beroza_iris-faulting from first principles

68
Faulting from First Principles Gregory C. Beroza Stanford University 2012 IRIS Workshop - Boise, Idaho - June 13-15

Upload: js-kalyana-rama

Post on 12-Jul-2016

18 views

Category:

Documents


0 download

DESCRIPTION

Beroza_IRIS-Faulting From First Principles

TRANSCRIPT

Faulting from First Principles

Gregory C. BerozaStanford University

2012 IRIS Workshop - Boise, Idaho - June 13-15

Earthquakes as slip on planar faults

 (Beroza  and  Spudich,  1988)

Earthquakes as slip on planar faults

 (Beroza  and  Spudich,  1988)

Back-Projection for Off-Sumatra Earthquake:Complex Geometry, Deep Centroid

Back-­‐Projec+on  Indicates  4  Faults  Involved

 (Ishii    et  al  ,  2005;  Hutko,  2009)

 (Meng  et  al,  2012)

Intermediate-Depth Earthquakes

Sub-­‐Horizontal  Faul+ng;  Mul+ply-­‐Connected  Rupture;  Dehydra+on  EmbriGlement?

 (Kiser  et  al,  2011)

Depth-Dependent Faulting

Lay  et  al.  (2012)

Observed  systema+cs  of  low-­‐frequency  vs.  high-­‐frequency  radia+on

Depth-Dependent Faulting

Lay  et  al.  (2012)

Inferred  spa+al  varia+on  of  fric+onal  proper+es.

Dynamic Effects of Geometry

Kozdon  and  Dunham  (2012)

Geometry  has  a  strong  influence  on  dynamics  –  hanging-­‐wall  effect

Effect of Plasticity

(Ma,  2012)

off-fault plastic strain

slip

velocity seismogram

fault friction

[Candela et al., 2009]

Self-similar surfaces, rough at all scales(0.1-1 km roughness wavelengths

1-10 Hz ground motion)

[Dunham et al., 2010]

Fault Geometry and High-Frequency Ground Motion

PGVPGA

NGA  2008  GMPEs

• Relates  ground  mo/on  to  magnitude  and  distance• Up  to  19  predic/ve/descrip/ve  parameters:                    site/soil  condi/ons,  depth  to  top  of  rupture,  mechanism,                          geometry,  hanging  wall  effect…• “Stress  drop”  assumed  to  decrease  with  earthquake  size.

Stress Drop Variability

Baltay  (2011)

Earthquake Scaling

Allman  and  Shearer  (2009)

PGA  Point  Source  Model

a(t) 2 dt−∞

∫ =1

2π˜ a (ω) 2 dω

−∞

˜ a (ω) =Ωo(2πfc )2 and fc << fmax

Parseval’s Theorem

Following  Hanks,  [1979]

Δσ =106ρRΩo fc3Brune stress drop

aRMS =2Rθφ2(2π )2

106ΔσρR

fmaxfc

PGA = aRMS 2ln 2 fmaxfc

⎝ ⎜

⎠ ⎟

PGA =2Rθφ2(2π )2

106ΔσρR

fmaxfc

⎝ ⎜

⎠ ⎟ 2ln

2 fmaxfc

⎝ ⎜

⎠ ⎟

Random vibration theory[Vanmarcke and Lai, 1977]

Brune [1970] ω-2 spectrum

PGA =2.86Rθφ

2(2π )2

106Δσ 5 / 6

ρR βMo

1/ 6 fmax⎛

⎝ ⎜

⎠ ⎟ 2ln

2 fmax 8.47Mo( )1/ 3

Δσ1/ 3β

⎝ ⎜ ⎜

⎠ ⎟ ⎟

PGA  Point  Source  Model

a(t) 2 dt−∞

∫ =1

2π˜ a (ω) 2 dω

−∞

˜ a (ω) =Ωo(2πfc )2 and fc << fmax

Parseval’s Theorem

Following  Hanks,  [1979]

Δσ =106ρRΩo fc3Brune stress drop

aRMS =2Rθφ2(2π )2

106ΔσρR

fmaxfc

PGA = aRMS 2ln 2 fmaxfc

⎝ ⎜

⎠ ⎟

PGA =2Rθφ2(2π )2

106ΔσρR

fmaxfc

⎝ ⎜

⎠ ⎟ 2ln

2 fmaxfc

⎝ ⎜

⎠ ⎟

Random vibration theory[Vanmarcke and Lai, 1977]

Brune [1970] ω-2 spectrum

PGA ~ Mo1/ 5Δσ

Only  nearest  ~30  km  of  fault  contributes  to  PGA

30  km/  3  km/s  =  10  s  =  0.1  Hz

fc =Δσ8.5MO

⎝ ⎜

⎠ ⎟

13

β0.1  Hz  =                                                                          use  Δσ=2.4  MPa    à    Mw  6.7

•    SaturaLon  effect  at  M  6.7,  consistent  with  NGA•    Simple  source  models  match  GMPEs  well

PGA  Model

Olsen  et  al.  (2006)

Ground Motion Simulations Instead of Data

Olsen  et  al.  (2006)

Ground Motion Simulations Instead of DataHow to Validate Simulations?

Olsen  et  al.  (2006)

Deploy seismic stations

Wait for earthquake to test predictions

Ground Motion Simulations Instead of DataHow to Validate Simulations?

Olsen  et  al.  (2006)

Ground Motion Simulations Instead of DataHow to Validate Simulations?Alternative: Validate Using Ambient-Field

Extract  impulse  response

Model  extended-­‐source  response  using  the  representaLon  theorem

Weak  coherent  ambient  seismic  field  recorded  at  

staLons

Convert  surface  impulse  responseto  buried  double-­‐couple  response

Alternative: Ground Motion Simulation Validation with Ambient-Field

Ambient  Noise  Impulse  Responses  vs.  Earthquake

Depth  and  Mechanism  Correc>ons  Improve  the  Fit

The  Dark  Ages:    Richter  “Reading”  a  Seismogram

Gerber  variable  scale  (adjustable  ruler)  used  to  measure  >me  precisely.

Earthquake  Seismogram

Seismographic  Network  to  Detect  and  Locate  Earthquakes

Measuring  arrival  >mes  at  mul>ple  sta>ons  to  locate  earthquakes.

Mul+ple  Earthquakes

A`ershocks  in  New  Zealand

STA/LTA  Detector  -­‐  takes  raLo  of  short-­‐term  average  and  long-­‐term  average  signal  -­‐  maximized  at/near  the  Lme  of  the  first  arrival.  

Earle  and  Shearer  (1994)

Earthquake  Swarm

STA/LTA  algorithms  get  overwhelmed  when  things  get  really  acLve/interesLng.  

The Cocktail Party Problem

The  “cocktail  party  problem”  refers  to  the  quesLon  of  how  people  hear  the  person  they  are  talking  with,  while  ignoring    simultaneous  background  conversaLons  and  noise.  

“The Cocktail Party” by Alex Katz

Cholame  Tremor

LFE  Template

Shelly (2010)

Detec>on  Algorithm  is  Powerful  (few  Type  II  errors)

LFEs  embedded  in  data  at  snr  of  0.1

34/36  are  detected

Template  detec+on  allows  us  to  “follow  the  conversa+on”

Shelly et al. (2007)

Cholame  Tremor ~540,000  LFEs  over  8.5  years  in  this  small  area.  

~216,000  events  in  NCSN  catalog  during  that  +me.

Shelly (2009, 2010)5  years  ago,  few  CA  earthquakes  were  known  deeper  than  18  km.Now  we  have  over  half  a  million  that  are  deeper  in  one  locaJon!

Good  luck  Charlie!

Templates:  Scale  of  the  Problem

40  samples  per  second6  seconds  per  correlaLon4.8  x  102  floaLng  point  ops  per  correlaLon

Good  luck  Charlie!

Templates:  Scale  of  the  Problem

Good  luck  Charlie!

Templates:  Scale  of  the  Problem40  samples  per  second6  seconds  per  correlaLon4.8  x  102  floaLng  point  ops  per  correlaLon

10  lags  per  second86,400  seconds/day365  days/year10  years  digital  dataN  =  10*86,400*365*10  =  3.1  x  1010  correlaLons

Good  luck  Charlie!

Templates:  Scale  of  the  Problem40  samples  per  second6  seconds  per  correlaLon4.8  x  102  floaLng  point  ops  per  correlaLon

10  lags  per  second86,400  seconds/day365  days/year10  years  digital  dataN  =  10*86,400*365*10  =  3.1  x  1010  correlaLons

60  channel  seismic  network

Good  luck  Charlie!

Templates:  Scale  of  the  Problem

~1015  opera>ons  per  template

40  samples  per  second6  seconds  per  correlaLon4.8  x  102  floaLng  point  ops  per  correlaLon

10  lags  per  second86,400  seconds/day365  days/year10  years  digital  dataN  =  10*86,400*365*10  =  3.1  x  1010  correlaLons

60  channel  seismic  network

What  if  we  don’t  have  a  template?

Example  of  “Blind  Source  Separa>on”  (knowledge  of  source  is  limited)

Can  s>ll  use  no>on  of  looking  for  similar  events  across  the  network.

Compare  everything  with  everything  else.

3 Hours of LFEs during tremor in the

Nankai Trough

Brown et al. (2009)

40  samples  per  second10  second  correlaLon  window8  x  102  floaLng  point  ops  per  correlaLon

10  lags  per  second86,400  seconds/day365  days/year10  years  digital  dataN  =  10*86,400*365*10  =  3.1  x  1010  Lme  windowsN(N-­‐1)/2  =  5  x  1020  unique  correlaLons

5  x  102  channel  seismic  network

Scale  of  the  Problem

40  samples  per  second10  second  correlaLon  window8  x  102  floaLng  point  ops  per  correlaLon

10  lags  per  second86,400  seconds/day365  days/year10  years  digital  dataN  =  10*86,400*365*10  =  3.1  x  1010  Lme  windowsN(N-­‐1)/2  =  5  x  1020  unique  correlaLons

5  x  102  channel  seismic  network

Scale  of  the  Problem

1026  opera>ons

40  samples  per  second10  second  correlaLon  window8  x  102  floaLng  point  ops  per  correlaLon

10  lags  per  second86,400  seconds/day365  days/year10  years  digital  dataN  =  10*86,400*365*10  =  3.1  x  1010  Lme  windowsN(N-­‐1)/2  =  5  x  1020  unique  correlaLons

5  x  102  channel  seismic  network

Good  luck  Charlie!

Scale  of  the  Problem

1026  opera>ons

Being  clever  allows  us  to  reduce  by  effort  by  orders  of  magnitude,  but  it’s  s>ll  computa>onally  imposing.

We  need  to  learn  how  to  make  lots  of  measurements(capacity)  to  exploit  fully  the  wealth  of  data  that  new  sensor  technology  will  soon  deliver.

Huge  opportuni>es:     earthquakes     real-­‐>me  network  seismology   volcanoes       geothermal     shale  gas     other?        

Scale/Poten+al  of  the  Problem

Capability  compu>ng.  Use  of  most  powerful  supercomputers  to  solve  the  largest  and  most  demanding  problems.    Main  figure  of  merit  is  Lme  to  soluLon.    A  system  is  ohen  dedicated  to  running  one  problem.

Capacity  compu>ng.  Use  of  smaller  and  less  expensive  high-­‐performance  systems  to  run  parallel  problems  with  more  modest  computaLonal  requirements.    Main  figure  of  merit  is  the  cost/performance  raLo.

(Graham  et  al.,  2005)

Earthquakes and 21st Century Low/No Carbon Energy Options

Earthquakes and Enhanced Geothermal

Earthquakes and Nuclear Power PlantsKashiwazaki  Kariwa

Fukushima  Daichi

Earthquakes and Hydro-Electric Power

Koyna  Dam

1967  M  6.3  Koyna  Earthquake

200  fatali+es

Gupta  (2002)

Earthquakes and Shale Gas

The disposal of flowback water (not fracking) implicated in earthquake triggering.  (Zoback,  2012)

Earthquakes and CO2 Sequestration

 (Zoback  and  Gorelick,  2012)

Earthquakes Impact 21st Century Energy Options

Hydro-­‐Electric  Enhanced  Geothermal  Nuclear  Shale  Gas  Carbon  Dioxide  SequestraLon  

Conclusions

• Seismology  is  cri>cal  to  the  future  of  civiliza>on.

• We  have  a  lot  of  data,  we  will  soon  have  a  lot  more.    We  need  to  think  hard  about  how  to  use  it.    Doing  so  will  allow  us  to  see  earthquakes,  and  Earth  structure,  much  more  clearly.    HPC  will  be  an  important  part  of  this.

• It  is  the  best  of  >mes…  to  be  a  seismologist.

Greens  func>ons  between  sta>ons  opera>ng  asynchronously  can  be  recovered.

Red:  recording  at  all  LmesBlue:  on  at  t1,  off  at  t2Black:  on  at  t2,  off  at  t1

Poster  #12  explores  relevance  of  this  for  the  1  in  4  ini>a>ve.(Ma  and  Beroza,  2012)

Correla>on  of  Coda  of  Noise  Correla>ons  (C3)

(Stehly  et  al.,  2008)

5  –  10  s

10  –  20  s

Stability  of  Virtual  Coda  for  Periods  5  –  10  s

Black:  GFs  using  data  in  January  –  June,  2007Blue:      GFs  using  data  in  July  –  December,  2007 (Ma  and  Beroza,  2012)

Retrieving  Green’s  FuncLons  from  Asynchronous  Data

R1 R2

(Ma  and  Beroza,  2012)

Retrieving  Green’s  FuncLons  from  Asynchronous  Data

Fiducial  network  that  spans  t1  and  t2

R1 R2

(Ma  and  Beroza,  2012)

Retrieving  Green’s  FuncLons  from  Asynchronous  Data

R3-­‐R1

R3

Fiducial  network  that  spans  t1  and  t2

R1 R2

(Ma  and  Beroza,  2012)

Retrieving  Green’s  FuncLons  from  Asynchronous  Data

R3-­‐R1R3-­‐R2

R3

Fiducial  network  that  spans  t1  and  t2

R1 R2

(Ma  and  Beroza,  2012)

Retrieving  Green’s  FuncLons  from  Asynchronous  Data

R1-­‐R2

R3-­‐R1R3-­‐R2

R3

Fiducial  network  that  spans  t1  and  t2

R1 R2

(Ma  and  Beroza,  2012)

52  fiducial  staLons

(Ma  and  Beroza,  2012)

Comparison  of  Synchronous  and  Asynchronous  Green’s  Func+onsR1:  ADOR2:

Black:  1-­‐yr  noise  GF            Red:  coda  GF (Ma  and  Beroza,  2012)

Comparison  of  Synchronous  and  Asynchronous  Green’s  Func+ons

Mean  correlaLoncoeff.  0.77

Mean  correlaLoncoeff.  0.71

Mean  correlaLoncoeff.  0.73

Mean  correlaLoncoeff.  0.77

R1:  ADOR2:

Black:  1-­‐yr  noise  GF            Red:  coda  GF (Ma  and  Beroza,  2012)