benzene acetone

Upload: fan-ray-aun

Post on 05-Jul-2018

273 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/16/2019 Benzene Acetone

    1/6

    M-890

    J.

    Chem.

    Tbww&a&cs 197&10,1101-1106

    Isothermal liquid-vapour equilibria

    2. The binary systems formed by benzene

    + acetone, + methyl ethyl ketone, + methyl

    propyl ketone, and + methyl isobutyl ketone

    M. DIAZ PERA, A. CRESPO COLIN, and A. COMPOSTIZO

    Departamento de Quimica FL&a, Facultad de Ciencias Qufmicas,

    Universkhd Complutense, Madrid-3, Spain

    (Received 13 February 1978; in revised form 17 April 1978)

    Vapour pmasures

    at 323.15 K by a dynamic method and refractive indices at 303.15 K

    have been m#lsursd for several bi i systems umsistin8 of benzene + acetone, + methyl

    ethyl ketone (MEK), + methyl propyl ketone (UPK), and + methyl isobutyl ketone

    (MIK). The vapour pressureshave been used to calculate excessGibbs free energies.

    1. -

    Continuing our study on the Gibbs free energy of binary mixtures of a hydrocarbon

    + a ketone, liquid-vapour equilibria were measured at constant temperature for

    benzene + a ketone. In order to calculate the excess Gibbs free energy G’ for each of

    the binary mixtures at 323.15 K, measurements were made of the total vapour pressure

    p as a function of liquid-phase composition x, and also of the vapour-phase composi-

    tion y, whose experimental values were checked against those calculated by EWker’s

    method.(*)

    2.

    Experimental

    MATERIALS

    Benzene (Carlo Erba RS), and acetone (Riedel-de Habn) were purified by well

    established methods.(3) The purity of the materials used was checked by measuring

    their refractive indices nl, and densities p. Values for these materials were: benzene,

    nD(303.15 K) = 1.49481 (lit., (4) 1.49478) and p(298.15 K) = 0.87370 g cmT3 (lit.,@)

    0.87370 g cm-‘); acetone, n,(303.15 K) = 1.35335 (lit.,‘6’ 1.35407) and p(298.15 K)

    = 0.78491 g cme3 (lit., c6)0.78501 g cm-‘). Our criterion of purity for all liquids was

    the constancy of their vapour pressures. These are given in table 1 together with the

    literature values calculated from Antoine equations. For methyl ethyl ketone, MEK,

    methyl propyl ketone, MPK, and methyl isobutyl ketone, MIK, the samples were

    similar to those used in part I. (l) Densities, refractive indices, and vapour pressures

    are given there.

    0021-%14/78/111101+06 $01.00/O Q 1978Academic Press Inc. (London) Ltd.

  • 8/16/2019 Benzene Acetone

    2/6

    1102

    M. DIAZ PERA, A. CRESPO COLI-N, AND A. COMPOSTIZO

    TABLE 1. Vapour pressures of the pure compounds

    TIK

    PlkPa

    Benzene Acetone

    obs.

    API”’

    obs. API”’

    308.15 19.776

    313.15

    24.399

    318.15 29.791

    323.15 36.162

    328.15

    43.600

    333.15 52.204

    338.15 62.076

    343.15 73.431

    348.15 86.372

    19.773 46.518

    46.538

    24.369 56.525 56.549

    29.799 68.229 68.244

    36.169 81.835 81.819

    43.592 - -

    52.192 - -

    62.096 - -

    73.438 - -

    86.362 - -

    MEASUREMENTS

    The apparatus used to measure vapour pressure was a dynamic ebulliometer.(8’

    Pressures are accurate to within + 7 Pa, mole fractions to + 0.0005, and the tempera-

    ture to +O.Ol K. The errors in GE arising from uncertainties in p alone are about

    0.5 J mol-’ for the acetone and MEK mixtures and 0.8 J mol-’ for the MPK and

    MIK mixtures.

    Refractive indexes for benzene + acetone, + MEK, + MPK, and + MIK deter-

    mined at 303.15 K are listed in table 2 together with the corresponding mole fraction.

    They were used to draw calibration curves giving the compositions of the liquid and

    vapour phases against the refractive index. These curves have been fitted by least

    squares to an equation of the type nD = &A&-‘. Values of the coefficients Ai and

    their standard deviations are given in table 3. The experimental values of p, X, and y

    at 323.15 K are given in table 4. The chemical potentials and the corresponding values

    for GE are given in table 4. The molar volumes V* and the second virial coefficients B

    are given in table 5, together with the coefficients B12 estimated as {(Bi/;” + Bi$3)/2}3.

    Values of V* for the ketones were determined from density measurements and for

    benzene have been reported elsewhere. (‘) The values of B for benzene and acetone were

    interpolated from those in the literature”” and for other ketones they were given in

    part l.(l)

    Several equations have been proposed to express the variation of GE with composi-

    tion.(“) We have chosen

    GE/J mol’ ’ = x(1-x) i A,(1-2xjr-i,

    j-1

    and our values of GE, fitted by least squares, and the coefficients A, thus obtained and

    their standard deviations d are given in table 6. The experimental values of GE are

    plotted in figure 1 with the fitted curves. The standard deviations of y,

    p,

    and GE from

    those calculated byBarker’s method

    (‘) follow. For benzene + acetone: o(u) = 0.0024,

    o(p/kPa) = 0.048, and a(G*/J mol-‘) = 5.4; for benzene + MEK: ob) = 0.0016,

  • 8/16/2019 Benzene Acetone

    3/6

    1103IQUID-VAPOWR EQUILIBRIA IN mW ZENE + KETONE

    X

    nD

    X

    kl

    X

    nr,

    X

    nD

    0 1.494Xl

    0.0294 1.49338

    0.0822 1.48495

    0.0866 l&M50

    0x942 1.m

    0.2394 1.46522

    0 1.49481

    o.ou7

    1.49249

    0.0762

    1.4&W

    0.1581 1.47526

    0.1736 1.47336

    0.2030 1.46973

    0

    OSU42

    0.0820

    O.WO

    0.1777

    0.2152

    0

    0.0523

    0.0781

    O.lld2

    0.1440

    0.2042

    1.4WU

    I .48882

    1.48907

    1A@576

    1 .m94

    1A6734

    1.4kWU

    1Am6

    1.m

    1.47&M

    1.47W

    1 w9

    - x)csHs + xCH,COCHs

    1.45561 0.6220 1.41248

    a3630 1.44886 0.6552 l&738

    O&79 1.44140 0.7265 1.39682

    0.4l3S6

    1.43534

    0.76T6 1.39m

    O;S4X6 f.42409 0.8220 1.38207

    0.5705 1.41995 0.8502 1.37762

    (1

    - x)CsHs + xCH&OGHs

    :fz k.45323.45906 0.6063.6451 1.4Kw.42076

    0.4030 1.44536 0.6%7 1.40975

    0.4621 1.43819 0.7370 1.4aSo4

    0.5102 1.43235 0.7681 1.40130

    0.5526 l&723 O.&ilb 1.39734

    (1 - x)C&b + xCHdZOCsH7

    0.26iZS 1.46&64 0.5535 1.42892

    0.3M6 lk.4sS48 o.s%e 1.42451

    0,3sl li.45m 0.6714 1.41672

    oAa %? l&M68 0.7374 1.4uiB

    0.469l u39o7 0.78oS lAmI

    0.5222 I.43229 0.8488 1.39921

    0 - xK3u + xCHsCOCIHWb)GH,

    om55 r.46541 0.4983 1.43392

    0.2W 1.43702 0.5708 1.42686

    O.Z W E.4sm

    0.629t 1.42M3

    1A4781 0.6869 1.41633

    lA4437 0.7277 1.41272

    f.43396 0.7995 1.40672

    0.9123

    1.36763

    09578

    1 m2s

    1

    1.35335

    0.86&l 1.3rm2

    0.9368 1.388t18

    1 1.37378

    OHJO 1.3%39

    0.9468 1.39818

    1 1.38534

    0.8Z48

    1.4WbS

    O.Psw 1.394a6

    1 1.39130

    TABLE 3. CIxfIk i& A$ and standad deviation a for ttD - X,R,X~-~ at 303.15 K

    (1 - 4w-b

    +-S

    1.49488 -0.11903 -QB2043 -BiW ll 3

    + --%COCsHs I.49478 -412380

    0.08275 3

    + -d=K=Xb

    I.49484 -8L13389 O.OB66 -O&W9 2

    + ~s~V2EfbXsHs

    1.49481 -0.15015 0.06986 -0.OOM4 O.WB43 2

  • 8/16/2019 Benzene Acetone

    4/6

    1104

    M. DIAZ PERA, A. CRESPO COLIN, AND A. COMPOSTEO

    TABLE 4. Liquid-phase mole fraction x, vapour-phase mole fraction y,

    vapolupfcamamp*alld~GIbba~~

    x

    Y plkpa

    e/J mol - 1

    x

    Y

    P/k-

    G=/JmOl-’

    0

    0.1564

    0.1787

    0.1975

    0.2218

    0.2358

    0.2536

    0.2732

    0.3553

    0.4183

    0.4552

    0.4714

    0.4924

    0

    0.0774

    0.0903

    0.1135

    0.1328

    0.1554

    0.1769

    0.2117

    0.2458

    0.2737

    0.3056

    0.3357

    0.3538

    0.3737

    0.3928

    0.4109

    0.4318

    0.4543

    0

    0.1031

    0.1533

    0.2195

    0.2541

    0.2655

    0.2914

    0.3194

    0.3430

    a3746

    0.3994

    0.4241

    0.4462

    0.3535

    0.3847

    0.4090

    0.4391

    0.4557

    0.4785

    0.4963

    0.5725

    0.6224

    0.6512

    0.6606

    0.6765

    0.09X3

    0.1061

    0.1306

    0.1502

    0.1733

    0.1945

    0.2275

    0.2599

    0.2847

    0.3141

    0.3410

    0.3571

    0.3753

    0.3925

    0.4084

    0.4275

    0.4482

    0.0520

    0.0769

    0.1125

    0.1315

    0.1381

    0.1530

    0.1698

    0.1847

    0.2055

    0.2227

    0.2406

    0.2570

    (1

    36.162

    48.280

    49.737

    50.817

    52205

    53.061

    54.124

    55.086

    59.116

    61.887

    63.476

    64.012

    64.889

    (1

    36.162

    36.845

    36.936

    37.092

    37.221

    37.340

    37.426

    37.528

    37.610

    37.676

    37.725

    37.766

    37.785

    37.804

    37.816

    37.838

    37.834

    37.834

    (1

    36.162

    34.286

    33.361

    32.096

    31.437

    31.219

    30.712

    30.157

    29.680

    29.038

    28.526

    28.003

    27.536

    - - 2&S + xcH8cocHa

    0.5388 0.7084

    168.5

    0.5546

    0.7197

    190.5 0.5976

    0.7467

    2026 0.6635 0.7899

    217.2 0.7174 0.8234

    zx

    0.7446 O.&m

    248:2

    0.7564 0.8483

    0.7811 0.8621

    279.3

    0.7987

    0.8727

    291.9 0.8170 0.8841

    293.2 0.8402 0.8990

    293.4 1

    291.7

    - 4c6H 6 -I- KH6cocpH6

    0.4767 0.4691

    iti

    0.5aIl

    0.4909

    0.5271 0.5157

    iti

    0.5514 0.5388

    0.5737 0.5599

    82.6 0.5892 0.5743

    89.3 0.6068

    0.5915

    97.4

    0.6255 0.6092

    104.0 0.7247 0.7063

    109.3 0.7572 0.7398

    113.3 0.7749 0.7575

    116.7 0.8191 0.8034

    118.2 0.8676 0.8548

    119.7 0.8887 0.8775

    120.7

    0.9262 0.9181

    122.3

    0.9652 0.9609

    122.1 1

    122.1

    - x)CaHs + xCIUOC&

    0.2749

    30.8

    ii%

    37.9 0.5045

    iEi i

    45.0 0.5572

    0:3494

    46.9 0.6123

    0.4021

    47.8 0.6702 0.4636

    47.9 0.7362

    0.5425

    47.7 0.8104 0.6446

    47.4

    0.8614 0.7249

    2:

    0.8992

    0.7905

    0.9663 0.9237

    45.2 1

    43.7

    66.669

    67.301

    68.834

    71.279

    72.995

    73.810

    74.354

    75.143

    75.656

    76.286

    77.076

    81.835

    37.824

    37.817

    37.796

    37.758

    37.724

    37.698

    37.665

    37.638

    37.329

    37.204

    37.134

    36.952

    36.737

    36.632

    36.440

    36.233

    36.066

    27.044

    26.619

    26.291

    25.163

    23.979

    22.727

    21.305

    19.701

    18.5%

    17.780

    16.324

    15.584

    285.2

    282.0

    271.7

    249.1

    219.1

    201.2

    197.7

    184.4

    171.3

    159.9

    143.8

    121.4

    121.0

    119.4

    116.8

    114.3

    112.5

    110.2

    108.2

    86.4

    77.8

    72.9

    ii:74

    38.5

    25.3

    11.2

    42.2

    iti

    35:8

    31.5

    it:

    16.7

    12.5

    i::

  • 8/16/2019 Benzene Acetone

    5/6

    LIQUID-VAFGUR EQUILIBRIA IN ,BENZBNE $ KETONB 1105

    TABLI?4-coWnued

    x

    Y PW

    P/J mol- l x Y

    PFpa

    P/J mol-1

    0

    0.0164

    0.0369

    0.0698

    0.0859

    0.1136

    0.1354

    0.1735

    02008

    0.2275

    0.2719

    0.3096

    0.3186

    0.3431

    0.3738

    0.4201

    0.0051

    0.0112

    0.0212

    0.0261

    0.0350

    0.0422

    0.0553

    0.0649

    0.0745

    0.0917

    0.1074

    0.1112

    0.1221

    0.1364

    0.1598

    (1 -

    36.162

    35.141

    35.232

    34.414

    34.009

    33.308

    32.755

    31.781

    31.084

    30.413

    29.264

    28.283

    28.055

    27.411

    26.600

    25.386

    NC&s -I- ~~cocH(cHaK &

    0.4706 0.1884

    6.0 0.4923

    0.2018

    12.1 0.5115 0.2141

    20.8 0.5430 0.2359

    23.6 0.5954 0.2758

    29.2 0.6378 0.3127

    33.1 0.6784 0.3519

    38.9 0.7326 0.4132

    41.3

    0.7738 0.4675

    43.4

    0.7985 0.5039

    45.4 0.8425 0.5780

    46.5 0.8805 0.6530

    z-i

    0.9033 0.7044

    4512

    0.9522 0.8355

    1

    44.7

    24.038

    23.443

    22.926

    22.065

    20.638

    19.466

    18.358

    16.867

    15.728

    15.047

    13.824

    12.774

    12.147

    10.784

    9.447

    43.6

    41.9

    40.8

    39.2

    35.8

    32.0

    28.5

    25.2

    21.7

    19.6

    15.4

    11.8

    10.9

    6.3

    TABLE 5. Second virial co&cknts

    B

    and molar volumes V* of liquid at 323.15 K

    -B&m3 mol-1 -B2&ms mol-1 -B&ma mol-1

    V*/cnP mol - 1

    Bauale

    1204 92.232

    Aatone 1601

    1393 76.848

    SE

    3250843

    2Ml501

    110.7893.150

    MIK

    2148

    1631

    129.488

    TABLE 6. Cocf lkknts A, and standard deviation u for the relation between cxces Gibbs

    energy and mole fraction at 323.15 K

    (I- .3cd%

    + SJ-bCOCHs

    1166.2 -201.9

    -43.7 87.2 155.6

    +xc)4cocnHs

    483.3 -110.6 46.5 -92.4

    ii-i

    +~cocsH7

    161.2 -137.9

    61.6 -2.1 47.8 014

    + xcHscocH(cHa)cnH6

    167.8 -113.0 26.0 1.6

    69.6 0.5

    a(p/kPa) = 0.025, and cr(P/J mol”) = 1.7; for benzene f MPK: cr((v) = 0.0003,

    a(p/kPa) = 0.006, and a(P/J mol’l)-= 0.5; and fbr benzene + MIK: S(Y) - 0.0003,

    cQ/kPa) = 0.010, and @P/J mol-‘) = 0.9. Although the differences appear to be

    significant, the consistency is as good as could be expected.

    In all the investigated mixtures of benzene + a ketone, positive deviations from

    ideality were observed at all mole fractions. For these systems GE lies in the order:

  • 8/16/2019 Benzene Acetone

    6/6

    1186 M.DIAzPBRi&A.CIRESP[a CC&IN, ANID A. CO-0

    0.2 0.4 0.6 0.8

    X

    FXXJRE 1. Composition epndence f the excess ibbsenergyPet 323.15 . 0, (1 - x)C&

    + xCflaC]OCHs; A, (1 - &Ha + xCH&OC,Hs; 0, (1 - x)&I& + xCH&OCIH~; and

    A, (1 -

    &aHs + xCH,CO~(CH,)c,H,.

    MIK x MPK < MEK

    c acetone. The differences between GE values for benzene +

    MPK and + MIK

    are within

    experimental error. Maximum GE values were observed

    at mole fractions of kttm above x = 0.3, b&h in Ibbntze~ and h tohene. This is also

    observed in Brown and Smith’s

    data

    uJ) for the benzene + acetone at

    318.15 K.

    REPISFUZNCES

    1. Diaz Peila,M.; CrespoColin, A.; Compostizo, . J. Chem. l%ermadynamics W78, l@, 337.

    2.

    Barker,J. A. But.

    J. Chem. 19 3, .6, 207.

    3.

    Riddick,J. A.; Bun=, W. B.

    Orgawk Solvera’s: Physicai fiqperties and Metho& qdPk@tation,

    3rd editican.Wiley-Interscience: ew York. .wIO.

    4. Fortziati, A. F.; Norris, W. R. ; Rossini, . D. J.

    Res. hbt. Bar. Stand. lH9,43.555.

    5. Dreisbach,R, R.

    Physical Properties of Chemical Conlpormrls.

    Advances n ChemistrySeries.

    AmericanChemistrySociety.1955.

    6. Timmennans,.

    Physico-Chemical Constants of Pare Organic Compormds.

    Elsevier:New York,

    ii%o.

    7. Sukcted Y&es of Physical and IL%enw&namk Prqx&s of i &bcarbom and Related Corn-

    poundi API Research roject44.X967.

    B.~~,hI.;R~~~D.jln.~SPe.Fh.Q~.~, ,nl.

    9. Egloff , G. Physical Constants of H~bcuw. Reinidd: New York. B&5.

    10. Dymond, J. H. ; Smith, E. B. 2% Virial Cs vf Gases. clprmdon Press: Oxford. 196%

    11.

    Manh, X. N. 3. Chem. %?r~ynamlcs lI, 9, $19.

    12. Brown, I. ; Smith, F. AIM?. J. Ckm. VW, IO, 429.