bell violation with entangled photons and without the fair-sampling assumption foundations of...

18
Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching / Munich, Germany

Upload: emerson-sidbury

Post on 29-Mar-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Bell violation with entangled photons

and without the fair-sampling assumption

Foundations of Physics 2013

LMU Munich, Germany

30 July 2013

Johannes Kofler

Max Planck Institute of Quantum Optics (MPQ)Garching / Munich, Germany

Page 2: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Overview

• Assumptions in Bell’s theorem

- Realism

- Locality

- Freedom of choice

• Closing loopholes

- Locality

- Freedom of choice

- Fair sampling

• Conclusion and outlook

Page 3: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Quantum mechanics and hidden variables

Bohr and Einstein, 1925

1927 Kopenhagen interpretation(Bohr, Heisenberg)

1932 von Neumann’s (wrong) proof of non-possibility of hidden variables

1935 Einstein-Podolsky-Rosen paradox

1952 De Broglie-Bohm (nonlocal) hidden variable theory

1964 Bell‘s theorem on local hidden variables

1972 First successful Bell test (Freedman & Clauser)

History

Page 5: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Realism: Hidden variables determine global prob. distrib.: p(Aa1b1, Aa1b2, Aa2b1,…|λ)

Locality: (OI) Outcome independence: p(A|a,b,B,λ) = p(A|a,b,λ) & vice versa for B(SI) Setting independence: p(A|a,b,λ) = p(A|a,λ) & vice versa for B

Freedom of choice: p(a,b|λ) = p(a,b) p(λ|a,b) = p(λ)

λ

Bell’s AssumptionsBell’s assumptions

1 J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978)3 J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, p. 243 (2004)

1

2

3

2 J. S. Bell, Physics 1, 195 (1964)

Page 6: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Realism + Locality + Freedom of choice Bell‘s inequality

CHSH form1: Sexp := E(a1,b2) + E(a2,b1) + E(a2,b1) – E(a2,b2) 2

Original Bell paper2 implicitly assumed freedom of choice:

A(a,b,B,λ)

locality

(λ|a,b) A(a,λ) B(b,λ) – (λ|a,c) A(a,λ) B(c,λ)

freedom of choice

explicitly:

implicitly:

Bell’s AssumptionsBell’s theorem

1 J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, PRL 23, 880 (1969)2 J. S. Bell, Physics 1, 195 (1964)

Page 7: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Loopholes

Why important?

- quantum foundations- security of entanglement-based quantum cryptography

Three main loopholes:

• Locality loopholehidden communication between the partiesclosed for photons (19821,19982)

• Freedom-of-choice loopholesettings are correlated with hidden variables closed for photons (20103)

• Fair-sampling loopholemeasured subensemble is not representativeclosed for atoms (20014), superconducting qubits (20095) and for photons (20136)

1 A. Aspect et al., PRL 49, 1804 (1982)2 G. Weihs et al., PRL 81, 5039 (1998)3 T. Scheidl et al., PNAS 107, 10908 (2010)

4 M. A. Rowe et al., Nature 409, 791 (2001)5 M. Ansmann et al., Nature 461, 504 (2009)6 M. Giustina et al., Nature 497, 227 (2013)

Loopholes:

maintain local realism despite Sexp > 2

E

Page 8: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Locality: A is space-like sep. from b and BB is space-like sep. from a and A

T. Scheidl, R. Ursin, J. K., T. Herbst, L. Ratschbacher, X. Ma, S. Ramelow, T. Jennewein, A. Zeilinger, PNAS 107, 10908 (2010)

Locality & freedom of choice

b,B

E,A

a

Tenerife

La Palma

Freedom of choice: a and b are random

a and b are space-like sep. from E

E

p(a,b|) = p(a,b)

p(A,B|a,b,) = p(A|a,) p(B|b,)

La Palma Tenerife

Page 9: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Polarizer settings a, b 0°, 22.5° 0, 67.5° 45°, 22.5° 45°, 67.5°

Correlation E(a,b) 0.62 ± 0.01 0.63 ± 0.01 0.55 ± 0.01 –0.57 ± 0.01

Obtained Bell value Sexp 2.37 ± 0.02

Coincidence rate detected: 8 HzMeasurement time: 2400 s Number of total detected coinc.: 19200

Results

T. Scheidl, R. Ursin, J. K., T. Herbst, L. Ratschbacher, X. Ma, S. Ramelow, T. Jennewein, A. Zeilinger, PNAS 107, 10908 (2010)

Page 10: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Fair-sampling loophole

Unfair sampling: detection efficiency could be low and setting-dependent1

A = A(,), B = B(,)

• Local realistic model2:

1 P. M. Pearle, PRD 2, 1418 (1970)2 N. Gisin and B. Gisin, Phys. Lett. A 260, 323 (1999)3 I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, C. Kurtsiefer, PRL 107, 170404 (2011)

• Efficiency is not optional in security-related tasks (device-independent quantum cryptography): faked Bell violations3

)sign(),(

aaA )sign(),(

bbB

||),(A

aabaBAbaE

S

BA2 2

d),(

1),(A

a

0),(A

a

1),(B

b

||),(B

bb

0),(B

b

:94

:94

:91

Reproduces the quantum predictions and has correct ratio of singles, coincidences and no clicks at all

Page 11: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Eberhard inequality

• CHSH inequality requires tot > 82.8 %1 (max. entangled states)

• Eberhard2 (CH3) inequality requires tot > 66.7 % (non-max. ent. states)

- no fair-sampling assumption

- no requirement to measure tot

- no post-selection or normalization- only one detector per side

1 A. Garg and N. D. Mermin, PRD 35, 3831 (1987)2 P. H. Eberhard, PRA 47, 747 (1993)3 J. F. Clauser and M. A. Horne, PRD 10, 526 (1974)

0)()(),(),(),(),( 1122122111 Bo

Aooooooooo SSCCCCJ

Source

local realism

Page 12: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Transition-edge sensors

1 Picture from: Topics in Applied Physics 99, 63-150 (2005)2 A. E. Lita, A. J. Miller, S. W. Nam, Opt. Express 16, 3032 (2008)

Working principle:

• Superconductor (200 nm thick tungsten film at 100 mK) at transition edge

• Steep dependence of resistivity on temperature

• Measurable temperature change by single absorbed photon

Superconducting transition-edge sensors1

Characteristics:

• High efficiency > 95 %1

• Low noise < 10 cps1

• Photon-number resolving

Page 13: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Setup

• Sagnac-type entangled pair source

• Non-max. entangled states

• Fiber-coupling efficiency >90%

• Filters: background-photon elimination >99%

VHrHVr

r

21

1

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. K., J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, Nature 497, 227 (2013)

Page 14: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Results

1 M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. K., J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, Nature 497, 227 (2013)

2 J. K., S. Ramelow, M. Giustina, A. Zeilinger, arXiv:1307.6475 [quant-ph] (2013)

0)()(),(),(),(),( 1122122111 Bo

Aooooooooo SSCCCCJ

Photon: only system for which all main loopholes are now closed(not yet simultaneously)

• Violation of Eberhard’s inequality1

• 300 seconds per setting combination

• Collection efficiency tot 75%

• No background correction etc.

Coo(α1,β1) Coo(α1,β2) Coo(α2,β1) Coo(α2,β2) SoA(α1) SoB(β1) JExp. data1 1 069 306 1 152 595 1 191 146 69 749 1 522 865 1 693 718 –126 715Model2 1 068 886 1 152 743 1 192 489 68 694 1 538 766 1 686 467Deviation –0,04 % 0,01 % 0,11 % –1,51 % 1,04 % –0,43 %

Page 15: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Production-rate loophole

J. K., S. Ramelow, M. Giustina, A. Zeilinger, arXiv:1307.6475 [quant-ph] (2013)

0)()(),(),(),(),( 1122122111 Bo

Aooooooooo SSCCCCJ

• Strong drop of production rate (intensity) for 22 could lead to “fake violation”

“production rate loophole”

• Comparison of all singles counts:

• Drifts slightly larger than purely statistical

• Normalization with respect to production rate: J –123 000

loophole closed in the experiment

Page 16: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

The fair-sampling team

Anton Zeilinger

Marissa Giustina Alexandra Mech Bernhard Wittmann

Jörn Beyer Adriana Lita Brice Calkins Thomas Gerrits

Sae Woo Nam Rupert Ursin

Sven Ramelow

Page 17: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Conclusion and outlook

• Loopholes important for quantum foundations & quantum cryptography

• Locality (1982/98) and freedom-of-choice loophole (2010) closed for photons

• Fair-sampling loophole [already closed for atoms (2001) and superconducting qubits (2009)] now closed for photons

• Photons: first system for which each of the three major loopholes has been closed, albeit in separate experiments

• For a loophole-free experiment:fast random number generators, precise timing, efficiency gains to compensate propagation losses due to increased distance

• Endgame for local realism has begun

Page 18: Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler

Appendix: Bell vs. Leggett-Garg

J. K. and Č. Brukner, PRA 87, 052115 (2013)