPool1

1

4

MCUA Dense Connection

MCUA

2H

2W

H1

W1

W1

H1

W

H

1 1

1 1

2 2

Receptive Field

IGTA2019

Capture more area

2H

2W

H1

W1

W1

H1

W

H

(a) (b)

IGTA2019

MCUA

IGTA2019

Share weights

Unary Features

LearningCost Volume Disparity MapStereo Images

1

2

1

4

Residual Initial MapInformation

Flow

+

Element-wise

SummationScale

Cost Volume Regularization

Right

Left

Output3

Warped

Map

2-D

Features

3-D

Features

Output1

Output2

1

OutputConcatenation

11

1

1

4

1

2

1

41

Stereo Matching

EMCUA

IGTA2019

Share weights +

Unary Features

LearningCost Volume Disparity MapStereo Images

1

2

1

4

Residual Initial MapInformation

Flow

+

Element-wise

SummationScale

Cost Volume Regularization

Right

Left

Output3

Warped

Map

2-D

Features

3-D

Features

Output1

Output2

1

OutputConcatenation

1

1

1

1

1

4

1

2

1

41

Stereo Matching

Experiment

IGTA2019

Datasets

Left view Right view

Disparity map (Ground truth)

Scene Flow dataset:FlyingThings3D, Driving, Monkaa

KITTI2015/2012 datasets

>39000(35454/4370 train/test) stereo frames

960540 pixel resolution

KITTI2015: 200/200 train/test stereo images

KITTI2012: 194/200 train/test stereo images

1242375 pixel resolutionhttps://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo

http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo

Source:

Experiment

IGTA2019

Train on a lot of data:

Test on Flying Things and KITTI

Scene Flow datasets

Finetuning on KITTI

The training process of EMCUAcontains two steps:

Train MCUA:

Input: 256512 pixel resolution

Optimizer: Adam

Implementation Details

Train EMCUA (+ Residual module)

20+50 epochs on SF dataset (lr=0.01)

600 (lr=0.001) + 400 (lr=0.0001) epochs on KITTI datasets

1 epoch on SF dataset (lr=0.01)

600 (lr=0.001) + 400 (lr=0.0001) epochs on KITTI datasets

Performance

IGTA2019

KITTI2015 dataset

(a) EMCUA (b) PSM-NetIn

pu

tR

esu

ltErr

or

Inp

ut

Re

sult

Err

or

Sample output

Performance

IGTA2019(a) EMCUA (b) PSM-Net

Inp

ut

Re

sult

Err

or

Inp

ut

Re

sult

Err

or

KITTI2012 datasetSample output

Performance

IGTA2019

Residual Module

Residual module is mainly used to improve the performance of

the accuracy of the foreground.

Performance

IGTA2019

MCUAGround truthInputs PSM-Net

Inputs Ground truth MCUA PSM-Net

Scene Flow Datasets

Sample output

Discussion

IGTA2019

Different aggregation schemes

Dense connection

Deep Layer Aggregation

MCUA

Discussion

IGTA2019

Effect of MCUA

(b)

AvgPool

P0

F0 F1 F2 F3

Share parameters

(a)

F4 F5 F6 F7 F8F0 F1 F2 F3

IN

OUT

1

4

1

2

1

1

2 1

4

MCUA

Discussion

IGTA2019

Effect of MCUA

(b)

AvgPool

P0

F0 F1 F2 F3

(a)

F4 F5 F6 F7 F8F0 F1 F2 F3

IN

OUT

1

4

1

2

1

1

2 1

4

UChi

Discussion

IGTA2019

Effect of MCUA

(b)

AvgPool

P0

F0 F1 F2 F3

Share parameters

(a)

F4 F5 F6 F7 F8F0 F1 F2 F3

IN

OUT

1

4

1

2

1

1

2 1

4

Chi

Discussion

IGTA2019

Effect of MCUA

(a)

F4 F5 F6 F7 F8F0 F1 F2 F3

1

4

1

2

IN

OUT

AvgPool

AvgPool

AvgPool

AvgPool1

1

4

DenPool

Conclusion

IGTA2019

We propose a general feature aggregation scheme, MCUA,

which contains both intra- and inter-level feature aggregation,

while DenseNets and DLA contain only intra-level aggregation.

We use an independent child module to introduce inter-level

aggregation, which enlarges the receptive fields and captures

more context information.

Future work

IGTA2019

Dataset bias (Stereo matching Depth estimation)

Real-time stereo matching

IGTA2019

Datasets

Left view Right view

Disparity map (Ground truth)

Scene Flow dataset:FlyingThings3D, Driving, Monkaa

KITTI2015/2012 datasets

>39000(35454/4370 train/test) stereo frames

960540 pixel resolution

KITTI2015: 200/200 train/test stereo images

KITTI2012: 194/200 train/test stereo images

1242375 pixel resolutionhttps://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo

http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo

Source:

Future work

Future work

IGTA2019

Dataset bias (Stereo matching Depth estimation)

Real-time stereo matching

Matching cost

computaion

Cost Aggregation

Disparity Selection

Disparity refinement

Step1 Step2 Step3 Step4

Input images

Disparity map

Framework of traditional stereo vision algorithm

Correspondence search

Matching cost: SSD, SAD, or normalized correlation

2

( , )

SSD , , , ,l r

x y w

x y d I x y I x d y

Source: A. Fusiello, U. Castellani, and V. Murino, “Relaxing symmetric multiple windows stereo using Markov Random Fields,”

in Computer Vision and Pattern Recognition, vol. 2134 of Lecture Notes in Computer Science, pp. 91–105, Springer, 2001.

Future work

IGTA2019

Dataset bias (Stereo matching Depth estimation)

Real-time stereo matching

Qualitative results on the FlyingThings3D test set

StereoNet architecture (ECCV’18)

Source: Khamis, Sameh, et al. "Stereonet: Guided hierarchical refinement for real-time edge-aware depth prediction." Proceedings of

the European Conference on Computer Vision (ECCV). 2018.

Thanks for your watching.

Beijing Engineering Research Center

of Mixed Reality and Advanced Display

Q&[email protected]

Guang-Yu Nie

IGTA201904/19-20/2019

Beijing Engineering Research Center

of Mixed Reality and Advanced Display