ben jonson ita

74
Integrated Technology Assessment NUC 495 Benjamin Jonson Student ID: 30636902 Term (August/2014)

Upload: benjamin-johnson

Post on 21-Jan-2018

407 views

Category:

Documents


0 download

TRANSCRIPT

Integrated Technology Assessment

NUC 495

Benjamin Jonson

Student ID: 30636902

Term (August/2014)

Table of Contents

A. Curriculum Vitae ............................................................................................................... 4

B. Outcomes

Outcome 1 ......................................................................................................................... 9

Outcome 2 ......................................................................................................................... 17

Outcome 3 ......................................................................................................................... 22

Outcome 4 ......................................................................................................................... 28

Outcome 5 ......................................................................................................................... 34

Outcome 6 ......................................................................................................................... 38

Outcome 7 ......................................................................................................................... 42

Outcome 8 ......................................................................................................................... 50

Outcome 9 ......................................................................................................................... 59

Outcome 10 ....................................................................................................................... 63

Outcome 11 ....................................................................................................................... 68

Outcome 12 ....................................................................................................................... 74

Outcome 13 ....................................................................................................................... 76

C. Evidence Used to Support Learning Statements

Tab C-1 - Excelsior College: My Academic Plan ............................................................. 84

Tab C-2 - Joint Services Transcript ..................................................................................

Tab C-3 - Military Record Page 4: Qualifications ............................................................

Tab C-4 - Simpson Model 260-8 data sheet .....................................................................

Tab C-5 – Completion Certificate for Navy Recruiter Orientation Unit ..........................

C. Evidence Used to Support Learning Statements (continued)

Tab C-6 - Value Oriented Recruiting certificate …...........................................................

Tab C-7 - Military Evaluations .........................................................................................

Tab C-8 - College Writing II: Consumers Only Buy What They Think They Need.........

Tab C-9 - College Writing II: Pro/Con Worksheet …........................................................

Tab C-10 - Radiological Control Technician Qualification School Certificate ................

Tab C-11 - Trident Refit Facility RadCon Training Letter of Qualifications ...................

Tab C-12 - Completion Certificate for Naval Nuclear Power Training …........................

Tab C-13 - Completion Certificate for Nuclear Power Course ….....................................

Tab C-14 - Completion Certificate for Electronics Technician Nuclear Field 'A' School

Tab C-15 - Completion Certificate for Electronics Technician Maintenance School …...

Tab C-16 - Completion Certificate for CNRSE Auxiliary Security Force Academy …...

Tab C-17 - Letter of Commendation dated 18Aug2007 …...............................................

Tab C-18 - Navy Achievement Medal dated 10Mar2005 ….............................................

Tab C-19 - Controlled Industrial Facility RLW System Flow Schematic …....................

Tab C-20 - Navy Achievement Medal dated 5May2004 …..............................................

Tab C-21 - Business Ethics: Ethical Dilemmas in Terminating Employees ….................

Tab C-22 - Vehicle Titles …..............................................................................................

Tab C-23 - Homesteading Book List …............................................................................

Tab C-24 - Home brewing Book List …...........................................................................

Tab C-25 - BSNET to MBA Program …...........................................................................

Tab C-26 - Song Book List …...........................................................................................

Inert typical resume heading here

All things I don't want public on the internet

EDUCATION

• Excelsior College, studying towards Bachelors of Science in Nuclear Engineering Technology.

October 2013 – Present

• POST University Associate of Science in Management with High Honors

May 2012 - August 2013

• Navy Recruiting Orientation Unit Pensacola, FL, earned NEC 9585

March 2011 – April 2011

• Electronics Technician Maintenance School Kings Bay, GA, earned NEC 3373

March 2005 - April 2005

• Commander Navy Region Southeast Auxiliary Security Force Academy Naval Submarine Base Kings Bay, GA

October 2002 – November 2002

• Radiological Controls Technician Qualification School Portsmouth, VA, earned NEC 3376

April 2002 – August 2002

• Thomas Nelson Community College Hampton, VA August 2001 – October 2002• Naval Nuclear Power Training Command Charleston, SC

Nuclear Propulsion Plant Operator earned NEC 3383July 1997 – January 1998

• Naval Nuclear Power Training Command Orlando, FL Electronics Technician 'A' School and Nuclear Power School

May 1996 – June 1997

• Community College of Allegheny County Monroeville, PA August 1995 – December 1995PROFESSIONAL REGISTRATION AND CERTIFICATIONS

• Advanced Recruiter Raleigh, NC: Recruits individuals into the U.S. Navy and Naval Reserve. Communicates and relates effectively with prospects, groups and the community. Personally cover 4 counties in Western NC to include 5 High Schools and 6 colleges. Manage 2 junior Sailors and an average of 30 Future Sailors awaiting to ship to Recruit Training Command. Perform multiple presentations every month on the Navy scholarship, nuclear field and special warfare opportunities. Work in a military and civilian environment to process applicants into the Navy. Earned multiple station awards and helped in junior Sailors getting medals, recognition and other awards. Community involvement to include speaking to children in the middle schools, Sea Cadets, Boy and Cub Scouts. Also, judge every Junior ROTC competition in western North Carolina.

July 2011 – present

• Command Fitness Leader (CFL): Administered the Navy's Fitness Enhancement Program to Sailors that did not meet the standards. Also scheduled the Physical Fitness Assessment for reactor department.

June 2006 – November 2008

• Surface Reactor Controls Supervisor (NEC 3393): Supervised the operation and maintenance of surface ship Nuclear Propulsion Plants reactor control equipment.

February 2007

• Reactor Operator (CVN 65) Norfolk, VA: Performed reactor startups and shutdowns while monitoring plant parameters to ensure reactor safety. Performed preventative and corrective maintenance on reactor controls equipment.

November 2006

• Reactor Control Equipment Operator (CVN 65) Norfolk, VA: Monitored, logged, and maintained nuclear instrumentation and other reactor control equipment.

July 2006

• Enlisted Surface Warfare Specialist (ESWS): Provided sufficient knowledge on Naval heritage, Navy organization, shipboard organization, Deck, Operations, Combat Systems, and Engineering department fundamentals, HAZMAT, hazardous waste, and pollution controls on board a Naval vessel.

February 2006

• Nuclear Propulsion Plant Electronics Maintenance Supervisor (NEC 3373): Supervised the organizational and depot level maintenance on reactor control systems.

May 2005

• Radiological Controls Shift Supervisor (RCSS) Trident Refit Facility Kings Bay (TRFKB), GA: Military equivalent to Senior Radcon Technician (SRCT).

July 2004

• Effluent Tank Operator TRFKB, GA: Operated and watched the PRWCT as it received RLW. Tank pressure, hydrogen levels and flow rate were all controlled.

November 2003

• DiOctylPhthalate (DOP) Equipment Operator TRFKB, GA: Performed DOP testing of all HEPA filters in the CIF and maintained the DOP equipment.

November 2003

• Radiological Controls Technician (RCT) TRFKB, GA July 2003• Radioactive Liquid Waste System Operator TRFKB, GA: Purified

RLW into CPW and maintained the RLW system.July 2003

• Controlled Industrial Facility Security Watch TRFKB, GA: Controlled entry into the CIF and into the Radiologically Controlled Area.

May 2003

• Beretta M9 9mm qualification Expert TRFKB, GA November 2002• Mossberg 500 shotgun qualification TRFKB, GA November 2002• Oleoresin Capsicum qualification TRFKB, GA October 2002• Reactor Operator (CVN 69) Norfolk, VA December 1999• Shutdown Reactor Operator (CVN 69) Norfolk, VA July 1999TECHNOLOGY-RELATED EMPLOYMENT HISTORY

United States Navy – Nuclear Electronics Technician: • USS Enterprise CVN 65

• Station Office Leading Petty Officer (2008 – 2011): Managed an 8 person multi-rate division that coordinated between the shipyards, various contractors, Bettis Atomic Labs, Reactor Plant Contracting Office, Naval Reactors Representatives Office and the Ship's Force Division for all of the maintenance and repair of an 8 nuclear reactor complex. Specific duties were: writing temporary instructions to supplement existing procedures for clarification, conducting research for incident reports/fact findings, and maintaining the classified intranet.

• Reactor Controls Division 2 and 3 Plant Leading Petty Officer (2006 -2008): Managed approximately 25 junior Sailors at a time to perform the maintenance and operation of a dual nuclear reactor and propulsion complex (A2W). Maintenance included repair and upkeep of digital and analog systems. Troubleshooting and repair was down to the component level.

February 1996 – Present

Inspected and performed soldering jobs as required to NASA standards. Wrote procedures that referenced multiple technical manuals for use in nuclear and electrical repair work.

• USS George Washington CVN 73• Reactor Controls Division Leading Petty Officer (2005):

Managed administrative issues for a 70 person division.• Steam Dump Operator (2005): Operated the steam dump valve

for steam plant testing for post shipyard repairs.• Trident Refit Facility Kings Bay (TRFKB)

• Radiological Controls Shift Supervisor - RCSS (2004 – 2005): Responsible for the oversight of all nuclear work on tended ships and the Controlled Industrial Facility (CIF).

• Radiological Controls Technician (2003 – 2005): Performed nuclear work on tended ships and the CIF. Work included 3 submarine Ion Exchanger/Hot Filter media discharges, 3 high rad nuclear lifts, 2 demineralizer resin replacements, 2 shielding installation and removal inside the reactor compartment, 9 Discharge Retention Tank (DRT) gauge repairs, multiple Portable Radioactive Liquid Waste Collection Tank (PRWCT) movements, fills, maintenance and drains.

• Pure Water equipment operator (2003 – 2005): Performed cleanliness inspections and maintained the pure water system filter adapters for delivering pure water to tended submarines.

• Radioactive Liquid Waste (RLW) system operator (2003 – 2005): Maintained the RLW system as well as purified RLW into Controlled Pure Water for use as make up water for tended submarines and the CIF.

• USS Dwight D. Eisenhower CVN 69• Work Controls Electronics Technician (2000 – 2002): Proving

and writing complex electrical and mechanical tag outs for repair and upgrades to an A4W nuclear complex. Worked extensively with MS Word, Access, Excel, Java, and Visual Basic, as well as blueprints/microfiche provided by the shipyards, contractors, and ship's force.

• Maintenance Personnel (1998 – 2002): Performed maintenance and operated instrumentation and control equipment for a single-reactor propulsion plant.

PROFESSIONAL ACTIVITIES OUTSIDE OF YOUR EMPLOYMENT SETTING

• Cub Scout Pack 218 Webelos I and II Leader 2009 - 2010• Cub Scout Pack 320 Bears Leader 2008• Asheville Sea Cadets regular guest speaker 2011 – presentCONTINUING EDUCATION ACTIVITIES

• Excelsior College, studying towards Bachelors of Science in Nuclear Engineering Technology. Expected completion date: December 2014

October 2013 – Present

AWARDS AND HONORS RECEIVED

• Navy and Marine Corps Achievement Medal while serving as Reactor Controls Technician. Awarded for managing the pre-overseas

August 2007

movement ship's work list that included hundreds of maintenance actions and dozens of pre-availability checks.

• Navy and Marine Corps Achievement Medal while serving as RCSS and Nuclear Facilities Division Technician. Awarded due to the implementation of a temporary RLW system so the CIF could process RLW while maintenance was performed on the main system.

March 2005

• Navy and Marine Corps Achievement Medal while serving as Nuclear Facilities Division Pure Water Equipment Operator. Awarded for the improvement upon the system saving hundreds of man-hours, performing 2 PRWCT cleanings, and 2 complex dual media discharges and 2 Discharge Retention Tank gauge repairs.

May 2004

• Commanding Officer's Letter of Commendation for fourth gold wreath award. The gold wreath is given for consistency in recruiting applicants into the Navy over a 3 month range.

August 2013

• Commanding Officer's Letter of Commendation while serving as Reactor Controls Technician. Awarded for expertly troubleshooting noise in the 3A reactor source range nuclear instruments for 3 days straight. The actions performed allowed the ship to fulfill her operational commitment without delay.

August 2007

PUBLICATIONS AND PRESENTATIONS

• Developed and presented sales of the Nuclear Power Program and the Reserve Officers' Training Corps scholarship to the target audience for recruiting applicants into the Navy.

2011 – present

• Developed and presented numerous work packages and work authorization briefs for work on reactor control systems.

June 2005 – February 2011

• Developed and presented numerous training presentations on Reactor Plant systems and theory.

June 2005 – February 2011

• Developed and presented numerous work packages, controlled work packages, and work authorization briefs for work on radiological systems.

September 2002 – March 2005

SPECIAL COMPETENCIES AND SKILLS

• Computer programming: Java• Windows XP, 7, 8 and 8.1• MS Office 2010, 2013 and 365• Shift Operations Management System (SOMS): Used for controlling

work packages and the tag out of systems for work.• Rapid Data Management System (RDMS): Database system to track

training, qualifications, and personnel records.• Quality Assurance handling including nuclear materials.• Advanced first aid and cardiopulmonary resuscitation (CPR)

qualified

Program Outcome 1 – Select and apply appropriate knowledge, techniques, skills, and modern

tools of the natural sciences, including physics, chemistry, thermodynamics, atomic physics, and

nuclear physics, to solving problems in nuclear engineering technology areas.

Performance Indicators:

• Identify the specific scientific principles used

• Recognize the connections between the knowledge of natural sciences and your

discipline, job, hobby, or courses completed later

Learning Statements:

• I completed Physics I in college and earned credit for Physics II in Naval Nuclear Power

School (NNPS). An important concept that I took from those classes was the law of

conservation of energy and momentum. The conservation of momentum is described as:

P = mv, Σ Pinitial = Σ Pfinal

Where:

P is momentum

m is mass

v is velocity

The conservation of energy is described as:

KE = ½ mv2, Energy initial + Energy added - Energy removed = Energyfinal

Where:

KE is kenitic energy

Taking an object whose mass remains constant, the velocity will change as it loses energy

and momentum. These losses can be due to friction, collisions with other objects, or a

multitude of any other things, but all energy can be accounted for and is never lost. In

nuclear power we discuss in length the energy that a neutron transfers as it collides with

other matter. Understanding both of these formulas helped me grasp the concept of how the

neutron transfers its energy to surrounding matter – especially the moderator in pressurized

water reactors. Because energy is not lost, it is transferred to the moderator, the moderator's

energy increases and thus the average KE increases. My Excelsior College academic plan

and my Joint Services Transcript (JST) are used as evidence for completion of Physics I and

II.

• At NNPS I also took a chemistry class that introduced the chemicals added to the moderator

to maintain a basic pH. The main chemical that the Navy uses is ammonium hydroxide,

NH4OH. It undergoes the following reaction:

NH3 + H2O <=> NH4OH <=> NH4+ + OH-

This balance equation shows how adding NH4OH will stress the equation both ways making

more ammonia, NH3, and more hydroxide ions, OH-, which will make pH become more

basic. One of the many specifications that the moderator must be within is hydrogen gas

concentration. Ammonia adds to this by the decomposition of ammonia from the gamma

flux of the reactor, thus adding nitrogen and hydrogen gas:

2NH3 + γ → N2 + 3H2

In order to lower the gas concentration, the moderator is degassed by venting off the

pressurizer. This ultimately lowers the concentration of ammonia as well. Knowing these

concepts helped me understand why we have to continually monitor and add NH4OH to the

reactor. My Excelsior College academic plan and my JST are used as evidence for

completion of Chemistry.

• One of the more challenging classes I took at NNPS was heat transfer and fluid flow. We

discussed the differences between laminar and turbulent flow in a pipe or channel. The way

heat is transferred across each environment is different, but follow concepts that I could

relate to. Laminar flow transfers heat similar to how conduction would:

Q = k A (ΔT/Δx)

Where:

Q is power or heat generation rate

k is the thermal conductivity

A is the contact area

ΔT is the change in temperature

Δx is the change in thickness

Turbulent flow transfers heat similar to how convection would:

Q = h A ΔT

Where:

h is the convection heat transfer coefficient

Heat being transferred across a pipe or channel of flowing water will have a temperature

profile that is curved in the laminar region and relatively constant in the turbulent region.

This is because of the constant mixing that occurs in the turbulent region. The fuel itself

generates heat so the shape of the temperature profile from the center of the fuel to the

cladding drops parabolically. Each material has a different ability to transfer heat. This is

called the R factor of the material. I would use a material that has a high R factor to insulate

my house because it does not transfer heat very well. It is explained further in its equation:

RMAT = Δx / kMAT

Where:

RMAT is the R factor for the material

Δx is the thickness of the material

kMAT is the thermal conductivity of the material

Understanding what the R factor of a material is led me into grasping the concept of heat

transfer across a system. The following formula explains how heat transfer works across

systems:

U = 1 / (RMAT1 + RMAT2 + … ), Q = U A ΔT

Where:

U is the overall heat transfer coefficient

Putting all of this knowledge together helped me understand the overall temperature profile

of a fuel cell from the center of the fuel all the way to the coolant. This allows us to be able

to calculate the peak central temperature (PCT) based on coolant flow and temperature:

Radial Temperature Profile Across a Fuel

Rod and Coolant Channel. Taken from:

http://nuclearpowertraining.tpub.com/h101

2v2/css/h1012v2_71.htm

My Excelsior College academic plan and my JST is used as evidence for completion of

Thermodynamics, Heat Transfer and Fluids.

• One of my favorite classes at NNPS talked about atomic physics. I learned that electrons

have different energy states inside of an atom. We described them as potential “wells” that

must be overcome in order to escape from the atom or change energy states. One of the most

interesting parts of the class was when we discussed the nuclear force. It solved my

unanswered question of how the protons and neutrons stayed together within the atom's

nucleus. When those two concepts were put together, I was able to understand how the

nuclear force took over when an atomic particle got close enough to the nucleus of the atom.

The electrostatic force between two charged objects can be described as:

Fe = (K Q1 Q2) / d2

Where:

Fe is the electrostatic force in newtons

K is 8.99 x 109 Nm2/c2

Q is the charge of an object in coulombs

d is the distance between the objects in meters

The nuclear force between two subatomic particles can be described by the equation:

Fn = -H e^(d/d0) / d2

Where:

H is 1.9257 x 10-25 Nm2

d0 is 1.522 x 10-15 m

Putting the two equations together to come up with the total force exerted upon particles at

the atomic level will give us:

FTotal = [(K Q1 Q2) - H e^(d/d0)] / d2

Looking at the two equations does not do them any justice because the numbers are so

different. I took the liberty of graphing the two equations using Microsoft Mathematics. I

based the graph on the collision of two protons whose charge is 1.60 x 10-19 coulombs. The

y-axis is force in newtons vs. the x axis which is distance in meters. The break over is a little

over 1N of force. That is over 100 grams of force on an object that weighs as little as 1.67 x

10-24 grams. Notice the sudden drop off once the nuclear force takes control:

My Excelsior College academic plan and my JST are used as further evidence for

completion of classical and atomic physics.

• Another exciting class at NNPS taught me about nuclear and reactor physics. One of the

major concepts learned was the different types of induced nuclear reactions. Scattering

reactions involved a neutron interacting with a nucleus, exciting the nucleus, but the neutron

carries on and may or may not cause the nucleus to emit a gamma:

10n + A

ZX → (A+1ZX)* → 1

0n + AZX , elastic

10n + A

ZX → (A+1ZX)* → 1

0n + AZX + 0

0γ , inelastic

Absorption reactions are just that: they absorb the incoming particle and the result can differ

depending on the nucleus and the energy of the particle:

10n + A

ZX → (A+1ZX)* → A+1

ZX + 00γ , capture (fusion)

10n + A

ZX → (A+1ZX)* → A

Z-1Y + 11p , particle ejection

00γ + A

ZX → (A+1ZX)* → A-1

ZX + 10n , particle ejection

10n + A

ZX → (A+1ZX)* → FF1 + FF2 + 1

0n's + 00γ's , fission

When specifically talking about the thermal fuel U-235, one on which we dwell on

because of its use in Naval nuclear power plants, the reaction that it undergoes depends on

the energy level of the neutron interacting with it. We learned a unit called barns and a term

called thermal flux. To relate the terms together, we thought of throwing a baseball at the

side of a barn – the bigger the barn, the more likely that the baseball would hit it; Where the

baseballs related to the thermal flux and the chance to hit the barn was microscopic cross

section. Going back to U-235, it has a different number of barns for different reactions

called microscopic cross sections for absorption, scattering and fission. These are:

σ25a0 = 681b, σ25

s0 = 13.8b, σ25f0 = 582b

These values are based on a neutron velocity of 2200 m/s which corresponds to about

0.0253 eV. This energy is in the thermal region for U-235 and is great for fission. Absorption

greatly decreases as the energy of the neutron increases:

σ = σ0 (v0 / v)

The following graph represents the three different energy regions for a neutron concerning

U-235 – Thermal region < ~1 eV, Fast region > 100 eV, Resonance region is in between:

Taken from DOE-HDBK-1019/1-93 Module 2, Page 9

My Excelsior College academic plan, JST and page 4 of my military record are submitted as

evidence for my completion of nuclear physics and qualification of rector operator.

Evidence Used to Support Learning Statements:

• Tab C-1 - Joint Service Transcript

• Tab C-2 - Excelsior College Academic Plan

• Tab C-3 - Military Record Page 4: Qualifications

Program Outcome 2 – Demonstrate the ability to understand, measure, and provide quantitative

expressions of natural science phenomena, including observation, standard tests, experimentation

and accurate measurement.

Performance Indicators:

• Determine the types of data needed; the instrumentation needed to record the data; and

the documentation, analysis, and presentation (both oral and written) of results

• Demonstrate competencies in using lab instrumentation that measures physical

quantities including error, accuracy, precision, and resolution

• Demonstrate recording and reporting skills

Learning Statements:

• My first school after recruit training command was Nuclear Electronics Technician 'A'

School. That is where I learned most of everything that I know about electronics. I further

expounded upon the elements of troubleshooting electronics at Electronics Technician

Maintenance School (ETMS). A fundamental concept that is used in almost every aspect of

electronics is Ohm's Law and how to calculate total resistance in a circuit. Ohm's Law is as

follows:

E = IR

Where:

E is voltage

I is current

R is resistance

Finding total resistance in a series circuit is done by the following formula:

RT = R1 + R2 + … + Rn

When working with a parallel circuit, it becomes a little more difficult:

1 / RT = 1 / (R1 + R2 + …+ Rn)

In the Navy, we often use an analog Simpson or a digital Fluke multimeter. For a Simpson,

I pulled up the data sheet for a 260-8 analog VOM from www.simpsonelectronic.com. It is

important to select test equipment that will be appropriate for the job. You want test

equipment whose sensitivity is close to that of the equipment that you are measuring. On the

data sheet, I can see what the VOM's sensitivity and accuracy is for the ranges that I will be

using. For the 260-8, measuring a DC voltage, the sensitivity is 20kΩ per volt and the

accuracy is 2% of full scale. Meter accuracy is a ratio of the voltage measured when the

meter is in the circuit to true voltage:

KV = VW / V0

This makes percent error:

% error = 100% * (V0 – VW) / V0

Meter sensitivity is simply the ratio of meter resistance to the voltage range used. I will

demonstrate how adding a VOM to a circuit will measure a voltage that is slightly different

than true voltage. Using a simple circuit to demonstrate the above concepts, I performed a

circuit lab at www.docircuits.com:

To find what the true voltage drop across R2 without the meter installed, I must first find

the total resistance of the circuit. RT = R2 + 1/(1/R0 + 1/R1) = 21.6667 Ohms. Using Ohm's

Law, I find the current to be E/RT = 0.5538 Amps. This gives a true voltage drop across R2:

E = I*R2 = 8.3077 Volts. When we add in a VOM to measure the voltage drop, we are

adding a parallel resistance into the circuit. I would use the 10 Volt DC range on the VOM.

The meter resistance, RM, is the sensitivity times the range, which is (20kΩ/V)(10V) =

200kΩ. This changes RT slightly: 1/(1/R2 + 1/RM) + 1/(1/R0 + 1/R1) = 21.6655 Ohms. Only

a 0.0012Ω difference. Total current is then 0.5539 Amps. The voltage measured is then

8.3075 Volts. These concepts helped me understand that test equipment can't be 100%

accurate and that picking the right test equipment is vital to measuring circuit parameters.

Also, these concepts are essential to understanding how measurements can change due to

fluctuation in the power supply, a currently calibrated VOM, a properly charged DMM,

properly insulated test leads, et cetera. There are many environmental factors that can

change the reading of a multimeter so it is vital to the success of the technician to take

multiple readings and to make sure that they make sense. My JST for completing Electronics

Technician 'A' School and ETMS, and the data sheet for the Simpson 280-6 VOM are

submitted as evidence.

• I continued to understand the importance of taking multiple measurements when I

completed Statistics at Post University. In a real life scenario, not in a lab, there are

variances in the readings that can't be avoided. An average, or mean, of the readings can be

determined to get a more accurate reading. The sample mean can be calculated by the

following formula:

x = ∑xi / n

Where:

x is the sample mean

∑xi is the sum of the readings

n is the number of readings taken

As the number of test readings are taken increases, the standard deviation, s, decreases:

s = √(∑(xi – x) 2 / (n -1))

This results in a data set that makes a bell curve that is taller and skinnier. This allows the

technician to see outliers and a more accurate mean. My college transcripts are provided as

evidence for completing Statistics.

• In the Navy, I had a chance to attend Electronics Technician Maintenance School (ETMS).

There I continued to hone my skills as a technician by troubleshooting complicated

scenarios, learning to perform complex soldering jobs, and to make simple circuit board

repairs. I also learned better maintenance ethics and a good job briefing standard. Our main

technical manual was the Reactor Plant Instrumentation and Control Equipment

Maintenance manual, NAVSEA 0989-031-4000. In addition, we took from many other

manuals for performing maintenance such as Naval Ships' Technical Manual Chapter 300

Electric Plant, OPNAVINST 5100.19D Navy Occupational Safety & Health Program

Manual, NSN 0910-LP-110-8193 Tag-out Users Manual, COMUSFLTFORCOMINST

4790.3 Joint Fleet Maintenance Manual, NAVSEAINST 4790.8C 3-M Manual, NAVSHIPS

0967-000-0150 Electronics Installation & Maintenance Book, and the Naval Ships'

Technical Manual Chapter 491 Electrical Measuring & Test Equipment manual. The list is

by far not all inclusive, but they are the major manuals that we learned to use.

The maintenance personnel ethics that I use to this day are the point, read, verify, operate

method of doing maintenance, reader and performer to include data recording and

maintenance man signatures, “circle and X” method for procedural steps, the 7 step

procedure for performing troubleshooting, and verbatim repeat-backs.

Pre and post job briefing was a very useful tool. In a brief, I learned to lead a team of

technicians to discuss the scope of the work, safety items, equipment used, the experience of

the workers, the man-hours involved, system limitations due to the maintenance, any

radiation precautions, any stopping points, the duration of the work, identified workers and

supervisors, worker qualifications, how tag outs affect different systems, any paperwork

involved, how the paperwork needs to be reviewed and routed, and any required conditions

to perform the work. My JST is provided as evidence for completion of ETMS.

Evidence Used to Support Learning Statements:

• Tab C-1 - Joint Service Transcript

• Tab C-2 - Excelsior College Academic Plan

• Tab C-4 - Simpson model 260-8 data sheet

Program Outcome 3 – Select and apply the appropriate knowledge, techniques, skills and

modern tools of algebra, trigonometry, and calculus to solving problems in nuclear engineering

technology areas.

Performance Indicators:

• Recognize and identify the mathematics used in problem-solving experiences

• Apply the fundamental of mathematics to either: coursework, job, or other life

experiences

Learning Statements:

• I have completed many math classes throughout my career. I took trigonometry, algebra and

calculus in high school, calculus again in NNPS and studied all the way up to calculus III in

college. Taking these classes without having practical use of the knowledge is useless. At

NNPS, I was able to apply most of what I learned. One of the first examples of using algebra

was applying it to dilution and concentration problems concerning static and dynamic

systems. When I was learning it, I thought that it was a very simple problem. Since then I

have had numerous situations where I needed to use that application. The most common

situation that I found myself in was reviewing the chemistry calculations for the primary

when we were going to do a chemical addition. Taking an example from previous

experience, I want to figure out how many bottles of ammonium hydroxide we need to

add to raise the pH to 10.20. We added by the bottle since we couldn't add a partial bottle.

The primary is assumed to be 10,000 gal and the initial pH was 9.80. Each quart bottle

contains 99.9% NH4OH. The formulas involved are:

pH = -log[H3O+] pOH = -log[OH-] pH + pOH = 14

Where:

[H3O+] is the molarity of the hydronium ion in moles/L

[OH-] is the molarity of the hydroxide ion in moles/L

The initial concentration of OH-, [OH-]0, can be figured out by the pH since pH + pOH = 14,

the initial pOH must be 14 – 9.80 = 4.20. [OH-]0 = 10-pOH = 10-4.20 = 6.31x10-5M. The answer

is in moles per liter so we must convert the volume of the primary from gallons to liters.

Since there are 3.7854 liters per gallon, there are 37,854 liters in the primary. Using the

same method as before, our target pH is 10.20 which gives us a pOH of 3.80. The target

concentration, [OH-]f, is then 10-3.80 = 15.85x10-5M. Since the quart bottle is insignificant

when compared to the volume of the primary, I will assume that the final and initial volumes

are the same. To find how many moles we need to add, I will multiply the concentration by

the volume for both final and initial and then subtract the two values. This gives us [OH-]f *

Vf – [OH-]0 * V0 = 3.611 moles of OH-. Since NH4OH completely disassociates in water, we

need to add 3.611 moles of NH4OH. Depending on the size and concentration of the bottles,

we would add enough bottles to meet that requirement without going over the target pH. Of

course each platform has local thumb rules to quickly determine how many bottles to add

without going over, but it is different for each platform. I submit page 4 of my military

record showing that I qualified reactor operator and shutdown reactor operator as evidence

as well as my JST and Excelsior College academic plan to show that I completed algebra.

• At NNPS, I learned that the Navy uses water as a moderator. One of the reasons that water is

used is because the hydrogen atoms in the water molecule allow for the best transfer of

energy from a colliding neutron because they are nearly the same size. To understand this

further, I used trigonometry and the law of the conservation of energy. In the real world,

nothing hits another object exactly dead on so I must use trigonometry in order to calculate

the energy imparted. The equation that we used was a ratio of total final KE to total initial

KE. It can be used for any object that a neutron hits:

KEf / KE0 = (A2 + 2Aμ + 1) / (A + 1)2

Where:

A is the atomic mass in amu of the element that the neutron is colliding with

μ is (1 + A cos θ) / √(1 + 2A cos θ + A2)

θ is the scattering angle

This equation uses mass in atomic mass units and since the neutron is 1amu, it is not present

in the equation. So for a 30º angle of incident with another hydrogen atom at rest:

The KEf / KE0 = 0.983. That means that the traveling neutron gave the neutron at rest 1.7%

of it's kinetic energy. When the angle is a true 180º angle, μ is removed from the equation.

Another example of a neutron hitting an oxygen atom at a 180º angle gives a KEf / KE0 =

0.801. Because the oxygen atom is so much bigger than the neutron, the neutron only

imparts about 20% of its energy with a head on collision. Being able to see and understand

how energy is transferred by the use of algebra and trigonometry is an immense help in

understanding how the basis of nuclear power works. Provided as evidence of completion of

trigonometry is my JST and my Excelsior College academic plan.

• I had mentioned that I took calculus all the way up to calculus III but I have not had a use

for anything other than the basic building blocks learned in calculus I. Being able to

understand the relationship of a curve and how it changes over time just by looking at the

curve has been an important tool. In NNPS we were required to draw what the rate of

change curve would look like for various curves. One of the ways we discussed changes in a

curve was by looking at each term in the equation. Using arrow analysis of major and minor

terms helped us understand how, over time, the curve should look like. Specifically, I recall

deriving the xenon balance equation from the rate of change of xenon and iodine in the

reactor. The equation for iodine is as follows:

dNI / dt = γI ε Σffuel ϕth – λI NI

Where:

dNI / dt is the rate of change of iodine concentration in the reactor

γI ε Σffuel ϕth is the production of iodine from fission of U-235

λI NI is the loss of iodine through natural decay

The production of iodine through fission is affected by fission. So, as power changes in the

reactor, ϕth changes accordingly and thus so does the concentration of iodine, NI. The

formula for the change in xenon is similar:

dNXe / dt = γXe ε Σffuel ϕth - λXe NXe + λI NI - σa

Xe NXe ϕth

Where:

dNXe / dt is the rate of change of xenon concentration in the reactor

γXe ε Σffuel ϕth is the production of xenon from U-235

λI NI is the production of xenon from the decay of iodine

λXe NXe is the loss of xenon through natural decay

σaXe NXe ϕth is the loss of xenon through absorption called burnout

When the reactor is at steady state, the rate of change for each equation is zero and we can

manipulate each to find the xenon equilibrium equation:

γI ε Σffuel ϕth = λI NI

eq

γXe ε Σffuel ϕth + λI NI

eq = σaXe NXe

eq ϕth + λXe Nxeeq

Substituting γI ε Σffuel ϕth for λI Ni

eq in the xenon equation gives us:

γXe ε Σffuel ϕth + γI ε Σf

fuel ϕth = σaXe NXe

eq ϕth + λXe Nxeeq

ε Σffuel ϕth (γXe + γI) = NXe

eq (σaXe ϕth + λXe)

Which gives us the final equations of:

Nxeeq = ε Σf

fuel ϕth (γXe + γI) / (σaXe ϕth + λXe)

NIeq = γI ε Σf

fuel ϕth / λI

Here, I was taught to use arrow analysis for different points of time of power change to

determine what the change in concentration over time looked like. For xenon, when reactor

power would initially increase, ϕth increases immediately so burnout was the major

contributor to the equation so concentration would go down. As time went on, the

concentration would bottom out as the production from fission and iodine would equal the

burnout rate (Approximately 3 hours). Eventually, the production terms would overwhelm

the loss due to burnout and decay and reach a new, higher concentration (Approximately 50

hours). For a down power in the reactor, the opposite is true, but the concentration peaks at

about 6 hours after the change in power. Shutting down the reactor completely removes the

ϕth term so burnout is completely removed and xenon concentration spikes after about 9

hours until it decays away to a more steady state level after about 70 hours. Knowing how

the rate of change of these poisons in the reactor greatly helps in understanding and

operating the reactor. Evidence of completing calculus is in my JST and my Excelsior

College status report and evidence of qualifying reactor operator is in my page 4 of my

military record.

Evidence Used to Support Learning Statements:

• Tab C-1 - Joint Service Transcript

• Tab C-2 - Excelsior College Academic Plan

• Tab C-3 - Military Record Page 4: Qualifications

Program Outcome 4 - Make oral technical presentations in Standard English using graphics and

language appropriate to the audience.

Performance Indicators:

• Demonstrate good use of the English language in the presentation of technical topics

• Demonstrate good use of graphics in the presentation of technical topics

• Identify how the presentation was appropriately adapted to the audience

Learning Statements:

• Throughout my time in the Navy, I have had to both attend and give training for personnel

in my division and for people outside of my division. One of my main training audiences

was the people in my division who were still qualifying or they were newly qualified reactor

operators. For the most part, they had the basic knowledge of operating and maintaining

equipment associated with a Navy nuclear power plant. What I would train on was unit

specific details and basics that needed to be reiterated upon in order to continue in their

qualifications. Having attended hundreds of training sessions myself, I have learned a great

bit about what works in the classroom. One of the best ways that I have found that works is

bringing in the actual test equipment that we use as technicians. The equipment that we

learned in our schooling is different than what we actually use on the ship. This helps keep

the lecture interactive. Bringing up actual maintenance items that use the test equipment to

help relate how it is used is another method that I use to keep the listeners listening. Because

everyone in my division goes to these trainings, I have to keep the senior personnel involved

as well. I do this by doing some research and add in some deep knowledge tidbits that make

them get involved and think. It may go over some of the newer personnel's heads, but I have

been very surprised by the amount that people will absorb in training. I know that when I

attend training, I look for things that I did not know already. When presenting the the same

lecture to personnel that are outside of my division, I focus only on what is required for

them to know since all of us have to maintain a certain level of knowledge for out-of-rate

topics. When this is the case, I use a training guide provided to me from the training

department. Depending on who I am talking to, I relate the topic to things that they should

already have a good grasp on. For instance, when I am talking to mechanics about

electronics, I will relate diodes to check valves, zener diodes to relief valves, a resistor to an

inline orifice, batteries to pumps, et cetera. It is a great lecturing tool to relate the topic to

already known topics so the audience has a basis for remembering what they are learning.

Another thing that I have learned and that I avoid doing is to overwhelm the audience with

excessively detailed diagrams. I say this because I have been to many electronics technician

lectures that have the whole circuit projected up on the board. I have seen this with some

mechanic lectures where the whole system is presented in a slide. Our systems are too

complicated to present in that way. I, instead, use a simplified line diagram that uses the

main components to portray the concept that needs to be learned. In a case where specifics

need to be addressed, I will break the circuit down into parts such that they are clear and

presentable and not overwhelming. It is required as being a qualified reactor operator that I

provide training to the division. As evidence, I have my page 4 of my military record for

being qualified reactor operator and my JST.

• A major part of working in a shipyard environment is how civilian shipyard workers such as

shift test engineers (STE's) and the ship's force interact. One of the changes is how watch

turnover is conducted. We typically perform a pre-watch briefing that is performed in a

temporary classroom like a trailer in the hangar bay. Everyone that is going to relieve the on-

watch watch team attends this briefing. We go over current plant conditions, any evolutions

that we are going to perform on our watch, and any mishaps that have happened in the past

24 hours with lessons learned. These briefs are led by the watch officer (PPWO), the watch

supervisor (PPWS), and the STE. This ensures that the watch team is ready to assume the

watch because every watch stander is questioned about his or her watch station. As the

senior technician, I operate the reactor plant in the absence of the PPWO and PPWS. Any

evolutions that involve changes in reactor plant parameters, I conduct the brief on how it

will be performed and ensure that the watch standers know what they need to do as well. I

detail the brief to an audience that consists of every rate associated with operating a nuclear

power plant. There is nothing that is taught, but rather we check the knowledge of the watch

standers. I do have to change how I explain evolutions to the watch team. I go over what

needs to be done to the reactor plant parameters while the PPWO/PPWS/STE check the

knowledge of the individual watch standers. The way that we conduct pre-watch briefs

allows us to back each other up. When I do a one-on-one turnover with the on-watch watch

stander, I am much more detailed. We go over watch specific items such as tagged out

switches on our panel or any divisional maintenance that is non-intrusive to the watch team.

While sitting reactor operator, I also lead the maintenance, including the brief, that my

division is doing in the reactor plant.

This list is similar to what is covered in a brief:

◦ Current temperature/pressure/level:

◦ Current temperature/pressure/level bands:

◦ Current chemistry and bands:

◦ Current tank levels:

◦ Current equipment tagged out:

◦ Evolutions in progress:

◦ Major equipment status:

◦ Electric plant line up:

◦ Temporary systems installed:

◦ Evolutions to be performed:

◦ Expected changes in plant conditions:

◦ Expected difficulties and stopping points:

◦ Related incident reports:

◦ Previous difficulties:

My involvement ensures that everyone on the watch team is on the same page. Also, my

position as the leading petty officer of the Station Office, I oversaw the production of the

briefing sheet that was used. The above list is a condensed version of what was actually

used. As continued evidence, I have provided my evaluations showing my position as

leading petty officer of the station office and my experience in the shipyards, and my page 4

of my military record to show my qualifications as reactor operator and shutdown reactor

operator.

• During my time as a Navy recruiter, I learned in recruiting school (NORU) many lecturing

techniques that capture your audience's attention. One of the major items was body

language. We were taught the acronym VEGA that works for any audience. It stands for

Voice, Eye contact, Gestures and Attitude. We learned to talk directly to the audience. It is

hard to keep the attention of students when you have your back turned to them so we did

very little on the board. This is different than what I did on the ship because we had to write

a lot of notes on the board for personnel to copy down. We also had to talk loud enough to

bounce our voice off of the black board so we could be heard.

In a high school classroom, we were taught to look at the audience, but to not focus our eyes

on one particular person or section. It is important to scan the audience which will give eyes

on every student.

The next part is our gestures. There are many things that we do when we are nervous that we

don't even know we do. We were made aware of our own nervous habits like pacing, pen

clicking, saying “um” or “like” or “you know” over and over again.

The last part of body language is attitude. We were taught to smile no matter how we were

really feeling. I had a supervisor that would constantly tell us to look good, smell good and

feel good. That was something that he put in the back of our minds to bring us around and

make others want to talk to us.

For the actual lecture itself, we were taught a simple set up. Each presentation had a simple

structure of introduction, body and close. We would first do a short introduction of ourselves

and what we were going to cover. Then we would perform the lecture saving questions for

when we prompt for them. Finally we would close out the lecture with final questions from

both the students and the teacher. The body changed according to our audience. When we

were talking to a class that was part of the science, technology, engineering and mathematics

(STEM) program, we would focus our lecture on the Navy's advanced programs like nuclear

power, special warfare and recruit officer training corps (ROTC). For a general class, we

would talk about setting yourself up for life. We called this the MATTRESS presentation. It

stood for money, adventure, travel, training, recreation, education, security, and success.

These are the topics that peak every high school student's interest. The acronym is written

long ways down the board and as each topic is hit, we fill out the word. We finally label it as

the bed of life. This entices students because now their thought process is that as long as

they have a check in the box for each letter of the acronym, they will be successful in life.

This is a great selling point for the military but we, of course, tailor our discussions to what

the Navy has to offer. These specific items are covered one on one with students after the

lecture. Evidence is my certificate for completion of NORU and value oriented recruiting

training (VALOR) as well as the page 4 of my military record showing that I was qualified

advanced recruiter.

Evidence Used to Support Learning Statements:

• Tab C-1 - Joint Service Transcript

• Tab C-3 - Military Record Page 4: Qualifications

• Tab C-5 - Navy Recruiter Orientation Unit (NORU) graduation certificate

• Tab C-6 - Value Oriented Recruiting certificate

Program Outcome 5 - Demonstrate proficiency in the written and graphical communication of

technical information supported by appropriate technical references using Standard English.

Performance Indicators:

• Demonstrate the ability to organize and be concise in written communication

• Use effective grammar that does not impede meaning

• Use language appropriate to the audience

• Demonstrate the ability to effectively communicate grasp of technical concepts

Learning Statements:

• Based on knowledge of material science in college and NNPS, I will demonstrate how I

would write a quick guide on the brittle fracture prevention limits (BFPL) of a platform

specific nuclear reactor. I have performed many lectures on the BFPL derivation throughout

my Naval career. I will address this report to an audience that has taken material science

type classes. The first thing addressed is the importance of the BFPL for a reactor plant. The

report is broken up into three sections: Fracture Toughness (KIC), Nil-Ductility Transition

(NDT) Temperature, and tie together with cyclic stress and fatigue failure. In section I:

◦ What stresses go into total stress: thermal, pressure, residual

◦ Overlay the stresses on a pressure vessel wall as a graph

◦ Why limits on heat-up and cool-down rates are BFPL limits and why cool-down is

more limiting

◦ Maintain total stress (σTotal) < absolute total tensile stress (σa)

◦ KIC = Y σf √(π a), explain every part as a refresher.

◦ Explain design margin: KIC = Y σa DM √(π a)

◦ Explain crack arrest: KIA = Y σarrest √(π a) and why it is important to know for casualty

response.

In section II, I will lead in by talking about requirements for brittle fracture to occur –

preexisting flaw, tensile stress, little to no plastic deformation. Section II will consist of:

◦ Explain how different materials will break at different temperatures. Show it using a

charpy energy (impact energy) vs temperature graph.

◦ Point out the change in the curve going from ductile failure to brittle fracture.

◦ Point out NDT temperature and explain how adding 60˚F is approximately the

temperature at which crack arrest stress vs temperature curve intersects with the yield

stress vs. temperature curve. Explain why this is important.

◦ Show how irradiation moves the curve on a graph of impact energy vs. temperature to

the right. Also show how the shape of the curve is not affected and NDT moves

accordingly.

In section III, I will tie in the fact that irradiation affects different parts of the reactor

differently and that is why even though it may be made of the same material, the limits are

different. Section III will consist of:

◦ Explain how σa is different for different parts of the reactor: Reactor vessel, spray

nozzle, surge line, and pressurizer.

◦ Explain why we limit cycling of the spray valve and why it constantly trickles water

through it. - cyclic stress leads to fatigue failure.

◦ Explain why we want to maintain a constant direction of water surging into or out of

the pressurizer.

◦ Explain how allowable stress and NDT make up the BFPL by assuming maximum

thermal stress at all times, the only stress is pressure stress.

◦ Show pressure curves vs temperature for various reactor components. Draw an

outline that fits all of the curves into one curve and call it the BFPL.

This is the layout that I have used in the past to explain the hard concept of the BFPL to

qualifying technicians. It takes the knowledge that they have learned in schooling and

applies it specifically to the platform that they are qualifying on. Evidence to support my

ability to write reports will consist of my evaluations showing my position as the Station

Office leading petty officer where I wrote procedures using technical manuals to be able to

operate the reactor plant components safely in an unorthodox environment like the

shipyards, my page 4 of my military record for being qualified reactor operator where is it

required to understand and be able to present knowledge concerning BFPL derivation.

• Earlier in my college education, I took College Writing II and wrote an argumentative paper

on consumers and advertisements. I started off with choosing a claim. The claim was:

Honest advertisements do not make the consumer think that they need a product if they truly

do not need it. We broke down our argument into a pro/con check list. This allowed us to be

able to anticipate and counter any arguments that may be made against our claim. In the

paper I sympathized with the audience by presenting what most people think about

advertisements: It is a gimmick to get people to buy things that they don't need. From there,

I continued with personal experiences to relate even further with the audience. I broke my

experiences down to coincide with my claim. This way, I do not offend or insult the

audience, only myself. From there, I backed up my statements with published research from

a source that was credible in the field. In class, we covered how the television series “Mad

Men” related to our paper. So, I incorporated how the characters in the series support my

argument as well. Then I explained how I think when I go shopping by making a list of what

I need based on price, quality and tradition. I made note that those three aspects of making a

shopping list are very important to the consumer. Tradition plays a role because there are

some things that our parents bought that we are used to using and will continue to use.

Backing up my claim even further, I brought in a commercial that most everyone can relate

to, the Alka-Seltzer “Spicy Meatball”. The commercial was designed to let the consumer

remember that there is a product out there that can handle how one feels after having

indigestion. When we feel that way, the memory of the commercial is triggered and we

naturally want to feel better so we go for the Alka-Seltzer.

Now that I have had more education, I would drastically improve upon what I wrote. I

would make more references to back up my claim and expound upon every topic rather than

hit one and go on. Evidence is my report Consumers Only Buy What They Think They Need

from college, my pro/con worksheet, and my Excelsior College Academic Plan.

Evidence Used to Support Learning Statements:

• Tab C-1 - Excelsior College Academic Plan

• Tab C-3 - Military Record Page 4: Qualifications

• Tab C-7 - Military Evaluations

• Tab C-8 - College Writing II: Consumers Only Buy What They Think They Need

• Tab C-9 - College Writing II: Pro/Con Worksheet

Program Outcome 6 - Demonstrate a working knowledge of computer applications or

documentation of the use of one or more computer software packages for technical problem

solving appropriate to the nuclear engineering technology discipline.

Performance Indicators:

• Identify the problem solved through using a computer application/software package

• Discuss the rationale for choosing the described software/computer application

• Discuss how the described computer software package was used to solve a particular

problem

• Identify issues that arose and their resolution while using the described computer

software package

Learning Statements:

• While serving as the Leading Petty Officer for the Station Office on board USS Enterprise,

we implemented many programs that helped the Engineering Officer of the Watch (EOOW)

to track the many aspects of operating the reactor plants on the ship. We used Microsoft

Excel as a spreadsheet and database to allow each PPWO to input multiple parameters about

the reactor plant:

◦ Tank levels

◦ Electric plant lineup

◦ Reactor power

◦ Pump configurations

◦ Valve positions

◦ Primary chemistry

◦ Secondary chemistry

◦ Reactor plant parameters (Temperature, Pressure, Level)

◦ Out of commission equipment

This is a short list, but there were many other important items depending on the status of the

reactor plant. The PPWO's inputs also updated a main Microsoft Excel file that the EOOW

is able to look at and make decisions for operating the ship and use for turnover from watch

to watch. We made the Microsoft Excel file protected such that old parameters could not be

changed unless if an administrator did it and only fields in a new file could be manipulated

but the formulas for other fields could not be changed. This kept the program safe from

accidental changes to formulas and also kept the reports looking the same so it is easy to

compare day to day events for trend analysis. Microsoft Excel was used because it is a

familiar program to everyone that would maintain it making it easy for a newcomer to

understand and change if needed. The PPWO's and EOOW's who are inputting and reading

the data are also familiar with Microsoft Excel so there isn't a learning curve to use the

program. It also makes it easy to make reports from the data when the anyone needs to look

at data over a longer period of time. Before the online version, each PPWO had their own

version that contained the information needed, but it could be manipulated, formulas could

be broken and there was no master file that was updated so reports could not be made. This

made trend analysis very hard to do since the various reports were printed out and given to

the EOOW fro analysis so long term trends were easily missed. The system was initially

made with with the fields that needed to be entered as a highlighted cell with no protection

over the rest of the file. Our assumption that a PPWO or EOOW qualified person would

only enter what they needed and save the file was incorrect. It was a lot harder than it

sounds, but we were eventually able to make each file protected except for the required

fields to be entered. Also we had to limit access to the PPWO to his or her appropriate files

(Before, they had access to everything including the EOOW's master file). Since the files are

on the reactor plant classified LAN, computer log-ins and computer location determined the

access that was granted. I have supplied my evaluations showing that I was the leading petty

officer of the Station Office where one of our main purposes was to maintain the propulsion

plant LAN.

• While on board the USS Dwight D. Eisenhower, one of my collateral duties was to maintain

and improve upon the Microsoft Access database for the Pump Noise Monitor (PNM). I had

taken over the collateral duty of maintaining the database for the PNM for number 2 reactor

plant. The PNM monitored the sound level of the Reactor Coolant Pumps (RCP) using

lead zirconium titanate crystals positioned in an x, y, and z axis atop the RCP. These

piezoelectric crystals produced an electric signal from the vibrations of the RCP which, in

turn, were converted to read out in decibels on the meter on the panel of the PNM itself.

Watch standers recorded PNM levels every hour in both plants, for each of the 8 total RCP's,

as required when operating. I would take old logs and manually type in the sound level (in

dB) and RCP frequency (in Hz) into the database for each RCP. This allowed for trend

analysis and casualty response for any of the 8 RCP's. It allowed watch standers to judge

whether or not the RCP's were operating normally or if failure was imminent because of the

baseline chart for common operating frequencies that I was able to produce from the data

that was taken. If a RCP was acting abnormally, I or anyone else who had access to the

reactor plant LAN would be able to generate a chart based on the frequency that the RCP

was operating at and compare and take immediate actions if necessary. Not many of us had

experience with Microsoft Access and it was hard to work with. To get around this problem,

I was able to export the data that I requested to a MS Excel file and from there I was able to

manipulate the data to be presented in a useful manner that everyone was accustomed to.

Another problem that arose was that the database files could not be e-mailed because of their

extension. The security of the LAN did not allow such files to be attachments. We would

sometimes need to send this data off ship to Bettis Atomic Labs for analysis. Our own

security protocol would not allow us to send such a file. To get around this, we would

simply remove the extension and change it to a *.txt file and inform the recipient that they

needed to change it back to a Microsoft Access database file extension in order to view the

data. Microsoft Access was chosen because it was easier to enter the data because of the

sheer amount that was presented every day – approximately 768 entries every day depending

on if the RCP was secured or not. Even though it was not a user friendly program, we could

still export it to a program that is: Microsoft Excel. As evidence, I submit my military

evaluation that shows that my collateral duty was to maintain number 2 plant PNM data.

Evidence Used to Support Learning Statements:

• Tab C-7 - Military Evaluations

Program Outcome 7 - Demonstrate technical competency in electrical theory, nuclear and

engineering materials, reactor core fundamentals, plant systems, heat transfer, fluids, health

physics/radiation protection, and radiation measurement.

Performance Indicators:

• Show technical competencies / samples in all areas listed in objective

• Demonstrate knowledge and comprehension of fundamental technical concepts in all

listed areas

• Demonstrate problem solving skills in all listed areas

Learning Statements:

• My electrical theory background consists of the classes taken at my 'A' School. We covered

AC and DC circuits all the way up to digital electronics and radar systems. Part of my AC

circuits class, I learned about induction motors and synchros. One of the most fundamental

concepts learned was induction and electromotive force. This came into play when we

focused on how pole slippage can occur in these types of motors. Synchros, specifically, use

induction but in a different way. They come as a pair because as one synchro is moved

mechanically, the electrical signal moves the other synchro the same amount. The signal is a

voltage that is induced because the synchro, when it is moved, cuts across the

electromagnetic lines of force when it is out of phase. The voltage induced is known by this

formula:

Eg = K ϕfield N

Where:

Eg is induced voltage

K is a fixed constant

Φfield is the flux strength of the electromagnet field

N is the speed

A practical application of this is how the throttle valves are manipulated remotely from

the Enclosed Operating Station (EOS) on a nuclear powered aircraft carrier. On the

Propulsion Control Console (PCC), the Throttleman watch operates a hand wheel that is a

synchro that sends an electrical signal to a hydraulic power unit (HPU). At the HPU is a

receiver that turns the electrical signal into a hydraulic signal which moves the main engine's

throttles accordingly. If the throttleman were to move the hand wheel too fast, he or she

might slip the poles in the synchro because it may not be able to overcome the torque fast

enough. This action will cause the HPU and the PCC to not be synchronized and the

throttles will be in an unknown position. The receiver requires a certain amount of torque to

get it to initially spin. The formula for torque is similar to induced voltage such that:

Torque, T = K ϕfield Ia

Where:

T is the torque

Ia is the current

As evidence, I have supplied my page 4 of my military record showing that I was qualified

Throttleman and my JST showing my military schooling.

• In my reactor technology class at NNPS, I learned about the type of nuclear fuel that the

Navy uses for its pressurized water reactors. The Navy uses the thermal fuel of enriched

uranium 235. They are made into uranium oxide pellets which are coated with niobium to

minimize reacting with surrounding metals and to help prevent crushing the pellet during the

roll bonding process. The pellets are zoned both axially and radially inside of a zirconium-2

matrix. The zoning is performed to help even out the flux distribution of the core throughout

core life. For even more corrosion prevention, zirconium-4 is roll bonded to the outside of

the fuel rods. Zirconium-4 is less susceptible to steam corrosion if by chance there was a

critical heat flux violation and steam formed in the channel. I have supplied my JST as

evidence for completion of the reactor technology class.

• In my nuclear materials class at NNPS and my materials science for engineers class at

Excelsior, I learned about the importance of managing the level of hydrogen in the reactor.

Hydrogen embrittlement can occur when heating up the reactor from low temperatures if the

reactor was not cooled down properly. As the reactor is heated up from low temperatures,

typically below 300F, hydrogen that has been absorbed into the reactor plant materials

through microscopic cracks will also heat up, expand and cause pressure within the metal

causing crack propagation and eventually fracture if severe enough. A specific metal that is

very susceptible to hydrogen embrittlement is Inconel X-750. Hydrogen embrittlement can

be prevented by performing a slow cool-down and lowering the hydrogen concentration.

The lowered concentration minimizes the amount of hydrogen that travels at the atomic

level through microscopic cracks in the metals that make up the reactor. As a reactor

operator, I must understand the importance of hydrogen embrittlement and all of the X-750

components since I control the heat up and cool down of the reactor as well as monitor the

chemistry. I have provided my page 4 of my military record showing that I was qualified

reactor operator and my JST.

• For my reactor systems practicum at the Nuclear Power Training Unit (NPTU), I learned

about the importance of the decay heat removal. As an operator I was required to know all of

the different modes of removing decay heat to include emergency situations. When a reactor

is shut down, either normally or for an emergency, radionuclides are still present in the

reactor which generate heat. These radionuclides are formed from activation of various

reactor plant components and fission products from the fuel. Some may decay away to a

stable isotope with minutes to a few hours, but others may not decay away for many years

such. The biggest radionuclide of concern in Navy nuclear power plants is cobalt 60. It is

formed from the activation of cobalt 59 which is used as a lubricant in many parts of the

reactor plant system. It takes approximately 5.27 years for half of it to decay away. Its

relatively long half life is one of the reasons that it is used extensively in radiology.

One type of method for decay heat removal used at NPTU was the supplemental water

injection system (SWIS). It was a means of emergency decay heat removal. I was to

required to draw out the complete system to include every pump, valve, detector and tank

associated with it. I was also required to know the power supply to each component and its

back up power supply if the normal was to fail. Even though reactor power was limited to

40% of rated power, the reactor could stay at that power for a very long time. This would

create a large amount of decay heat if the reactor were to suddenly shut down. The SWIS

system was designed to be able to handle any amount of decay heat that the reactor could

produce throughout its core life.

On an A4W/A2W plant, we relied on many different modes of decay heat removal. Their

version of SWIS was called the safety injection system (SJ). But of course, the SWIS and SJ

systems were meant to be used for the most extreme casualty when all else fails. The most

common heat removal method was using the installed RCP's and removing the heat

through either the steam generators, the coolant purification system, or natural circulation

(NC). What mode we used depended upon the temperature of the reactor and what

components were available. Evidence is shown in my page 4 of my military record as a

reactor operator on the above platforms as well as my JST.

• In my heat transfer and fluid flow class at NNPS is where I learned about natural circulation

and how/why it is performed. The concepts of siphoning and that heat rises play a vital role

for removing heat from the reactor. The reactor plant is designed such that the core is low in

the system and the steam generators are high in the system. This places the heat source low

and the heat sink high – exactly what is needed to make a differential temperature across the

system to promote natural circulation. It is also designed with smooth piping with very little

bends. This helps in the natural movement of the coolant within the pipes. It is a delicate

process to get natural circulation to begin because even with the above designs in the

reactor, it is still easy to cold trap a coolant loop if NC is not initiated quickly. A coolant loop

can become cold trapped if some sort of flow is not initiated and a section of piping is left to

cool off to the surrounding environment.

In the event that there is no power or maintenance has to be done on system components,

an operator can still draw steam off of the steam generator which removes heat from the

reactor coolant. If the temperature is too low, another way to remove heat is to circulate

cooler feed water through the steam generator which will have the same effect. Both of these

methods will initiate NC if done promptly after the removal of power. The difference in

height from the cooler, more dense water in steam generator and the hotter, less dense water

in the reactor, cause a thermal siphoning effect that causes NC in the reactor. I have provided

my JST and my page 4 of my military record as evidence.

• While going to radiological controls technician qualification school (RCTQS) I had

extensive training on the importance of shielding and exposure control. Typical shielding

jobs were to shield from a point source that was created due to a build up of contamination

in a part of a reactor plant system that needed to be worked on or around. For a point source:

I D2 = I0 D02

Where:

I is the dose rate

D is the distance from the point source

We learned that different material thicknesses were needed to lower the dose rate by one

tenth, called a tenth thickness or TVL. The formula for shielding is:

I = I0 / 10N

Where:

N is the number of TVL's = thickness / 1TVL

Lead blankets were commonly used as shielding and held together with zip ties through the

corner grommets. One lead TVL = 2 inches. This meant that in order to decrease the dose

rate of the point source by one tenth, two inches of lead were required to be placed around

the point source.

It was important to calculate man-rem hours to see if it was worth it to put in shielding. If

the total man-rem to do the job was less than the total man-rem to put in shielding and do the

job, then we did not install the shielding. Every job was closely monitored and practiced

before hand to ensure that the worker stayed at a maximum distance using natural shielding

when possible from object already inside the reactor. This practice followed the ALARA, as

low as reasonably achievable, paradigm by using time, distance and shielding. Evidence of

graduating RCTQS is my graduation certificate, JST and page 4 of my military record.

• Also in RCTQS and working as a radiological controls shift supervisor (RCSS), I had to

take many radiological surveys. Depending on the type of survey that I was to perform

determined the type of detector that I would use. We used multifunction radiacs (MFR) that

replaced the A/N-PDR-27's that we used in the fleet. They are typical Geiger-Muller radiacs

that work in the G-M region of the gas amplification curve. This is the region when radiation

interacts with the chamber wall and gas, it creates ion pairs. The negative ion is attracted to

the anode and the positive is attracted to the wall. Because the voltage difference is so high,

secondary ion pairs are formed which do the same thing. This causes a domino effect that

will completely saturate the G-M chamber. The negative ions collected create a pulse that is

counted and calculated as a radiation level.

The Navy still uses A/N-PDR-56's to measure alpha radiation. It is a scintillation detector.

It works by creating light from radiation that interacts with the phosphorus coating inside the

detector. To prevent the detector from being saturated all of the time from natural light, there

is a Mylar shield that allows radiation through and keeps light out. Once a photon is made

from photoluminescence, it goes through a photo-multiplier that enhances the signal so it

can be counted and displayed. To ensure that the contamination is an alpha, we place a piece

of paper over the detector. The paper shields against the alpha but lets other radiation

through. These surveys are performed to record and map what the radiation levels are in an

area. This provides very useful information for radiation workers so they can minimize their

exposure. Evidence of graduating RCTQS is my graduation certificate, JST and page 4

of my military record.

Evidence Used to Support Learning Statements:

• Tab C-2 - Joint Services Transcript

• Tab C-3 - Military Record Page 4: Qualifications

• Tab C-7 - Military Evaluations

• Tab C-10 - Radiological Control Technician Qualification School Certificate

Program Outcome 8 - Demonstrate comprehension of currently applicable rules and regulations

in the areas of: radiation protection, operations, maintenance, quality control, quality assurance,

and safety.

Demonstrate a commitment to: quality, timeliness, and continuous improvement.

Performance Indicators:

• Indicate knowledge of current rules and regulations in the field.

• Indicate how a commitment to control, timeliness, and continuous improvement is

achieved.

Learning Statements:

• As part of qualifying as a RCT and RCSS, I was required to show my knowledge, in an oral

qualifying board, the various rules and regulations associated with radiation protection. I

first learned about radiation protection at NNPS when we were taught health physics. One of

the major parts of radiation protection was top have good radiological work practices. The

Navy uses the Radiological Work Practices Handbook, NAVSEA 389-0362. From this book,

we learned how to standardize our work practices so every radiation worker was on the same

page for radiological controls. I also learned the federal, Navy and local programs for

radiation protection. The federal requirements are located in 10CFR20.1101 Radiation

protection programs and 29CFR1920.1096 Occupational Safety and Health Standards: Toxic

and Hazardous Substances: Ionizing radiation. The Navy requirements are located in the

Radiological Controls Manual: NAVSEA 389-0288. Any local programs were self generated

and did not exceed any of the above programs. For the most part, the Navy took the federal

exposure limits and reduced them by one tenth. For instance, yearly exposure for federal is 5

rem and for the Navy it is 500 mrem. Part of our required reading as a RCT was the

Radiation Health Protection Manual: NAVMEDCOM P-5055. It contained yearly and

quarterly statistics for radiation exposure to the Navy personnel and to the contractors that

work on our vessels.

Dosimetry is a large part of being a radiation worker and as a RCT. At RCTQS and NPTU

we learned how to operate and wear thermoluminescent dosimeters (TLD) and pocket

dosimeters (PD). Knowing their construction was a required element of our training as well.

For the Navy, we wore the TLD on out chest or on our belt, double captured.

Picture of a DT-526/PD

Taken from https://www.orau.org/ptp/collection/radiac/navybulbtld.htm

If we were entering a high radiation area, it was required that we were able to monitor our

radiation exposure constantly so we wore a PD.

Picture of an IM-235 pocket dosimeter (PD)

Taken from https://www.orau.org/ptp/collection/radiac/IM235.htm

The PD's location was always next to the TLD but the double capturing consisted of a very

long string since we had to constantly take it off and read our exposure. Depending on the

strength of the radiation field that we were entering determined what scale PD we were to

use. The PD's were typically issued by some sort of control point access watch who

controlled access in and out of the radiation area.

Depending on a worker's day to day job, they may have a radiation limit of 80mrem to

300mrem per quarter. These represent typical radiation exposure limits for different types of

workers. When a worker approaches this level, it is then reasonable to examine closer as to

why. It was required that each personnel knows their own total lifetime and current yearly

exposure. This helps the worker be self-aware as to how close they are to their limit and

make decisions based on that knowledge. Upon entry into a high radiation area, it is

common practice to know where any hot spots are, the frequent monitoring of the PD, and to

be efficient in execution of the job. If any abnormalities occur with radiation monitoring

equipment, worker well being, or any radiological casualty, they are to be immediately

reported. Maintaining the principle of ALARA, as low as reasonably achievable, keeps

radiation workers looking for ways to minimize their exposure. Improvements to radiation

detection has included the upgrading of dosimeters from the CaF TLD to the LiF TLD (DT-

648/PD) and changing the placing of the dosimeter on the body from mid waist in the front

to the center of the chest with double capture. The page 4 of my military record, my

qualification record at Trident Refit Facility Kings Bay, and my JST are provided as

evidence.

• The qualifying process for reactor operator and shutdown reactor operator is lengthy and

requires a lot of integrated knowledge. After qualifying on the prototype reactors in Goose

Creek, SC on board the MTU Samuel Rayburn, I ventured on to qualify for the first time

on an A4W plant on board USS Dwight D. Eisenhower. Once my initial qualifications were

complete, I was allowed to start qualifying reactor operator. It is a six month qualification

where your level of knowledge is checked for every signature on the qualification card. On

top of book knowledge, there is a minimum under instruction time that must be completed

involving a list of required evolutions. There is a three hour written exam, oral boards for

the divisional and departmental level, and a final oral board certification with the

commanding officer for the ship. The requirements for qualifying as a Naval reactor

operator are listed in the Engineering Department Manual (EDM) as well as the surface

fleet's version called the Reactor Department Organizational Manual (RDOM). In the

civilian community, the conditions for obtaining an operator's license is covered under

10CFR55.53, requalification under 10CFR55.59, written exams under 55.41, 55.43 and

55.45. In the Navy, recertification is performed every 2 years by a written exam, practical

factors, and an oral board with the department head.

In order to maintain a high level of knowledge for each operator, in the Navy, the training

that is received is tested upon on a monthly basis. These tests are the continual training

exams (CTE) that are part of the training program and are a requirement of the EDM. If an

operator fails a CTE, then they are not able to stand watch until they complete a knowledge

upgrade and pass a CTE. The training and the CTE's keep the operators up to date with

current topics of interest and any changes to protocol. If an operator fails to recertify in the

two year time frame then something similar happens as failing a CTE. The operator is

removed from standing watch until he or she completes the recertification. If the operator

fails any part of the recertification, they must also do an upgrade. Any exam that is taken is a

timed test, essay type, and proctored. As operators study for exams, they will go over

previously learned material. By doing so, they may have a better understanding of the

subject or learn something new that they had missed before. This practice builds the

operator's knowledge base making them better operators. The page 4 of my military record

and my evaluations are evidence.

• During my time in the Navy, I have had to perform and supervise hundreds of maintenance

items. Being a senior reactor operator, a divisional leading petty officer, and being a

graduate of ETMS, I have the expertise to perform or to properly supervise any reactor

controls division maintenance item. It is a part of our training program to have monitored

evolutions that are graded by the observer. Observers vary from in house to outside of the

department like the commanding officer. In the civilian community, 10CFR50.65 covers

monitoring maintenance. This regulation ensures that the maintenance that is performed

coincides with standard practices and it is performed effectively. The different items that I

either performed or supervised consists of radiation monitoring equipment, nuclear

instrumentation, reactor instrumentation and control equipment, steam generator water level

and control equipment, chemical injection equipment, and reactor ventilation and control

equipment. Each maintenance item was performed by a qualified reactor operator as

required by the EDM and RDOM. Post maintenance checks are performed to ensure that the

maintenance was performed satisfactorily.

Whenever a maintenance item is performed, there is a standard of quality and timeliness

to ensure that there is minimum downtime of equipment. All maintenance is documented

and the paperwork is scrutinized for accuracy and legibility. Each worker shall perform a

maintenance brief that includes any increased risks to personnel health or equipment. Also,

there is always supervision of every maintenance item. To maintain minimum time that

workers are at risk or plant operations are limited, workers are prepared ahead of time for all

necessary test equipment and tools at the work area. When maintenance items are monitored

from sources outside of the division, it keeps the workers fresh and maintains the

maintenance monitoring from being incestuous or complacent. Evolution monitor sheets are

provided as feedback to the workers and their supervision. This feedback keeps workers and

supervision aware of their maintenance habits and shows them where there is room for

improvement. Evidence is my graduation certificate from ETMS, the page 4 of my military

record, and my military evaluations.

• One of the biggest changes over the years for nuclear power is the incorporation of quality

assurance and quality control. It has saved the lives of many people and the functionality of

many pieces of equipment. I have a personal hand in the quality assurance and control

program as a graduate from ETMS. Because I hold a 3373 NEC, I monitor repairs and

troubleshooting done to all nuclear equipment. Some of the items that I specifically inspect

are:

◦ Solder joints

◦ Troubleshooting procedure compliance

◦ Wire removal compliance

◦ Component replacement criteria compliance

While I am not required to perform the maintenance, I ensure that the maintenance done

is within the specifications of the Reactor Plant Instrumentation and Control Equipment

manual (NAVSEA 0989-031-4000) also known as the Rx I&C manual, the Joint Fleet

Maintenance Manual (COMUSFLTFORCOMINST 4790.3), the Cleanliness Requirements

for Nuclear Propulsion Plain Maintenance manual (NAVSEA 0989-064-3000), and the

Steam Plant Cleanliness Control instruction (NAVSEAINST 9210.36). In the civilian

community, quality control and assurance is covered by 10CFR50 Appendix B for Quality

Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants. All equipment

used to perform maintenance is approved per the Rx I&C manual, the Reactor Plant Manual,

or the Steam Plant Manual as applicable. I ensure that all replacement parts are tested and

inspected prior to use and are tested after they are installed.

While performing the maintenance itself may not take much time at all, incorporating the

quality control and assurance makes the process much longer. This is a grudge that I have

seen in many technicians and have personally felt. This feeling is not from not wanting to

perform the maintenance correctly, it stems from the Navy environment of wanting to get

things done quickly. Over the years I have found that in the long run, less time is wasted if

everything is done correctly with proper quality control and assurance. There is no time that

safety should be jeopardized. Performing rework because a maintenance item wasn't

perform correctly the first time is one of the biggest wastes of time.

I perform and instill in my subordinates good work practices. One of the ways that I do

this is ensuring that when a piece of equipment fails that it is troubleshot down to the

component level. Every testing method and part used is documented extensively in the

divisional material history for that piece of equipment. Once the cause of failure is known, I

ensure that the proper people are informed weather it be the manufacturer or Naval Sea

Command or both. Evidence is the page 4 of my military record, my evaluations, and my

ETMS graduation certificate.

• An integral part of Navy watch standing in the nuclear community is the turnover between

watch standers. This is the last self check to ensure that the oncoming watch stander is fit to

take the watch. Not only is the knowledge of current plant parameters checked, but the

sobriety of the Sailor is checked as well. When I say sober, I mean that the Sailor has to be

rested, alert, drug and alcohol free. The civilian community covers this very thing with

10CFR26.31 with Drug and Alcohol testing for the Fit For Duty (FFD) program. The Navy

ensures that all Sailors are drug free by performing random drug tests and each Sailor can be

tested for alcohol on the spot when they board the ship.

I completely believe in and enforce a drug free and sober watch team. It is because safety

is paramount to everyone and everything. A drug free and sober operator is the only way to

ensure that operator action is not encumbered. This practice ensures that operators are alert

and that their work is performed at an optimal level. Even prior to obtaining a license, a

criminal background check, credit check, and a psychological assessment is performed to

mitigate the risks that may lead to substance abuse or impaired integrity.

The system is not perfect and people will still try to bend the rules. It is up to everyone to

watch each others backs to make the work place safe. At any rate, if an operator decides to

break the rules, he or she will be caught. In order to maintain personnel up to date on the

current rules and regulations, they are continually trained on the program per the guidelines

of 10CFR26.29, consequences to violators, and actions to be done if someone is suspected

of abuse. Evidence includes my military evaluations and the page 4 of my military record.

Evidence Used to Support Learning Statements:

• Tab C-2 - Joint Services Transcript

• Tab C-3 - Military Record Page 4: Qualifications

• Tab C-7 - Military Evaluations

• Tab C-15 - Completion Certificate for Electronics Technician Maintenance School

Program Outcome 9 - Integrate and apply knowledge of the functional areas of nuclear

engineering technology to the safe operation and maintenance of nuclear systems.

Performance Indicators:

• Identify and describe work and life experiences that use multiple engineering technology

functional areas.

• Show how the technical areas are interrelated.

Learning Statements:

• While serving as the 3 plant Leading Petty Officer on board USS Enterprise, we were

starting up the reactors after a brief shutdown period for maintenance while underway in the

Mediterranean sea. Part of starting up the reactors is a pre-critical checkoff to ensure that the

propulsion plant and nuclear instrumentation is working properly and that they are setup for

critical operations. The check did not find any faults, but the shutdown reactor operator saw

that there was noise on one channel of the the source range nuclear instrument (SRNI) for

the 3A reactor. Any nuclear instrument has a power supply that is separated from the ship's

main power by use of a transformer to provide and maintain a very steady power. They are

very sensitive and can pick up noise from anywhere, especially the SRNI's. I have seen noise

before but it has usually been because someone was welding near by or there was a loose

coaxial cable in the SRNI. The welding machine is grounded to the same metal frame that

all of nuclear instrumentation is mounted on. It produces a signal that even an isolated

instrument such as the SRNI will pick up. But since this was only on one channel, we

suspected a loose cable inside the drawer. If the reactor is shutdown, this is tolerable, but for

a reactor start up, this violates our minimum instrumentation requirements. It is required that

both SRNI's be working for a start up to supply redundancy to provide protection of the

reactor against excessive start up rate.

The SRNI takes input from a gamma/neutron detector, uses a pulse height discriminator

to measure only neutron pulses, converts the signal to a rate and a power level. The rate

signal has a bistable that activates if the start up rate is too high which shuts down the

reactor. This is required because operator action is too slow to protect against excessive start

up rate because it rises exponentially and it can be so fast that the meters can't keep up. I led

a team of troubleshooters that started with a simple alignment check that passed so we

continued with the seven step troubleshooting procedure. The problem was found to be

interconnecting wires in the actual instrument drawer itself. We had exhausted all means of

technical manual wisdom until it was suggested that we swap the whole drawer with one

that is working and see if the fault follows. This was not how we normally would

troubleshoot because we did not have the luxury of ordering a new drawer on the off chance

that it was the problem. This outside-of-the-box thinking showed us that the fault was in the

drawer with taking any monetary risks and expediting the process. Important to note that

everyone was exhausted because we could not stop until it was fixed because we were

severely affecting the mission of the ship. The troubleshooting lasted for three days. I

learned that fatigue can severely affect one's judgment because the suggestion was made

from a fresh set of eyes from a junior technician. I submit my Letter of Commendation from

the commanding officer of the USS Enterprise and my military evaluations as evidence.

• While standing radioactive liquid waste (RLW) watch in the Controlled Industrial Facility

(CIF) at Trident Refit Facility (TRF), I was taking a routine radiological survey of the

installed filter train. Part of the CIF's responsibility is to take RLW from the tended

submarines and purify the water into controlled pure water (CPW). The system contained

two 10,000gal RLW tanks, two PLW (processed liquid waste) tanks, two CPW tanks, two

filter trains, six pumps (one for each tank) and various control switch panels that showed

flow rate, conductivity and pump status. The RLW tank to be processed was recirculated

first to mix up any settled contamination at the bottom of the tank. Flow rate was controlled

while processing to prevent channeling out the filters.

It is TRF policy to replace a filter if it exceeds 80 mrem/hr on contact to prevent going

over the 100 mrem/hr which would make a hot spot in the CIF. My measurements recorded

the on contact reading of slightly over 80mrem/hr. The activity of the filter was known to be

high but after processing a lot of RLW that day, the filter collected a lot of the contamination

in the water, mainly Co-60. I immediately stopped processing RLW into CPW and informed

my chain of command. There were already established controlled work packages to change

out the resin in any of the filters in the train. I supplied the specifics and the package team

made up the package and ordered the parts. In the meantime, we were able to continue to

process RLW using a parallel train of filters already installed. I worked in a team that

replaced the resin and charcoal (media) in the filter. The used media was added to a 55

gallon drum that was mixed with CPW and concrete. The new media was prepared in a vat

of CPW and added via a peristaltic pump. Mock up scenarios were performed for the

evolution to minimize time and exposure to personnel. I had specific training of this scenario

from RCTQS which I used extensively in making the job go smoothly. I submit the system

flow schematic of the CIF RLW system, may Navy Achievement Medal dated 10Mar2005,

and my military evaluations as evidence.

Evidence Used to Support Learning Statements:

• Tab C-7 - Military Evaluations

• Tab C-17 - Letter of Commendation dated 18Aug2007

• Tab C-18 - Navy Achievement Medal dated 10Mar2005

• Tab C-19 - Controlled Industrial Facility RLW System Flow Schematic

Program Outcome 10 - Design concepts, components or processes while demonstrating a

commitment to quality, timeliness, and continuous improvement of the design and operation of

nuclear systems.

Performance Indicators:

• Take design specifications and turn them into a device or system.

• Test, modify, evaluate, and improve (if necessary) an existing design.

• Integrate several functional units into a larger system (i.e. microprocessor, interface).

• Discuss the use of trade offs resulting from creativity in applying balance, accuracy, and

confidence limits in the development of a successful operating system.

Learning Statements:

• In a Navy PWR, the temperature coefficient of reactivity is negative. This means that as

temperature increases in the reactor, the total reactivity goes down. During a down power

transient, the water entering the core is warmer because less heat was taken away from the

steam generators. This causes power to lower. This is an important aspect of maintaining the

reactor inherently stable. The main advantage of this is that there is little to no rod control

movement to maintain reactor power. Rather, rod control movement is used to change

temperature. The biggest disadvantage to this design is that an injection of cold water would

cause power to spike uncontrollably. Protective measures have been established to prevent

cold water casualties.

Possible cold water casualties include an unbalanced coolant flow through the core or an

accidental initiation of the safety injection system while the reactor is still operating.

Unbalanced flow can be caused by a mismatch in RCP frequencies. This has been a problem

because each set of RCP's on an A4W/A2W platform are supplied power from two different

coolant turbine generators (CTG). This condition can cause the check valve of the lower

frequency pump to shut causing the loop to cool drastically especially if steaming off of that

loop. Matching frequencies will initiate flow in the lower frequency pump causing a cold

water casualty. Between 2Hz and 10Hz difference, a manual fast insertion (check FI) is

initiated to lower power, the higher frequency pump is lowered to match. Above a 10hz

mismatch, the reactor is manually shut down (SCRAM) and actions are taken to fix the

problem. The CTG's operate in volts/Hz and the design isn't exact between the two CTG's so

they may change at slightly different rates. I understand that having multiple power supplies

is very important because if you lose one, then there is a way to recover flow using the other

power supply. Being able to recover flow is much more important than having one power

supply for the pumps. All it takes is training operators in that risk and taking actions to

mitigate it as mentioned above.

The safety injection (SJ) system is designed to initiate automatically on a loss of pressure

casualty. If the reactor were still operating when it initiates, the SJ water temperature is so

cold in comparison that it would make the core go prompt critical, thus a cold water

casualty. Operator action is to manually shutdown the reactor if it is still operating when the

SJ system initiates. There are multiple interlocks that exist to scram the reactor if the manual

switch to operate the SJ system is manipulated first. Also, if the SJ system initiates

automatically, it has built in interlocks to open the scram breakers prior to the system

lighting off. If by chance the reactor can't be shut down or all of the interlocks fail, it is

contained within primary and secondary boundaries to contain the reactor accident. These

boundaries are constantly checked by operators to ensure that they are in the correct position

and integrity. The advantages of the SJ system are that it provides a way of cooling the core

and keeping it covered with water when all else fails to remove decay heat. The down side

to the system is that the interlocks can be overridden or fail which can cause a cold water

casualty if the system initiates while the reactor is operating. I understand that maintenance

is required to test the SJ system and therefore the interlocks must be able to be overridden.

The risk of a cold water casualty from accidental operation of the SJ system is minimal

when compared to not being able to keep the core cooled to remove decay heat. This is

especially true since containment is a vary critical item that is checked multiple times a day.

Evidence provided is the page 4 of my military record, my evaluations and JST.

• The reactor plant control console (RPCC) is where the reactor operator sits, fixated at the

various meters that show what the reactor is doing. The placement of these meters and

controls is strategic such that pressure, temperature and level all sit relatively close to each

other. Placed that way because of lessons learned from failed civilian designs. It is hard to

get the big picture during a casualty if the panel spans across the room and you can't see

what temperature and pressure are side by side. Three mile island is an example of a failed

design where the operators didn't realize that the core was at saturation temperature until it

was too late. They were battling a loss of coolant not realizing what else was happening to

the core because their meters were far too separated from each other with a lot of extraneous

meters in between that were not needed. The Navy only puts the essentials on the RPCC and

trains their operators to look for such scenarios. Most switches that operate big ticket items

in the reactor plant (pumps and valves) are placed along a one line schematic of the reactor

plant.

I was interviewed by an engineer from Bettis Atomic Labs as to the design layout of the

RPCC. I suggested that the primary and secondary systems should be color coded because

some of the switches are relatively close between the two systems (Main steam cutout

valves and Main coolant isolation valves (MCIV's) are right next to each other). I also

suggested that rarely operated switches like the MCIV's and especially the surge line

isolation valve (SLIV) have to be pushed in in order to operate them. This is because the

reactor coolant pump switches are often used and are right next to them and the surge line

isolation valve sits next to the coolant purification isolation valves. It is easily possible to

accidentally take the reactor solid instead of isolating the purification system which is done

a lot more regularly. At the time, the switches had a tee that went through the top of the

switch for the valve switches and the pump switches are physically smaller. This helped the

operator by incorporating physical touch to give him or her that extra warning. I have seen

the wrong switch operated many times and what is in place is not enough. Operator training

using the point-read-verify-operate technique (PRVO) with supervision backup is not

enough either. When it comes to a casualty, PRVO is still performed but it is frantic with

very little supervision. There is nothing at risk here other than money. I believe that it is

more important to improve upon the layout and design of the operator's panel to help in

operation than it is to save the money in keeping what we currently have.

The best advice that I received was from my first Reactor Officer on board USS Dwight

D. Eisenhower, CAPT Block. He told me that the best thing to do in the first few seconds in

a casualty is to sit on your hands and look at everything that is going on. I have seen too

many operators take immediate actions too quickly and shutdown the reactor when all it was

was the other reactor shutting down which powered some of their indications. Unfortunately

in that specific case, the ship goes dead in the water because both reactors were shut down

and the ship has to rely on the diesel generators. He backed up his statement with the fact

that the reactor will take care of itself if it has to so it is best to make sense of your

indications before making a situation worse. Evidence includes the page 4 of my military

record, my military evaluations and my JST.

Evidence Used to Support Learning Statements:

• Tab C-1 - Joint Service Transcript

• Tab C-3 - Military Record Page 4: Qualifications

• Tab C-7 - Military Evaluations

Program Outcome 11: Participate effectively as a member or a leader of technical teams.

Performance Indicators:

• Describe involvement in group projects or activities.

• Interact effectively with colleagues who have critical involvement with projects.

Learning Statements:

• I was part of the fact finding team while on board the USS Enterprise (CVN 65). We would

go over the known facts by creating a time line of events that led to an incident while all

participants are together in a classroom environment. We would break down what happened

at each watch station. We would take turns going from one watch stander to the next as the

event took place as well as determine the reason behind the incident by using root cause

analysis.

My role consisted of being the assigned stenographer for each fact finding. I would gather

evidence prior to the fact finding. The evidence was from watch stander logs and I would

gather handwritten statements from each watch stander prior for use during the fact finding.

After gathering evidence, I would confer with the officer in charge of the fact findings to

make a power point presentation that would act as a template for the big picture that helped

is piecing everything together. I provided technical expertise to help the officer in charge

understand what happened and to provide Reactor Plant Manual and Steam Plant Manual

procedures to coincide with the time line if necessary. If possible, I helped find previous

similar incidents either on board our ship or any other platform that could give any more

clues as to the reason for the incident as well as provide possible outcomes that would need

to be implemented. In the classroom, I would write down any extra information that we

would find by fitting it into an already established expanded time line. It usually had some

missing parts in it which is typically where any violations occurred.

As a senior technician, my experience and thorough knowledge of every procedure helped

put together the big picture and to find any faults in the procedure itself or any violations by

watch standers. As the stenographer, the officer in charge would be able to look at the

completed time line and any extra information to be able to determine the root cause of the

incident. My information was also used to provide a report that was submitted to the

department head and if necessary, submitted to Naval Reactors as an incident report. Fact

findings happen as quickly as possible after an incident so my position on the team

expedited the gathering of evidence so that the fact finding can happen. Evidence of such is

my military evaluations showing my involvement in the Station Office.

• I was part of a drill and critique for a contaminated injured man drill while stationed at

Trident Refit Facility, Kings Bay, GA. Each participant in the drill was evaluated on their

performance. Feedback was provided for improvement on people's actions. The drill and the

critique was evaluated by Naval Reactors for the yearly review.

I acted as a Radiological Control Technician that was working in the RLW processing

area of the CIF where there was a major RLW leak. My role consisted of me being one of

the two contaminated men and the other was also injured (CIM drill). I provided the

immediate support for the injured man and called away the incident to the control room.

Once help arrived, I helped in the initial clean up of the spill because I was already

contaminated and in the area. I then worked my way to the control point that was set up for

the spill and was able to exit and go to the decontamination room. Once there, I was frisked

for contamination and my clothes were cut off of my body and bagged as radioactive

material (RAM). After my clothes were removed, I was refrisked to see if any contamination

was on my skin. Since, for the drill, we were to be graded on the use of the decontamination

shower, I headed to the shower to shower off with tepid water and mild soap. The terry cloth

that I used to dry off was bagged as RAM as well and I was frisked again to ensure that all

contamination was removed. After the drill, I participated in the drill critique where I was

able to receive feedback on our performance and I was able to give constructive criticism on

the parts that I participated in.

Everyone worked together in a very professional manner to make such a scenario go

smoothly without any unnecessary spread of contamination and to provide the proper care to

injured personnel. This team work and camaraderie is why we received a high passing grade

for our drill evaluation. By doing this, I was able to have the viewpoint of a typical radiation

worker in a contamination casualty. This allowed me to demonstrate our training to Naval

Reactors Representatives Office (NRRO) to successfully pass our drill portion of TRF's

yearly inspection. As evidence, I have provided my Navy Achievement Medal for teamwork

dated 5May2004 and my military evaluations.

• I was part of Repair Locker 5 while on board the USS Dwight D. Eisenhower (CVN 69). As

part of Repair 5, our area of damage control included the propulsion plant spaces. It was

essential that this repair locker was filled with qualified reactor and engineering department

watch standers because one of our roles was to relieve on watch watch standers if necessary.

There were conventional and nuclear electricians that provided electrical isolation to

affected spaces. I participated in specific training to combat class 'B' fires (liquids, greases

and gasses) because the main machinery room contained JP-5 jet fuel manifolds on lower

level 8th deck. I would sometimes play the part of the repair locker phone talker whose job is

to provide constant and up to date information to Damage Control Central (DCC) and other

repair lockers. The team also addressed chemical, biological, and radiological warfare

(CBR), shoring bulkheads and overheads in the case of flooding, and fire parties to combat

every class of fire. Specific jobs in the repair locker were: Stretcher bearers, CBR, shoring

teams, de-smoking teams, 2 fire parties, investigators, boundarymen and de-watering teams.

As the years went by, I was assigned to many of these roles. I eventually became the scene

leader for the main fire party. My job was to lead a team of fire fighters into the propulsion

plant spaces and to direct them where to go. In an actual fire, visibility is very low,

especially in the already hot environment of an engine room. When general quarters was

called away, I would help dress out the fire parties and myself in fire fighting ensembles

(FFE's) and Oxygen Breathing Apparatus (OBA's). Today, we use Self Contained Breathing

Apparatus (SCBA's) which are more like what civilian fire fighters use (Scott Air Packs).

When a report of a fire or toxic gas leak comes in, I would take my hose team to the affected

space and combat the casualty. Due to the low visibility, I would use a NFTI (Naval

Firefighter's Thermal Imager) to see where the high concentrations of heat were at. I would

continually report the status of the casualty back to my repair locker leader. I would guide

the team slowly and methodically throughout the affected space. One of the most important

aspects of being that team leader was to keep track of your team's time left on their timers

for their OBA's (30 minutes) and to ensure that none of them are showing signs of heat

stress. Heat stress was especially dangerous because the FFE's were very hot and we were

entering a steam plant where the ventilation was secured because of the fire.

Being a part of Repair Locker 5 was an intense team building event. I was able to be a

part of a team that was in existence to save the ship in an attack or major casualty. Out

teamwork was monitored and graded by a Mobile Training Team (MTT) on multiple

occasions without a hitch. We were able to work together as a team to combat any casualty

using proper technique and procedures. Evidence is the page 4 of my military record

showing my qualifications in damage control and my military evaluations.

• I was part of the Casualty Assistance Team for the dual media discharge of a nuclear

submarine at Trident Refit Facility, Kings Bay, GA. We were implemented to combat a spill

of media from the receiving cask or any of the associated systems.

I was one of many radiological control technicians on that team. We stood by in a trailer

at the bottom of the submarine's dry dock, located next to the wall of the high radiation area

where the receiving cask was placed. Since I was an initial responder to a media spill, I was

dressed out in full (double) anti-contamination clothing and an air fed hood. My job after the

assessment was to make the dynamic spill into a static one by isolating the spill. Because of

this, I had extensive knowledge of the temporary systems that were used to discharge the

media. Because the media was highly radioactive and was hot and pressurized, I was also

required to take immediate action to any contaminated injured personnel that may have been

in the area. Once the immediate casualty was under control, I was also part of the final clean

up team. This involved an extensive radiological survey of the area and decontamination

efforts. We practiced many worst case scenarios that were eventually graded by NRRO on

our final drill for certification.

Even though we were a small group of RCT's, we had to work as a team for weeks on

end to get to the proficiency level that was required to be able to receive a media discharge

from the submarine. Our efforts were a part of the whole Trident Refit Facility team that

made that happen. I, like my colleagues, were trained very well on every aspect of the media

discharge and were able to work together to show that we had the ability to combat a

casualty if it were to happen. This led to a smooth transition from preparing for to finishing

the job. Evidence included is my Navy Achievement Medal dated 10Mar2005, my TRF

RadCon Training letter of qualifications, and page 4 of my military record.

Evidence Used to Support Learning Statements:

• Tab C-3 - Military Record Page 4: Qualifications

• Tab C-7 - Military Evaluations

• Tab C-18 - Navy Achievement Medal dated 10Mar2005

• Tab C-20 - Navy Achievement Medal dated 5May2004

Program Outcome 12 - Demonstrate an understanding of and commitment to professional,

ethical, and social responsibilities, including the impacts of culture, diversity, and interpersonal

relations.

Performance Indicators:

• Demonstrate comprehension of ethical issues

• Discuss how cultural, diversity, and interpersonal issues relate to professional, ethical,

and social life

Learning Statements:

• I completed BUS 323 Business Ethics at Excelsior College and we discussed the many

ethical dilemmas that businesses and managers are faced with. I wrote a paper that discussed

the ethical dilemmas associated with terminating employees. I established the guidelines to

be followed when dealing with poor performance, when dealing with good performance

inside the workplace but with poor decision making outside of it (legally speaking), and

when the company has to downsize. I provided viewpoints from the company as a whole

and from its employees. Part of my analysis included the cost benefit analysis for both

parties. I included a lot of legal rights that the employee has and what he or she may be

entitled to do after being fired or laid off. I provided valid avenues to take instead of

termination. Termination should be the last choice after tackling the problem head on. One

of the toughest parts of being a manager is finding the untapped potential in the people that

work for you. This can be the saving grace of the atmosphere of a company. As evidence, I

have submitted my paper from Business Ethics: Ethical Dilemmas in Terminating

Employees and my Academic Plan for Excelsior College.

• Being stationed on three different aircraft carriers working in Reactor Department, I worked

with a very diverse field of men and women. We are trained on sexual harassment, sexual

assault, fraternization and equal opportunity on a regular basis. As an LPO, I look at my

Sailors as just that, Sailors. It doesn't matter what their ethnic background, sex, sexual

orientation, or religion is. I treat everyone the same – for their nuclear expertise. I work with

women and men of all ages and ethnic backgrounds. We are going to clash when it comes to

some values. It is important to respect other people's values and to keep negative remarks

about them to themselves. This goes for everyone up and down the chain of command. I still

have to manage my people attuned to their specific skills. Everyone works, thinks, and acts

differently. It is about knowing your people. Using the different skill sets that your people

bring to the table makes the work center stronger. Sometimes this can lead to only one

person performing a certain job. To get around targeting a single person to do something, it

is important to make sure that they bring another person from the work center with them so

they can share their knowledge with them and it becomes on the job training. Another part

of being a good manager is to get your people to teach each other. This is the backbone of

making your team strong. I realize that I may not be the best person for everyone in my

work center to come to for help. I ensure that everyone is informed to the different avenues

that they can go if they need help. As evidence, I provide my JST for my training in sexual

harassment and fraternization and my evaluations for being a supervisor.

Evidence Used to Support Learning Statements:

• Tab C-1 - Joint Service Transcript

• Tab C-2 - Excelsior College Academic Plan

• Tab C-21 - Business Ethics: Ethical Dilemmas in Terminating Employees

Program Outcome 13 - Demonstrate a commitment and ability to continue to engage in self-

directed continuing professional development.

Performance Indicators:

• Describe your prior lifelong learning activities

• Describe how you engage in lifelong learning currently

• Describe how you plan to continue lifelong learning

Learning Statements:

• Since I completed the initial schooling from the Navy for nuclear power, I have gone to

many other Navy and non-Navy schools. I was told that when you get orders to a new

command that you should always get a school while doing your permanent change of

station. I took this to heart and have gone to a school every time that I have transferred from

a command. After my first assignment on board the USS Dwight D. Eisenhower, I went to

RCTQS to learn how to become an RCT. After my tour as an RCT at Trident Refit Facility

in Kings Bay, GA, I went on to ETMS where I learned advanced troubleshooting and repair

of electronics. I then went on to the USS George Washington and then the USS Enterprise

where I put that knowledge to good work. For a change of pace, I decided to go recruiting

after the Enterprise tour so I went to NORU for 2 months in Pensacola, FL. All of this plus

Navy leadership schooling and online training at Navy Knowledge Online are all a drop in

the bucket to the actual self studying that I do on my own time.

When I am not in school, I study the Reactor Plant Manuals, Steam Plant Manuals, and

local procedures for the platform that I am on to continually learn more about my job. Navy

Electricity and Electronics Training Series (NEETS) modules have helped keep my

electronics background sharp as well. Another source of self education is reading the

incident reports that have occurred throughout the fleet. I find that history repeats itself a lot

when it comes to mistakes that watch standers do. The continual training program that the

Navy provides is a weekly classroom environment that goes over a wide spectrum of

integrated plant operations and topics that come up as emergent training.

Science in general has always had my interest. When I want to read a good book, it is

typically a book on some type of physics or mathematics. Here is a short list that shows the

variety of books that come across my pillow at night:

◦ QED: the strange theory of light and matter by Richard Feynman

◦ The Pythagorean Theorem: a 4,000-year history by Eli Maor

◦ Quantum Enigma: Physics Encounters Consciousness by Rosenblum and Kuttner

◦ The Irrationals: A Story of the Numbers You Can't Count On by Julian Havi

I have researched the holes in my training that are not pertinent to being a reactor

operator. For instance, the three generations of matter (so far) and how we came about to

discover these different energy levels and where and why. I continually look for new ways to

make nuclear power acceptable to the public. It disheartens me to see people with such a

negative outlook on nuclear power so I am bound and determined to teach others what I

know. A lot of the public is completely ignorant to the effects of radiation so I try to find

ways to explain to my friends that I don't glow. I have found that the negative outlook is

because people tend to be afraid of the things that they don't understand.

I came across a video that one of my Navy friends shared with me. It was about liquid

fluoride thorium reactors (LFTR). I was immediately hooked at what I thought was a new

technology. It prompted me to research the subject because the speaker in the video was

right. But there must be a reason that we are not using thorium (or any other more common

element than uranium). Kirk Sorensen was the speaker in that video and he has done plenty

of other informative videos that has led me to continually check

http://energyfromthorium.com/ where there are good updates to the progress toward making

LFTR a reality.

Other than read and research alternative energy sources I wish to continue going to college

after I complete my BSNET at Excelsior College. I have a degree in Business Management

and I would like to continue toward my MBA at Excelsior College. The BSNET has a foot

in the door toward an MBA because of the program that they offer to from one right into the

other. Evidence is the page 4 of my military record and a print out of the BSNET to MBA

program.

• Along with my passion of being able to provide safe and abundant power to the public, my

wife and I also have a passion about using less and less energy and alternative power

sources. She and I are constantly looking up and reading books on solar, wind, hydro and

bio energies. We found a design to make a solar oven and food dryer so my project this past

fall was to build it. I was able to test it when it was about 60 degrees outside and it got up to

103 degrees inside. That was plenty to dry our food. I can't wait to test it out in the summer

time. I recently read an article on how people have used compost to heat the water for their

house by building a large compost area that sits on top of a large amount of coiled water

hoses. The heat from the exothermic reaction of the compost heats the water just fine. There

was a goat farm not too far from my house that has a windmill in it that caught my eye. The

windmill was cylindrical and was moving very fast. I asked the owner about it and she said

that there are some months where the electric company has to pay her for the electricity that

she produces for her small farm. Continuing to inquire, I learned that she got a grant from

the state to have it installed.

Since I live in the mountains of western North Carolina, I am surrounded by a lot of farms

and restaurants that serve only locally grown food. Homesteading has been the norm for

where I live for quite some time. Since there are no nuclear power plants and only a coal

plant, some hydro-electric plants that are off of the French Broad River and some solar

farms, I have focused on what it takes to live off of the land but still being able to provide

enough power for my household. I have read many books on how to provide meat through

raising goats and chickens and how to use solar panels and hydro power to stock up on

power in the form of batteries. I have also minimized the waste that my household produces

by recycling and composting as much as possible. Luckily, we live close to an area that

recycles almost anything that you buy.

I am on the lookout for a more fuel efficient vehicle as well. I research AWD vehicles

because the mountains get very dangerous in the winter time. My 1998 Dodge Dakota 4WD

is not going to last forever and it gets horrible gas mileage. My wife owns a Toyota

Highlander Hybrid that gets great gas mileage for a 7 passenger vehicle but it is only 2WD.

We have decided that we both need better vehicles for the area that we live in. On top of

getting new vehicles, I am also on the search for a new energy efficient home. My wife and I

have researched micro cabins to self sufficient communities to live in. It is an exhausting

search to say the least. Evidence is the title to my vehicles and a list of the books that I have

done my research from.

• Another passion of mine is home brew. Specifically, I brew my own wine. I say it that way

because I make mead. The interest started with my ex-father-in-law. He would make wine

out of anything that grew on his property and it tasted great. I have an infatuation with the

health benefits of locally grown products (as well as the economic viewpoint). Local honey

is something that I always have in my house. My family has terrible allergies but in my

household, only mild ones creep in. My preventative medicine is my honey. I got a lot of

books on making mead (one of my favorite drinks) and Belgian beer (another favorite of

mine). I did lots of research online for the history, current methods, and applicable laws for

making your own wine. I made my first 3 gallons of elderberry mead (molomel) and it was

the best that I have ever tasted so I was hooked. The whole thing went without a hitch. Since

then I have had many mistakes. This is because I was pushing the limits of sanitation, using

different yeasts, using many different fruits to add to the mead, and even failing at making a

naturally fermented cider (The best tasting apple cider vinegar that I have ever had though).

I have become so good at making mead that I have lost the interest in making beer. I

currently have fermenting 5 gallons of a muskadine pyment, 3 gallons of another elderberry

melomel, 1 gallon of black tea cyser (it's like applejack) and a gallon of a ginger metheglin.

I have racked all of the above and am about to do the final rack before I let it age (the

hardest part). I have learned how yeast goes from aerobic to non-aerobic fermentation; how

they have different alcohol tolerances; and recently I learned how they can have initial sugar

content tolerances – The Montrachet yeast doesn't do well in a high gravity environment. I

was able to get past the high sugar tolerance by taking the starter and diluting it by half, then

layering it on top of the must in the carboy and let it slowly mix in with the rest of the must.

I will continue to try different types of mead and wine probably for the rest of my life. I

recently visited a local meadery (Fox Hill Meadery) where I was able to have a long one-on-

one conversation about how he made his mead. He gave me a suggestion for when I let it

age by using little oak cubes which I will use on what I am currently making. He gave me a

bag of what he uses – it is good to make friends! I also was able to talk to him about how

mead is classified in NC, as a wine or a beer. It is classified as a honey wine and that is why

he labels his product the way he does. It must contain the percent honey and percent fruit

when he labels it by law even though traditionally it would never be done that way. It was a

great experience being able to talk with another person about my passion and comparing

differences. Maybe one day I will be where he is at.

I have completed aging the mead with the oak cubes (April 2015). It is now all sitting in

bottles and tastes wonderful (About 50 bottles total). The elderberry ended up being almost

17% and has a taste that is similar to a port. The cyser tastes exactly as I wanted it to and is a

little over 14% as is the metheglin. I was very surprised at how well the ginger turned out. It

is very crisp and refreshing. Finally the pyment is everyone's favorite. It tastes like a

muskadine wine that has the infusion of honey. If anyone wants a taste, I'd hurry up and

come on over. It is not going to last long! Evidence is the list of books I use for making

mead.

• One thing that has driven me my whole life is music. Not just listening to it, but playing it

myself. I have played classical guitar my whole life. I have a niche for being able to pick up

any stringed instrument and being able to play it. I started playing my father's Spanish guitar

that he had as a kid when he lived in Argentina. He gave me his old Mel Bay books and I

began to teach myself. All I was learning at the time was old folk songs and some Jim Croce

(my dad's favorite), so I took it upon myself to buy my own electric guitar and Quantum 20

Watt amp when I was 12. It took all summer shingling roofs to save up for it, but it was

worth it. My influence was mainly my older brother who listened to 1970's rock like Dio,

Black Sabbath and a lot 1980's heavy metal.

In grade school I was the only boy to sing in the school's church choir. I didn't care that I

was the only boy, I got to do what I liked. When I hit high school, my guitar study helped

me learn how to play the double bass in the school orchestra. My musical talent got me

noticed by the band instructor. He asked me to join the jazz band which I was very interested

in doing. The only hitch was that I had to play in the marching band and his only opening

for me was the tuba. I was able to pick that instrument up so well that he put me in the

school's symphonic band playing the tuba.

One of the most emotional times in my life was when the school sent me to regionals for

a full symphonic orchestra. Unfortunately, I cut open my left fingers with a steak knife prior

to placing in chair and my performance was not very good at all! I ended up as 12 out of 13

chair. The concert that I was in for regionals, I would say, was one of the most emotional

times in my life. We played Jurassic Park as our opening song whose first note was played

by all of the bass. This was one of the few times in my life that I started to cry from pure

enjoyment. Directly after high school, I went to a local community college and took college

choir and it was very intense and emotional as well. I had never had an actual choir teacher

before, but Dr. Weaver showed me what being in a real choir was like.

I continually practice on my guitar to master very difficult songs. For the most part, I

have out the electric guitar down except for when I feel like being loud and rocking out. I

tend to play songs by Bach, Mozart, Handel, Vivaldi and the whole Baroque era. This

classical music is much more complicated than some British heavy metal hair band.

Although, my taste in music is still very wide spread! I also love to play fast Celtic tunes

and jigs, rock, jazz and blues. My house contains many different instruments like a

keyboard, harp (had one, it was destroyed in an accident), acoustic guitar, electric guitar,

drums, recorder, pan pipes, bells, violin, tin flute, Cherokee flute, Andean charango, Russian

balalaika, Bengali ektara, and a locally handmade dulcimer (my most recent gift from my

wife). It has been a dream of mine to be a conductor or play in some type of orchestra, but I

haven't done any research because I have been in nuclear power my whole adult life. I am

always on the lookout for music books for me to play. The most interesting ones are the ones

that have the history of the songs within. Evidence is my list of song books for the various

instruments that I own.

Evidence Used to Support Learning Statements:

• Tab C-3 - Military Record Page 4: Qualifications

• Tab C-22 - Vehicle Titles

• Tab C-23 - Homesteading Book List

• Tab C-24 - Home brewing Book List

• Tab C-25 - BSNET to MBA Program

• Tab C-26 - Song Book List