bem introduction

68
1 BEM introduction J. T. Chen Department of Harbor and River Engineering National Taiwan Ocean University, Keelung, Taiw an Sep. 21, 2006 First-class introduction for NTPU/MSV BEM course (lecture1-2006.ppt)

Upload: hart

Post on 12-Jan-2016

46 views

Category:

Documents


1 download

DESCRIPTION

BEM introduction. J. T. Chen. Department of Harbor and River Engineering National Taiwan Ocean University, Keelung, Taiwan Sep. 21, 2006 First-class introduction for NTPU/MSV BEM course (lecture1-2006.ppt). Outlines. Overview of BIE and BEM Mathematical tools - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: BEM introduction

1

BEM introductionBEM introduction

J. T. Chen

Department of Harbor and River Engineering

National Taiwan Ocean University, Keelung, Taiwan

Sep. 21, 2006

First-class introduction for NTPU/MSV BEM course

(lecture1-2006.ppt)

Page 2: BEM introduction

2

Overview of BIE and BEM Mathematical tools Hypersingular BIE Degenerate kernel Circulants SVD updating term SVD updating document Fredholm alternative theorem Nonuniqueness and its treatments Degenerate scale Degenerate boundary True and spurious eigensolution (interior prob.) Fictitious frequency (exterior acoustics) Corner Conclusions and further research

Outlines

Page 3: BEM introduction

3

Overview of numerical methods

Finite Difference M ethod Finite Element M ethod Boundary Element M ethod

M esh M ethods M eshless M ethods

Numerical M ethods

3

PDE- variational

IEDE

Domain

Boundary

MFSTrefftz method

MLS

Page 4: BEM introduction

4

Numeber of Papers of FEM, BEM and FDM

(Data form Prof. Cheng A. H. D.)

126

Page 5: BEM introduction

5

Growth of BEM/BIEM papers

(data from Prof. Cheng A.H.D.)

Page 6: BEM introduction

6

Advantages of BEM

Discretization dimension reduction Infinite domain (half plane) Interaction problem Local concentration

Disadvantages of BEM Integral equations with singularity Full matrix (nonsymmetric)

北京清華

Page 7: BEM introduction

7

Original data from Prof. Liu Y J

(1984)

crack

BEMCauchy kernel

singular

DBEMHadamard

kernelhypersingular

FMM

Large scaleDegenerate kernel

Desktop computer fauilure

(2000)

Page 8: BEM introduction

8

Why engineers should learn mathematics ?

Well-posed ? Existence ? Unique ?

Mathematics versus Computation

Some examples

Page 9: BEM introduction

9

Numerical phenomena(Degenerate scale)

Error (%)of

torsionalrigidity

a

0

5

125

da

Previous approach : Try and error on aPresent approach : Only one trial

T

da

Commercial ode output ?

Page 10: BEM introduction

10

Numerical phenomena(Fictitious frequency)

0 2 4 6 8

-2

-1

0

1

2UT method

LM method

Burton & Miller method

t(a,0)

1),( au0),( au

Drruk ),( ,0),()( 22

9

1),( au0),( au

Drruk ),( ,0),()( 22

9

A story of NTU Ph.D. students

Page 11: BEM introduction

11

Numerical phenomena(Spurious eigensolution)

0 1 2 3 4 5 6 7 8 9 10 11 12fre q u e n cy p a ra m e te r

1E-080

1E-060

1E-040

1E-020

de

t|SM

|

C -C annular p la teu, com plex-vauled form ulation

T<9.447>

T: T rue e igenvalues

T<10.370>

T<10.940>

T<9.499>

T<9.660>

T<9.945>

S<9.222>

S<6.392>

S<11.810>

S : Spurious e igenvalues

ma 1

mb 5.0

1B

2B

Page 12: BEM introduction

12

Numerical phenomena(Degenerate boundary)

Singular integral equation

Hypersingular integral equation

Cauchy principal value Hadamard principal value

Boundary element method Dual boundary element method

degenerate

boundary

normal

boundary

1967-1984-2006

Page 13: BEM introduction

13

Numerical phenomena(Corner)

B B

B B

BxsdBstxsLVPCsdBsuxsMVPHxtxt

BxsdBstxsUVPRsdBsuxsTVPCxu

,)()(),(...)()(),(...)()sin()(

,)()(),(...)()(),(...)(

tt

u\ u \

D Boundary

Page 14: BEM introduction

14

Motivation

Numerical instability occurs in BEM ? (1) degenerate scale (2) degenerate boundary (3) fictitious frequency (4) corner Spurious eigenvalues appear ? (5) true and spurious eigenvalues

Five pitfalls in BEM

Mathematical essence—rank deficiency ?(How to deal with ?) nonuniqueness ?

Page 15: BEM introduction

15

Mathematical tools

Hypersingular BIE

Degenerate kernel

Circulants

SVD updating term

SVD updating document

Fredholm alternative theorem

Page 16: BEM introduction

16

Mathematical tools

Hypersingular BIE

(potential theory)

Degenerate kernel

Circulants

SVD updating term

SVD updating document

Fredholm alternative theorem

Page 17: BEM introduction

17

Two systems u and U

u(x)source

U(x,s)

s

Infinite domain

Domain(D)

Boundary (B)

Page 18: BEM introduction

18

Dual integral equations for a domain point(Green’s third identity for two systems, u and

U)

Primary field

Secondary field

where U(s,x)=ln(r) is the fundamental solution.

2 ( ) ( , ) ( ) ( )B

u x T s x u s dB s ( , ) ( ) ( ), BU s x t s dB s x D

2 ( ) ( , ) ( ) ( )B

t x M s x u s dB s ( , ) ( ) ( ), B

L s x t s dB s x D

sn

UxsT

),(xn

UxsL

),(xs nn

UxsM

2

),(

ut

n

Page 19: BEM introduction

19

Dual integral equations for a boundary point(x push to boundary)

Singular integral equation

Hypersingular integral equation

where U(s,x) is the fundamental solution.

B

sdBsuxsTVPCxu )()(),( . . .)( B

BxsdBstxsUVPR ),()(),( . . .

B

sdBsuxsMVPHxt )()(),( . ..)( B

BxsdBstxsLVPC ),()(),( . . .

sn

UxsT

),(xn

UxsL

),(xs nn

UxsM

2

),(

Page 20: BEM introduction

20

Potential theory

Single layer potential (U) Double layer potential (T) Normal derivative of single layer

potential (L) Normal derivative of double layer

potential (M)

Page 21: BEM introduction

21

Physical examples for potentialsP

M

U:moment diagram

M:moment diagram

T:moment diagram

L:shear diagram

Force Moment

Page 22: BEM introduction

22

Order of pseudo-differential operator Single layer potential

(U) --- (-1) Double layer

potential (T) --- (0)

Normal derivative of single layer potential (L) --- (0)

Normal derivative of double layer potential (M) --- (1)

2 2

0 0( , ) ( ) - ( , ) ( )L t d t CPV L t d

2

0( , ) ( ) ( )

( ( )) ''

( ( )) ''

M u d u

u u

D D u u

2 2

0 0( , ) ( ) ( , ) ( )T u d u CPV T u d

Real differential operator Pseudo differential operator

Page 23: BEM introduction

23

Calderon projector

2

2

1[ ] [ ] [ ][ ] [0]

4 [ ][ ] [ ][ ]

[ ][ ] [ ][ ]

1[ ] [ ] [ ][ ] [0]

4

I T U M

U L T M

M T L M

I L M U

Page 24: BEM introduction

24

How engineers avoid singularityHow engineers avoid singularity

BEM / BIEMBEM / BIEM

Improper integralImproper integral

Singularity & hypersingularitySingularity & hypersingularity RegularityRegularity

Bump contourBump contour Limit processLimit process Fictitious Fictitious boundaryboundary

Collocation Collocation pointpoint

Fictitious BEMFictitious BEM

Null-field approachNull-field approach

CPV and HPVCPV and HPVIll-posedIll-posed

Guiggiani (1995)Guiggiani (1995) Gray and Manne (199Gray and Manne (1993)3)

Waterman (1965)Waterman (1965)

Achenbach Achenbach et al.et al. (1988) (1988)

Page 25: BEM introduction

25

• R.P.V. (Riemann principal value)

• C.P.V.(Cauchy principal value)

• H.P.V.(Hadamard principal value)

Definitions of R.P.V., C.P.V. and H.P.V.using bump approach

NTUCE

R P V x dx x x x. . . ln ( ln )z

1

1

- = -2 x=-1x=1

C P Vx

dxx

dx. . . lim

z zz 1

1 1

1

1 1 = 0

H P Vx

dxx

dx. . . lim

z zz 1

1

2

1

12

1 1 2 = -2

0

0

x

ln x

x

x

1 / x

1 / x 2

Page 26: BEM introduction

26

Principal value in who’s sense

Common sense Riemann sense Lebesgue sense Cauchy sense Hadamard sense (elasticity) Mangler sense (aerodynamics) Liggett and Liu’s sense The singularity that occur when the base

point and field point coincide are not integrable. (1983)

Page 27: BEM introduction

27

Two approaches to understand HPV

1

2 2-10

1lim =-2 y

dxx y

H P Vx

dxx

dx. . . lim

z zz 1

1

2

1

12

1 1 2 = -2

(Limit and integral operator can not be commuted)

(Leibnitz rule should be considered)

1

01

1{ } 2

t

dCPV dx

dt x t

Differential first and then trace operator

Trace first and then differential operator

Page 28: BEM introduction

28

Bump contribution (2-D)

( )u x

( )u xx

sT

x

sU

x

sL

x

sM

0

0

1( )

2t x

1 2( ) ( )

2t x u x

1( )

2t x

1 2( ) ( )

2t x u x

Page 29: BEM introduction

29

Bump contribution (3-D)

2 ( )u x

2 ( )u x

2( )

3t x

4 2( ) ( )

3t x u x

2( )

3t x

4 2( ) ( )

3t x u x

x

xx

x

s

s s

s0`

0

Page 30: BEM introduction

30

Hypersingular BIE

Degenerate kernel

Page 31: BEM introduction

31

Green’s function, influence line and moment diagram

P

Force

Moment diagrams:fixed

x:observer

P

Force

Influence line s:moving

x:observer(instrument)

sG(x,s)

x

G(x,s)x sx=1/4

s

s=1/2

Page 32: BEM introduction

32

Fundamental solution

Field response due to source (space)

Green’s function Casual effect (time)

K(x,s;t,τ)

Page 33: BEM introduction

33

Separable form of fundamental solution (1D)

-10 10 20

2

4

6

8

10

Us,x

2

1

2

1

(x) (s), s x

(s, x)

(s) (x), x s

i ii

i ii

a b

U

a b

=

=

ìïï ³ïïïï=íïï >ïïïïî

å

å

1(s x), s x

1 2(s, x)12

(x s), x s2

U r

ìïï - ³ïïï= =íïï - >ïïïî

-10 10 20

-0.4

-0.2

0.2

0.4

Ts,x

s

Separable Separable propertyproperty

continuocontinuousus

discontidiscontinuousnuous

1, s x

2(s, x)1

, x s2

T

ìïï >ïïï=íï -ï >ïïïî

Page 34: BEM introduction

34

Degenerate kernel (step1)

Step 1xsRxsU ln)ln(),(

S

x

Rx: variable

s: fixed

Page 35: BEM introduction

35

RmR

mRU

m

me

1)),(cos()(

1)ln(),,,(

RmRm

RRUm

mi

1)),(cos()(

1)ln(),,,(

Degenerate kernel (step2, step3)

x

s

A

B

Step 2

RA

iUeU

AStep 3

x

B

A

s

RB

iU

eUB

Page 36: BEM introduction

36

Mathematical tools

Hypersingular BIE

Degenerate kernel

Circulants

SVD updating term

SVD updating document

Fredholm alternative theorem

Page 37: BEM introduction

37

Engineering problems

Thin-airfoill

Aerodynamics

Seepage with

sheetpiles

1 2

3

4

56

7

8

oblique incident water wave

Free water surface

I II III

Pseudo boundary

O

S

Pseudo boundary

x

S

y

dC C

z

x

Top view

O~

Page 38: BEM introduction

38

Degeneracy of the Degenerate Boundary

geometry node

the Nth constantor linear element

un

0

un

0 un

0

u 1 u 1(0,0)

(-1,0.5)

(-1,-0.5)

(1,0.5)

(1,-0.5)

1 2

3

4

56

7

8 [ ]{ } [ ]{ }U t T u

[ ]{ } [ ]{ }L t M u

N

1.693-0.335-019.0019.0445.0703.0445.0335.0

0.334-1.693-281.0281.0045.0471.0347.0039.0

0.0630.638-193.1193.1638.0063.0081.0081.0

0.0630.638-193.1193.1638.0063.0081.0081.0

0.4710.045-281.0281.0693.1335.0039.0347.0

0.7030.445019.0019.0335.0693.1335.0445.0

0.4710.347054.0054.0039.0335.0693.1045.0

0.335-0.039054.0054.0347.0471.0045.0693.1

][

U

-1.107464.0464.0219.0490.0219.0107.1

1.107-785.07854.0000.0588.0519.0927.0

0.8881.326326.1888.0927.0927.0

0.8881.326326.1888.0927.0927.0

0.5880.000785.0785.0107.1927.0519.0

0.4900.219464.0464.0107.1107.1219.0

0.5880.519321.0321.0927.0107.1000.0

1.1070.927321.0321.0519.0588.0000.0

][

T

5(+) 6(+) 5(+) 6(-)

5(+)6(+)

5(+)6(+)

n s( )

0.805464.0464.0612.0490.0612.0805.0

0.805347.0347.0000.0184.0519.0927.0

0.8881.417417.1888.0511.0511.0

0.888-1.417-417.1888.0511.0511.0

0.1840.000347.0347.0805.0927.0519.0

0.4900.612464.0464.0805.0805.0612.0

0.1840.519458.0458.0927.0805.0000.0

0.8050.927458.0458.0519.0184.0000.0

][

L

000.41.600-400.0400.0282.0235.0282.0600.1

1.600-000.4000.1000.1333.1205.0062.0800.0

0.715-3.765-000.8000.8765.3715.0853.0853.0

0.7153.765000.8000.8765.3715.0853.0853.0

0.205-1.333-000.1000.1000.4600.1800.0061.0

0.236-0.282-400.0400.0600.1000.4600.1282.0

0.205-0.061-600.0600.0800.0600.1000.4333.1

1.600-0.800-600.0600.0061.0205.0333.1000.4

][

M

5(+) 6(+)5(+) 6(-)

5(+)6(-)

5(+) 6(-)

n x( ) n x( )

n s( )

Page 39: BEM introduction

39

The constraint equation is not enough to determine the coefficient p and q,

Another constraint equation is required

axwhenqpaaf

qpxxQaxxf

,)(

)()()( 2

axwhenpaf

pxQaxxQaxxf

,)(

)()()()(2)( 2

Theory of dual integral equations

Page 40: BEM introduction

40

Successful experiences

Page 41: BEM introduction

41

X-ray detection

Page 42: BEM introduction

42

FEM simulation

Page 43: BEM introduction

43

Stress analysis

Page 44: BEM introduction

44

BEM simulation

Page 45: BEM introduction

45

V-band structure (Tien-Gen missile)

Page 46: BEM introduction

46

FEM simulation

Page 47: BEM introduction

47

Page 48: BEM introduction

48

Shong-Fon II missile

Page 49: BEM introduction

49

IDF

Page 50: BEM introduction

50

Flow field

Page 51: BEM introduction

51

Seepage flow

Page 52: BEM introduction

52

Meshes of FEM and BEM

Page 53: BEM introduction

53

Screen in acoustics

U T L Mm ode 1.

m ode 2.

m ode 3.

0.00 0 .05 0 .10 0 .15 0 .200 .00

0 .05

0 .10

0 .00 0 .05 0 .10 0 .15 0 .200 .00

0 .05

0 .10

0.00 0.05 0.10 0.15 0.200.00

0.05

0.10

0.00 0.05 0.10 0.15 0.200.00

0.05

0.10

0.00 0.05 0.10 0.15 0.200.00

0.05

0.10

0.05 0.10 0.15 0.20

0.05

587.6 H z 587.2 H z

1443.7 H z 1444.3 H z

1517.3 H z 1516.2 H z

b

a

e

c

2 2 0u k u t0

t=0

t=0

t=0

t=0

t=0

Page 54: BEM introduction

54

Water wave problemWater wave problem

Free water surface S

x

Top view

O

y

zO

xz

S

breakwater

breakwater

oblique incident water wave 0)~()~( 22 xuxu

Page 55: BEM introduction

55

Reflection and Transmission

0.00 0.40 0.80 1.20 1.60 2.00

kd

0.00

0.40

0.80

1.20

lRl a

nd lT

l

k h = 5D e ep w a te r th eo ry (U rse ll, 1 9 4 6 )M u lti-d o m a in B E M (L iu e t a l ., 1 9 8 2 )U T m e th o d o f D B E M (C o m b in e d L M , 3 2 0 e le m en ts)L M m e th o d o f D B E M (C o m b in e d U T , 3 2 0 e le m en ts)

R

T

Page 56: BEM introduction

56

Cracked torsion bar

T

da

Page 57: BEM introduction

57

Page 58: BEM introduction

58

Page 59: BEM introduction

59

Dual BEM

Degenerate boundary problems

u=0r=1

0)()( 22 xukC

C

u=0r=1

0)()( 22 xukC C

CC

u=0r=1

0)()( 22 xukC

C

interface

Subdomain 1

Subdomain 2

Subdomain 1

Subdomain 2

1cu

1cu

1fu

1fu

2fu

2fu

2ft

1ft

2ft

1ft

2cu

2cu

1cu

1cu

C

C

C

C

Multi-domain BEM

}}{{}]{[

}]{[}]{[

tLuM

tUuT

Page 60: BEM introduction

60

Conventional BEM in conjunction with SVD

Singular Value DecompositionH

PPPMMMPMU ][][][][

Rank deficiency originates from two sources:

(1). Degenerate boundary

(2). Nontrivial eigensolution

Nd=5 Nd=5Nd=4

Page 61: BEM introduction

61

0 2 4 6 8

k

0.001

0.01

0.1

1

N d + 1

0 2 4 6 8

k

1e-020

1e-019

1e-018

1e-017

1e-016

1e-015

1e-014

d e t [ U ( k ) ]

0 2 4 6 8

k

1e-038

1e-037

1e-036

1e-035

1e-034

d e t [ K U

L ]

Dual BEM

Multi-domain BEM

UT BEM + SVD

(Present method)

versus k1dN

Determinant versus k

Determinant versus k

Page 62: BEM introduction

62

Two sources of rank deficiency (k=3.09)

Nd=5

0 20 40 60 80

E lem ent labe l

-0.4

0

0.4

0 20 40 60 80

E lem ent labe l

0 .4

0

-0.4

{}

0 20 40 60 80

E lem ent label

-0.8

-0.4

0

0.4

0.8

{}

0 20 40 60 80

E lem ent labe l

-0.4

0

0.4

{}

0 20 40 60 80

E lem ent labe l

-0.4

0

0.4

{}

0)( },{ 11

0 20 40 60 80

E lem ent labe l

-0.4

0

0.4

{}

)2

sin(

None trivial sol.

EigensolutionDegenerate boundary

0)( },{ 22 0)( },{ 33

0)( },{ 44 0)( },{ 55 0)( },{ 66

Page 63: BEM introduction

63k=3.14 k=3.82

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

k=4.48

UT BEM+SVD

-0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0.8

-0 .8

-0 .6

-0 .4

-0 .2

0

0.2

0.4

0.6

0.8

-0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0.8

-0 .8

-0 .6

-0 .4

-0 .2

0

0.2

0.4

0.6

0.8

-0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0.8

-0 .8

-0 .6

-0 .4

-0 .2

0

0.2

0.4

0.6

0.8

k=3.09

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

k=3.84

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

k=4.50

FEM (ABAQUS)

Page 64: BEM introduction

64

On the Mechanism of Fictitious Eigenvaluesin Direct and Indirect BEM

a

m

k

e i t

incident wave

e i t e i t

radiation

Physical resonance Numerical resonance

, if ufinite

( )

2 2

, if u finite lim00

k

m

Page 65: BEM introduction

65

CHIEF and Burton & Miller method

ka0.00 2.00 4.00 6.00 8.00

-0.40

0.00

0.40

0.80

1.20

1.60

UT method Burton and Miller Analytical solution CHIEF method

t

Page 66: BEM introduction

66

Conclusions

• Introduction of BEM and BIEM

• The nonuniqueness in BIEM and BEM were reviewed an

d its treatment was addressed.

• The role of hypersingular BIE was examined.

• The numerical problems in the engineering applications

using BEM were demonstrated.

• Several mathematical tools, SVD, degenerate kernel, …,

were employed to deal with the problems.

Page 67: BEM introduction

67

The End

Thanks for your kind attention

Page 68: BEM introduction

68

歡迎參觀海洋大學力學聲響振動實驗室烘焙雞及捎來伊妹兒

http://ind.ntou.edu.tw/~msvlab/

E-mail: [email protected]