benjamin stephens carnegie mellon university 9 th ieee-ras international conference on humanoid...

34
Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic Humanoid Balance Using the Linear Biped Model

Upload: hugo-kory-hunter

Post on 17-Dec-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Benjamin StephensCarnegie Mellon University

9th IEEE-RAS International Conference on Humanoid Robots

December 8, 2009

Modeling and Control of Periodic Humanoid Balance Using the Linear Biped Model

Page 2: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Introduction

2

Page 3: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Motivation

3

Simple models for complex systems

Make complex robot control easier

Models for human balance control

Achieve stable balance on force-controlled robot

Page 4: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Force Controlled Balance

4

How to handle perturbations when using low-impedance control on a torque-controlled humanoid robot

Page 5: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Force Controlled Balance

5

How to handle perturbations when using low-impedance control on a torque-controlled humanoid robot

Page 6: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Sarcos Humanoid Robot

6

Hydraulic ActuatorsForce Feedback Joint Controllers33 major DOFs (Lower body = 14)Total mass 94kgOff-board pump (3000 psi)

Sarcos Hydraulic Humanoid Robot

Page 7: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Contributions

7

Linear biped model for force control of balance

Simple description of periodic balance control

Application of model to estimation and control of Humanoid robot

Page 8: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Outline

Modeling BalanceControlling BalanceApplications to Humanoid Robot ControlConclusion

8

Page 9: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Modeling Balance

9

Page 10: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

General Biped BalanceAssumptions:

Zero vertical accelerationNo torque about COM

Constraints:COP within the base

of support

10

gF

PF

PCP

CF

RP LP

REFERENCE:Kajita, S.; Tani, K., "Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode," ICRA 1991

CP PPL

mgF

Page 11: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

General Biped Balance Stability

11

COM Position

COM

Vel

ocity

minmaxCC PP

L

gPPP

L

g

max2

minCC PP

PP

Linear constraints on the COP define a linear stability region for which the ankle strategy is stable

REFERENCE:Stephens, “Humanoid Push Recovery,” Humanoids 2007

Page 12: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

The Linear Biped ModelContact force is distributed linearly to the two feet.

12

LR FFFF LR ww

1 LR wwRF LF

y

LyRy

L

y

RXM LXM

gF

PF

CF

Page 13: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

The Linear Biped ModelBiped dynamics resemble two superimposed linear

inverted pendulums.

13

mgwF

mgwF

LLZ

RRZ

L

Myy

L

FF

L

Myy

L

FF

LXL

LZLY

RXR

RZRY

RF LF

y

LyRy

L

y

RXM LXM

gF

PF

CFXLLX

XRRX

MwM

MwM

Page 14: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

The Double Support Region

14

We define the “Double Support Region” as a fixed fraction of the stance width.

WD

LR

L

ww

Dy

DyD

DyDy

w

1

,0

,2

,1

RF LF

y

LyRy

L

y

RXM LXM

gF

PF

CF

D2W2

d2

Page 15: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Dynamics of Double Support

15

The dynamics during double support simplify to a simple harmonic oscillator

L

Myy

L

mg

D

yD

L

Myy

L

mg

D

yDym X

RX

L 22

mL

My

L

gy X 0

1

mLy

L

gy

LIPM Dynamics

RYLYY FFF

RwLw

Page 16: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Controlling Balance

16

Page 17: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Phase Space of LiBM

y

y

RF LFRF LFRF LF

Ry LyLocation of feet

LFRF

Double Support Region

17

Page 18: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Periodic BalanceGoal: Balance while moving in a cyclic motion,

returning to the cycle if perturbed.

18

y

y

Slow SwayingFast SwayingMarching in Place or Walking

Page 19: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Orbital Energy ControlOrbital Energy:Solution is a simple harmonic oscillator:

We control the energy:

22

22

1y

L

gyE

t

L

g

g

LEyEy

L

gy d

d sin2

022

1 22

EEe d

00

Keyy

L

gyKee

EEyKyL

gy ddes

19

Page 20: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

20

Page 21: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

y-pos

y-ve

l

Energy Control Trajectories

21

Page 22: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

22

Page 23: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Application to Humanoid Balance

24

Page 24: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Humanoid Applications

25

Linear Biped Model predicts gross body motion and determines a set of forces that can produce that motion

State EstimationCombine sensors to predict important features, like center

of mass motion.

Feed-Forward ControlPerform force control to generate the desired ground

contact forces.

Page 25: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Center of Mass Filtering

26

A (linear) Kalman Filter can combine multiple measurements to give improved position and velocity center of mass estimates.

Joint Kinematics

HipAccelerometer

FeetForce Sensors

Kalman FilterPeriodic

Humanoid Balance

CoM State

Page 26: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

27

Page 27: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Feed-Forward Force Control

28

LiBM can be used for feedforward control of a complex biped system.

Full-body inverse dynamics can be reducedto force control of the COM with respect to each foot

Additional controls are applied to biastowards a home pose and to keep the torso vertical.

LTLL FJ R

TRR FJ

RF LF

)(qJ L)(qJR

Page 28: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

29

Page 29: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

30 -0.03 -0.02 -0.01 0 0.01 0.02 0.03-0.1

-0.05

0

0.05

0.1

Position

Vel

ocity

Simulation

desiredactual

Page 30: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

31

Page 31: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

32 -0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Position

Vel

ocity

Simulation

desiredactual

Impulsive Push

Limit Cycle

Page 32: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Robot Experiments

33

Page 33: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Future Work

34

3D Linear Biped ModelRobot Behaviors

Foot PlacementPush RecoveryWalking

Robust Control/EstimationPush Force EstimationRobust control of LiBM

RxF

x

Lx

y

RyF

LzF

RzF

LyFLxF

xy

z

LyRx

Ry

Page 34: Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic

Conclusion

35

Linear biped model for force control of balanceSimple description of periodic behaviors and balance controlApplied to estimation and control of humanoid robot

y

Slow Swaying Fast Swaying

Marching in Place or Walking

y

Joint Kinematics

HipAccel

Force Sensors

Kalman Filter

Periodic Humanoid

BalanceCoM State

RF LF

)(qJ L)(qJR

RF LF

y

LyRy

L

y

RXM LXM

gF

PF

CF

Thank you. Questions?