beyn_19

9
8/10/2019 beyn_19 http://slidepdf.com/reader/full/beyn19 1/9 Computing 28, 43--51 1982) omoutino 9 by Springer-Verlag 1982 Spurious SoLutions for Discrete Superlinear Boundary Value Problems W.-J. Beyn and J. Lorenz, Konstanz Received May 22, 1981 Abstract -- Zusammenfassung Spurious Solutions for Discrete Superlinear Boundary Value Problems. We consider finite dimensional nonlinear eigenvalue problems of the type A u = 2Fu where A is a matrix and (Fu)i =f(ui), i = 1 .... m. These may be thought of as discretizations of a corresponding boundary value problem. We show that positive, spurious solution branches of the discrete equations (which have been observed in some cases in [I, 7]) typically arise if f increases sufficiently strong and if A -1 has at least two positive columns of a certain type. We treat in more detail the cases f(u)= eu and f(u)= u ~ where also discrete bifurcation diagrams are given. Key words. spurious solutions, discretizations, nonlinear eigenvalue problems, superlinear functions. AMS Subject Classification: 34 B 15, 65 H 10, 65 L 10. Zusgtzliche LiJsungen yon Diskretisierungen superlinearer Randwertaufgaben. Es werden endlich dimensionale, nichtlineare Eigenwertprobleme der Form A u = 2 Fu mit einer Matrix A und einem Feld (Fu),=f(u), i=1 ..... rn betrachtet. Diese k6nnen als Diskretisierung eines entsprechenden Randwertproblems angesehen werden. Wir zeigen, dab diese diskreten Gleichungen dann zusfitztiehe, positive L6sungszweige (welche in [1, 7] heobachtet wurden) aufweisen, wennfhinreichend stark w~ichst und A -1 mindestens zwei positive Spalten yon einem bestimmten Typ besitzt. Ausfiihrlicher werden die FNie f(u)=e ~ und f(u)=u ~ behandelt, ftir die auch diskrete Verzweigungsdiagramme angegeben werden. 1. Introduction Recently, various authors have observed that discrete analogues of nonlinear boundary value problems may have spurious solutions that do not converge to any of the continuous solutions (cf. Gaines [4], Allgower [1], Bohl [2-], Peitgen, Saupe, Schmitt [7], Doedel, Beyn [3]). Let us consider, for example, the nonlinear eigenvalue problem -u =Af(u) in [0,1], 2>0, u(0)=u(1)=0 and a discrete analogue of the type Au=2Fu, u~ , 2>0 (1) where A ~ L IN ] is an m x m-matrix and F is the diagonal field F u))i =f ui), i-- 1 ... , m. 0010-485X/82/0028/0043/$ 01.80

Upload: danorkoz

Post on 02-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: beyn_19

8/10/2019 beyn_19

http://slidepdf.com/reader/full/beyn19 1/9

C o m p u t i n g 2 8 , 4 3 - - 5 1 1 9 8 2)

omoutino

9 by Springer-Verlag1982

S p u r i o u s S o L u t i o n s f o r D i s c r e t e S u p e r l i n e a r

B o u n d a r y V a l u e P r o b l e m s

W . - J . B e y n a n d J . L o r e n z , K o n s t a n z

Received May 22, 1981

Abstract - - Zusammenfassung

Spurious Solutions for D iscrete Sup erlinear Bound ary Value Problem s. W e cons ider f in i t e d imens iona l

non l ine ar e igenva lue p rob lems o f t he type

A u = 2 F u

where A is a matr ix and

( F u ) i = f ( u i ) , i = 1 . . . . m .

These m ay be though t o f a s d i sc r e ti za tions o f a co r r espond ing bounda ry va lue p rob lem. W e show tha t

posit ive, sp ur ious solut ion bran ches o f the discrete eq uat ions (which have been observed in some cases in

[I , 7]) typically arise if f increases sufficiently stron g an d if A -1 has at least two positive c olu m ns of a

cer ta in type. W e t reat in m ore de tai l the cases f ( u ) = eu and f ( u ) = u ~ where also discrete bifurcation

diagram s are given.

K ey w o rd s . spur ious solut ions, d iscretizat ions, non l inea r e igenvalue prob lems, super l inear funct ions.

A M S S u b j e c t C l a s s i fi c a t io n :

34 B 15, 65 H 10, 65 L 10.

Zusgtzliche LiJsungen yon Diskretisierungen superlinearer Rand wertaufgaben . Es

werden end l i ch

d imens iona le , n i ch t l inea re E igenwer tp rob leme der Form A u = 2 F u mit e ine r M at r ix A und e inem Fe ld

( F u ) , = f ( u ) ,

i= 1 . . . . . rn bet rachtet . Diese k6 nn en als Diskret i s ierung eines e ntspreche nden

Ra ndw er tproblem s angesehen werden. W ir zeigen, dab diese diskreten Gleich ungen dan n zusfi tz t iehe,

posi t ive L6sungszweige (welche in [1, 7] heobac htet w urden) aufweisen, w en nfh inre ich end stark w~ichst

un d A -1 m indestens zwei posit ive Spal ten yon einem bes t imm ten Typ besi tz t. A usf i ihr licher werden die

F N i e

f ( u ) = e

~ u n d

f ( u ) = u ~

beh and elt , f t ir die auc h diskrete Verzweigungsdiagramme ang egeb en

werden.

1 .

I n t r o d u c t i o n

R e c e n t l y , v a r i o u s a u t h o r s h a v e o b s e r v e d t h a t d i s c r e t e a n a l o g u e s o f n o n l i n e a r

b o u n d a r y v a l u e p r o b l e m s m a y h a v e s p u r io u s s o l u t i o n s t h a t d o n o t c o n v e r g e t o a n y

o f t h e c o n t i n u o u s s o l u t i o n s ( cf. G a i n e s [ 4 ] , A l l g o w e r [ 1 ] , B o h l [2 -] , P e i t g e n , S a u p e ,

S c h m i t t [ 7 ] , D o e d e l , B e y n [ 3 ] ) .

L e t u s c o n s id e r , fo r e x a m p l e , t h e n o n l i n e a r e ig e n v a l u e p r o b l e m

- u = A f ( u ) i n [ 0 ,1 ] , 2 > 0 , u ( 0 ) = u ( 1 ) = 0

a n d a d i sc r e te a n a l o g u e o f t h e t y p e

A u = 2 F u , u ~ ,

2 > 0 ( 1 )

w h e r e A ~ L I N ] i s a n m x m - m a t r i x a n d F i s t h e d i a g o n a l f ie ld

F u )) i = f u i ) , i - - 1 . . . , m .

0 0 1 0 - 4 8 5 X / 8 2 / 0 0 2 8 / 0 0 4 3 / $ 0 1 . 8 0

Page 2: beyn_19

8/10/2019 beyn_19

http://slidepdf.com/reader/full/beyn19 2/9

44 W .-J, Bey n and J. Loren z:

T h e n t h e r e a r e e s s e n ti a ll y t w o t y p e s o f s p u r i o u s s o l u t i o n b r a n c h e s f o r t h e d is c r e t e

e q u a t i o n ( t ) :

T y p e I :

S o l u t io n b r a n c h e s w h i c h o c c u r f o r l a r g e 2 a n d w h i c h t e n d t o s o l u t io n s o f F u = 0 a s

) , - , oo .

T y p e I I :

S o l u t i o n b r a n c h e s w h i c h o c c u r f o r s m a l l 2 a n d w h i c h t e n d t o i n f i n i t y ( i n t h e

m a x i m u m n o rm ) a s ) ~ 0 .

T y p e - I - s o l u t i o n s ar e w e ll u n d e r s t o o d a n d c a n b e a n a l y z e d b y m e a n s o f t h e re d u c e d

e q u a t i o n F u = 0 ,

w h i c h i s o b t a i n e d f r o m (1 ) i f w e d i v i d e b y 2 a n d l e t 2 ~ o o (c f. B o h l [ 2 ] , P e i t g e n ,

S a u p e , S c h m i t t [ 7 ] ) .

T y p e - I I - s o l u t i o n s a r e t y p i c a l f o r s u p e r l i n e a r f u n c t io n s f , b u t - a p a r t f r o m

n u m e r i c a l r e s u l t s - t h e i r e x i s t e n c e h a s o n l y b e e n p r o v e d i n s p e c i a l c a s e s ( s ee

A l l g o w e r [ 1 ] f o r t h e c a s e f ( u ) = u4, m = 3 a n d n o t e t h a t t h e u n b o u n d e d c o n t i n u a i n

P e i tg e n , S a u p e , S c h m i t t [ 7 , s e c t i o n 4 ] m a y a l l c o n s is t o f n u m e r i c a l l y r e l e v a n t

so lu t i ons ) .

T h e p u r p o s e o f t h is p a p e r is t o c l a ri fy t h e s i t u a t i o n f o r s p u r i o u s s o l u t io n s o f t y p e I I .

I n s e c ti o n 2 w e s h o w u n d e r a c e rt a in g r o w t h c o n d i t i o n o n f t h a t a n y p o s i ti v e c o l u m n

o f A - 1 w h i c h a t t a in s i ts m a x i m u m o n t h e d i a g o n a l l e a d s t o a p o s i ti v e b r a n c h o f t y p e -

I I - s o lu t i o n s . T h e s h a p e o f t h e s o l u t io n s o n t h is b r a n c h is g iv e n b y t h e r e s p e c t i v e

c o l u m n o f A - 1.

I n p a r t i c u l a r , t h e d i s c r e te G e l l a n d p r o b l e m ( G e l f a n d [ 5 ] ) w h e r e

2 - 1

- 1 2 - 1

A = ( m - .I - l ) 2 : ; ( 2 )

- I

, f ( u ) = e

2 - 1

- 1 2

h a s a t l e a s t m d i s t i n c t b r a n c h e s o f t h i s ty p e .

I f rn is o d d t h e n o n l y o n e o f t h e s e c o n t a i n s t h e s y m m e t r i c s o lu t i o n s w h i c h c o r r e s p o n d

t o s o l u ti o n s o f t h e b o u n d a r y v a l u e p r o b l e m . A ll t h e o t h e r b r a n c h e s a r e s p u r io u s .

M o r e o v e r - a s t h e n u m e r i c a l a n d t h e o r e t i c a l r e s u lt s o f s e c t io n 3 s h o w - t h e r e a r e

s t i l l f u r t h e r p o s i t i v e s p u r i o u s s o l u t i o n b r a n c h e s f o r t h i s e x a m p l e .

O u r g r o w t h c o n d i t io n o n f e x c lu d e s t h e im p o r t a n t c a s e

f ( u ) = u ~ , ~ _ > ,

w h i c h w i ll b e t r e a t e d i n s o m e d e t a i l i n s e c t i o n 4 .

I t i s s h o w n t h a t f o r ~ s u ff i c ie n t l y l a r g e , s a y ~ > ~1 > i, t h e s a m e s i t u a t i o n a s i n

s e c t i o n 2 p r e v a i l s .

Page 3: beyn_19

8/10/2019 beyn_19

http://slidepdf.com/reader/full/beyn19 3/9

Spurious Solut ions for Discre te Supert inear Boundary Va lue Problems 45

N o t e h o w e v e r t h a t n o t a n y f ( u ) - u ~, a > 1 p r o d u c e s s p u r i o u s s o l u t i o n s . I t f o l l o w s

f r o m t h e r e s u lt s o f L o r e n z [ 6 ] t h a t i f A - ~ h a s o n l y p o s i t i v e e n t r ie s t h e r e c a n b e

c o m p u t e d a n u m b e r e o = % ( A - 1) > 1 f o r w h i c h t h e s y s t e m ( 1) w i t h f ( u ) = u~, [~ I < ~o

h a s e x a c t l y o n e p o s it i v e s o l u t io n b r a n c h . H e n c e , fo r a n y m a t r i x A o f t h is k i n d t h e r e is

a c r i t i c a l v a l u e e * , 1 < ~ o -< e * < e l < o % a t w h i c h s p u r i o u s s o l u t i o n s f o r t h e s y s t e m ( 1 )

w i t h f ( u ) = u ~* b e g i n t o e x i s t ( s e e F i g . 2 i n s e c t i o n 4 ).

2 S p u r i o u s S o l u t i o n s in t h e G e n e r a l C a s e

L e t H [J d e n o t e t h e m a x i m u m n o r m i n [~m .

I t w il l b e c o n v e n i e n t t o p a r a m e t r i z e s o l u t i o n b r a n c h e s o f e q u a t i o n (1 ) b y t h is n o r m ,

i . e . w e l o o k f o r s o l u t i o n s

( u , 2 ) = ( u ( r ) , 2 ( r ) ) E ~ + 1

o f th e s y s t e m

A u = 2 F u , IJ u I [ = r > - 0 . ( 3 )

L e t u s a s s u m e t h a t B = A - ~ e x is ts . T h e n o u r a n a l y s i s is b a s e d o n t h e f o l l o w i n g

r e f o r m u l a t i o n o f (3 )

v = f ( r ) - a F ( r B v ) , r >O , [IB y II = 1 . ( 4 )

I t i s e a s i l y v e r i f i e d t h a t t h e s o l u t i o n s ( u , 2 ) e 6 " + 1 o f ( 3 ) a n d ( v, # ) o f ( 4 ) a r e r e l a t e d b y

( u, 2 ) = ( r B v , r f ( r ) - I / ~ ) . ( 5)

A s w e w i ll s h o w , e q u a t i o n ( 4) l e a d s t o a r e a s o n a b l e r e d u c e d p r o b l e m i f w e l e t r - -, o o.

T h e a s s u m p t i o n s i n t h e f o l lo w i n g t h e o r e m a r e e a s il y se e n t o b e f u lf il le d b y e x a m p l e

(2 ) (c f . s ec t ion 3 ) .

T h e o r e m 1 :

( i) L et f : (0 , oo)--*(0, oo) be a C l- fun ct ion such that

r

s u p f ( z r ) ~ 0 , s u p f ' (z r ) ~ 0

f( r ) o<~<_t 7 (/ ' f o<~_<t

as r -+ co ho lds for every

t ~ (0, 1).

(ii) L e t B = A - 1 e x i s t a n d l et B j = ( B l j , . . . ,

B, , j ) r

be a co lumn o f B sa t i s f y ing

Bj j> Bi j> O ViA~j.

Then there ex is ts a co nt inous ly d([. ]brentiable branch o f po s i t ive solut ions (u

(r), 2 (r)),

r 2 ro of the sy s tem

(3 )

which satisf ies

r -1 u ( r ) ~ B ~ ~ B j, 2 ( r ) r - l f ( r ) ~ B ~ 1 a s

r ~ o 9 ( 6)

P r oo f :

L e t v ~ = B ~ 1 eJ, w h e r e d i s t h e j - t h u n i t v e c t o r i n N '~ . T h e n f r o m a s s u m p t i o n (ii) w e

h a v e a n e > 0 s u c h t h a t

1 > ( B y ) i > 0

V i~ : j, v e V = { v e ~ : II v - v ~

I I -<g}. (7)

Page 4: beyn_19

8/10/2019 beyn_19

http://slidepdf.com/reader/full/beyn19 4/9

46 W . - J . B e yn a nd J . Lo re n z :

W e w i l l n o w a p p l y t h e i m p l i c i t f u n c t i o n t h e o r e m t o t h e e q u a t i o n

T ( v , s ) = O , ( v , s ) e V x

w h e r e T : V x R--* ~ " i s d e f i n e d b y

I v j f ( ( B v ) ~ l s [ - ~ ) f ( I s [ - ~ ) - l - v i , i+ -j , s O

T i v , s )- = - t - v i , i j , s = 0

[ ( B v ) j - 1 , i = j .

B y a n e l e m e n t a r y d i s c u s s io n u s i n g (7 ) a n d a s s u m p t i o n (i) w e o b t a i n

0 T

T , n - - - ~ C ( V x N , N ' ) , k = l . . . . , m

C/ k

a s w e t l a s

H e n c e

i - - cSik i =~j

i (vO, 0) = (k = , . . . , m ) .

O V k ~. B j k , i = j

[ 6 T 0 0 ) )

de t ~ , ~ - v ( v , , = ( _~1) m-1 B # # 0 ( 8)

a n d w e f i n d a c o n t i n u o u s s o l u t i o n b r a n c h g ( s) s V , [ s ] < 6 s u c h t h a t 6 ( 0 ) = v ~ S i n c e

0 T

0 s

t h i s b r a n c h i s a l s o c o n t i n u o u s l y d i f f e r e n t i a b l e f o r s # 0.

N o w l e t u s d e f i n e

v ( r ) = f f ( r - ~ ) , # ( r ) = v j ( r ) i f r > 6 - 1 ,

th e n (v ( r) ,/1

r ) ) i s

a s o l u t i o n o f (4 ) - n o t e t h a t

( B v ( r ) ) j = t > ( B v ( r ) ) > 0 V i : j

a n d

v j ( r) = ( r) = ( r ) f ( r ) - i f ( r ( B v

(r))j).

M o r e o v e r

v ( r ) ~ v ~ ~ (r ) ~ B ~ 1 a s r - , o e

w h i c h p r o v e s ( 6) i f ( u (r ), 2 ( r) ) a r e d e f i n e d v i a t h e r e l a t i o n ( 5).

3 . T h e C a s e f u ) = e ~

A s a n a p p l i c a t io n o f t h e o r e m l e t u s c o n s i d e r th e d is c re t e G e l ' la n d p r o N e m (3 )

w h e r e A a n d f a r e d e f i n e d b y ( 2).

I n t h is c a s e B = A - 1 is g i v e n b y

[ i ( m + 1 - j ) , i _ < j

B i j = ( m +

t ) - 3 4 ( j ( m +

l - - i ) , i > _ j .

(9)

Page 5: beyn_19

8/10/2019 beyn_19

http://slidepdf.com/reader/full/beyn19 5/9

Spur ious Solut ion s for Discrete Supe r l inear Bo und ary Vaiue Problem s 47

A s s u m p t i o n (i) o f t h e o r e m 1 is o b v i o u s l y sa t is f ie d a n d a s s u m p t i o n (ii) h o l d s f o r e a c h

c o l u m n o f B .

H e n c e t h e r e a r e a t l e a s t m d i s t i n c t p o s i t i v e s o l u t i o n b r a n c h e s

(u~(r),2J(r)), r>_ ro , j= 1 , . . . ,m

o f th e d i s c r e te G e l ' f a n d p r o b l e m ( 3 ), (2 ) a n d t h e s e s a t is f y th e a s y m p t o t i c r e l a t io n s

i - i i <_j (m + 1)3

R7

r )

{(m + l - i ) ( m + l - j ) -~ , i > j ' 2 J ( r ) ~ r e - j (m + 1 - j )

I n t h e c a se m = 9 w e h a v e c o m p u t e d t h e se b r a n c h e s n u m e r i c a l l y a n d o b t a i n e d t h e

p ic ture a s g iven in F ig . 1 .

o /

2 0 s p u r b u s b r a n c h e s

O

J J P I _ _ I ~

0 d O a O ~ O O O 8 0 0 0 x e r

Fig. i

T h e n u m b e r s j = 1 . . . . 5 in d i c a te t h e a b o v e b r a n c h es . T h e b r a n c h 5 c o n t a i n s t h e

s y m m e t r i c s o l u t i o n s ( i.e . u i = u ~ o - i , i = 1 , . . . , 9 ) w h i c h c o r r e s p o n d t o t h e s o l u t i o n s o f

t h e b o u n d a r y v a l u e p r o b le m . T h e s p u r i o u s b r a n c h e s w i t h i n d ic e s j = 6 . .. . . 9 a r e

r e l a t e d t o t h o s e w i t h j = I . . . . , 4 b y

u{(r)=ul~ i = 1 . . . .. 9, j = 6 , . . . , 9 .

T h e r e f o r e t h e b r a n c h e s j a n d 1 0 - j c o a l e s c e i n F ig . 1.

N o t e t h a t t h e s p u r i o u s b r a n c h e s j = l , .. ., 4 a r e n o t c o n n e c t e d w i t h e a c h o t h e r b u t

r a t h e r b e n d b a c k to i n f i n it y c r e a t i n g a n o t h e r t y p e o f s p u r i o u s s o l u t io n s ( d e n o t e d

bye

T h e s p u r i o u s s o l u t i o n s o n t h e f - b r a n c h e s s ti ll a t t a i n t h e i r m a x i m u m i n t h e j - t h

c o m p o n e n t . T h e i r s h a p e s u g g e s t s t h a t t h e y c a n b e r e p r e s e n t e d a s y m p t o t i c a l l y a s a

l i n e a r c o m b i n a t i o n o f t w o c o l u m n s o f B = A - 2 . T h i s o b s e r v a t i o n is m a d e p r e c i s e i n

t h e f o l l o w i n g t h e o r e m .

Page 6: beyn_19

8/10/2019 beyn_19

http://slidepdf.com/reader/full/beyn19 6/9

48 W .-J. Bey n and J. Loren z:

T h e o r e m :

C o n s i d e r t h e s y s t e m (3) w h e r e f ( u ) = e ~. S u p p o s e t h a t t h e m a t r i x B = A - J e x i s t s a n d

h a s t w o c o l u m n s

B j - - ( B l j, . .. , B ~ ) T , B k = ( B l k , . .. , Bra g)T

w i t h t h e f o l l o w i n g p r o p e r t ie s

O < B i k < B k k V i ~ k , O < B i j < B j j Y i~ -.j, ( 1 0 a )

B~k < _ Bjg V i # k

or B ij<_Bkj V i~ j

(1 0 b )

e z- B ~ j < B ~ I - B j ~ l i 0 c

T h e n t h e r e e x i s t s a c o n t i n u o u s l y d i f fe r e n t i a b le b r a n c h o f p o s i t i v e s o l u t i o n s ( u

(r), 2 (r)),

r >_r o o f t h e e q u a t i o n s (3) which sa t i s f i e s

r -1 u ( r ) ~ e B i + f l B k , 2 ( r ) r - l e r ~ a s r ~ o o

w h e r e

~ = A - ' ( B k k - B j k ) , f l = A - 1 ( B j j -B k j ) , A = B j j B k ~ - B j k B , j . ( 1 )

P r o o f :

W e w i l l o n l y g i v e t h e m a i n s t e p s i n th e p ro o f a n d l e a v e t h e d e t a i l s ~o t h e r e a d e r .

T h e s y s t e m ( 4 ) m a y n o w b e w r i t t e n a s

v ~ = p e x p ( r ( ( B v ) ~ - 1)), i = 1 .. .. m, ii B v II = 1. (12)

L e t u s in t r o d u c e t h e o p e r a t o r P : ~ m + l x N - - ~ " b y

P i ( w , s ) = { w l, i4 =k e N d + l ,

w k , w , , + l s i = k ' w s 6 ~

a n d t h e o p e r a t o r T : R ~ + I • ~ E ~ + t b y

~- wj ex p(] s [-~ [ ( B V ( w , s ) ) ~ - 1]), ie {1 . . . , m}\{ j , k}

( B P ( w , s ) )j - - 1 , i = j

T / (w , s )= ( B P ( w , s ) ) k + w , , + t s _ l , i = k

W k - - W m 1 S - - W j e - w r n l~ i - - - m 1 .

T h e e x p o n e n t i a l t e r m i n t h i s d e f i n i t i o n is s e t t o z e ro i f s = 0 . I n s t e a d o f ( 12 ) w e

c o n s i d e r t h e e q u a t i o n

r ( w , s ) = 0 ( 1 3 )

i n a n e i g h b o u r h o o d o f

s = 0 , w = w ~ + f le k + y em + t G R + 1

w h e re e , f l > 0 a r e g i v e n b y (11 ) a n d y > 0 i s d e f i n e d b y

fl = o~e -~ . (14)

F r o m (1 1), (1 4) w e h a v e T ( w ~ a n d u s i n g ( 1 0 a , b ) w e f i n d a n e i g h b o u r h o o d

W = { (w , s ) e ~ ~ + x ~ : 1 w-w ~ I I + I s l < ~ }

Page 7: beyn_19

8/10/2019 beyn_19

http://slidepdf.com/reader/full/beyn19 7/9

Spur ious So lu t ions fo r D is c re te Super l inea r Boun dary Va lue P rob lems 49

s uc h t ha t T e C 1 W , R m +l) a n d

ew,~+ a , (B P(w , s ) ) i~(O, 1) V i + j , k , ( w , s ) ~ W .

F i na l l y ,

d et ~ w W ~

a n d t h e i m p l i c it f u n c t io n t h e o r e m y i el d s a c o n t i n u o u s l y d i ff e r en t ia b l e b r a n c h o f

solu t ion s w s ), s ), I s l < 6 o f equ at i on 13) w hic h sa t i s fies w 0) = w~

N o w , a l l ou r a s s e r t ions f o l l ow f r om t he r e l a t ion 5 ) , be c a us e

v(19= P ( w ( r - l ) , r - ) , # ( r ) = w j ( r - l ) , r > M a x ~ , 6 -1 )

a r e s o l u t i ons o f t he s y s t e m 12) . [ ]

In th e spec ia l case where A an d B a re g iven by 2), 9 ) i t i s r ead i ly ve r i f i ed tha t ou r

a s s u m p t i o n s 1 0 a - c ) a r e sa ti sf ie d w i t h

m m

J < ~ - ,

k = j + l a nd j > ) - + l , k = j - 1 .

T he r e f o r e , t he o r e m 2 y ie l d s t he e x i st e nc e o f a t l e a s t m - 1 m odd ) , m - 2 m e ve n )

s p u r io u s s o l u t i o n b r a n c h e s d i s t in c t fr o m e a c h o t h e r a n d d i s ti n c t f r o m t h e b r a n c h e s

e s t ab l i sh e d b y t h e o r e m 1 . T h e c o r r e s p o n d i n g s o l u ti o n s a r e u n s y m m e t r i c .

4 . T h e C a s e f u ) = u s , ~ >-- 1

A s s u m pt i on i) o f t he o r e m 1 is obv i ous l y no t s a t is f ie d if

f ( u ) = u s, c~> 1.

H ow e ve r , in t h i s ca s e the s y s t e m 4 ) t a ke s t he s pe c i a l f o r m

v i = # ( B v ) ~ , i = 1 , .. ., m , I1 B y I1=1 15 )

w h i c h i s i nde pe n de n t o f r . T h e s y s t e m 15) c a n n ow be s o l ve d f o r v ,/2 ) w he r e e i s

c ons i de r e d a s a pa r a m e t e r .

T h e o r e m 3 :

Fo r ~ >_ 1 conside r the equ ation s

( A u) i = 2u~[ ( i =

1 .. .. m), ]1 u l[ = r 16)

and le t assumpt ion ( ii ) o f theorem 1 hold.

Then there e xis ts ~1 > 1 and for every ~ > ~1 a co nt inuou sly di f ferent iable pos i t ive

solut ion branch for 16):

u ( r ) = r u ~ , 2 r ) = r l- ~ 2 ~ , r > 0 .

He re u~ ~ ~" , 2~ ~ R are ind epende nt o f r an d sat is fy

u~--,B[j 1B j, 2 ~ - + B f j I a s ~ o o . 17)

P r oo f : A s i n t he p r oo f o f t he o r e m 1 l e t v~ B j~ ~ e a nd c hoos e e > 0 s uc h t h a t 7 )

holds .

4 Com puting 28 1

Page 8: beyn_19

8/10/2019 beyn_19

http://slidepdf.com/reader/full/beyn19 8/9

5 0 W . - L B e y n a n d J . L o r e n z :

W e c o n s i d e r t h e e q u a t i o n

w h e r e T is n o w d e f in e d b y

T v , s ) = 0 , v .s )e x ~ ,

i 8 )

t v i - v j ( B v ) ~ I l s l , i j , s O

r i ( v , s ) = l vi, i ~ j , s = 0

(B v ) j - 1 , i= j .

W e h a v e T ~ C I ( V x ~ , R m) a n d a s i n 8 ) w e fi n d

d e t (v~ = - 1)~ - ~ B ; j + 0 .

H e n c e , e q u a t i o n 1 8) c a n b e s o l v e d b y a C L f u n c t i o n

v s ) e m , I s l < a , v O ) = P .

W e the n o b t a in v ~ - 1 ), ~ = v2 0 r 1 )), u > a - 1 a s so lu t i on s o f 15) and ou~ as se r t i on s

h o l d w i t h

T h e v e c t o r u ~,) ,~ ) o f t h e o r e m 3 is a s o l u t i o n o f

Au)~

= ~Zu L i = 1 , , . . , m ,

il

1 .

S o m e n u m e r i c a l b r a n c h e s f o r t h i s e q u a t i o n i n t h e c a s e

m = 9 , m a t r i x A a s in 2 )

a r e g i v e n in F ig . 2 . N o t e t h a t a n y s o l u t io n i n t h i s d i a g r a m g i v es a c o m p l e t e b r a n c h

f o r p r o b l e m 1 6).

j . 1 - 7

/#a ~- f .- / / t

L

F

a~ seur~aus\tt\~\op~ncke

t

* 0

regc lar

r,#nck #

O lO o~ ZO 30 z,O

F i g . 2

Page 9: beyn_19

8/10/2019 beyn_19

http://slidepdf.com/reader/full/beyn19 9/9

S p u r i o u s S o l u t io n s f o r D i s c re t e S u p e r l i n e ar B o u n d a r y V a l u e P r o b l e m s 5 1

The numbersj = 1,..., 5 denote the branches with the asymptotic behaviour (17) and

the branch 5 contains the symmetric solutions. Finally, the additional solutions on

the f branches are quite similar to those for the discrete Gel land problem as

established by theorem 2.

e ferences

[1] Al l gowe r , E . : O n a d i s c re t i z a t ion o fy + .~ yk=0 . In : P roc . C onf . R oy . I r i sh Ac a d . (M i l le r , J . J. H . ,

e d . ), pp . 1 -1 5 . Ac a d e mi c P re s s 1975 .

[2] B oh l , E . : On t he b i fu rc a t i on d i a g ra m o f d i s c re te a na l ogue s fo r o rd i na ry b i fu rc a t i on p rob l e m s . M a t h .

Me t h . App l . S c i . 1 , 566 -571 (1979) .

[3] Doe de l , E . J . , B e yn , W . - J . : S t a b i l i ty a nd mu l t i p l i c it y o f so l u t i ons t o d i s c re t i z a ti ons o f non l i ne a r

o rd i na ry d i f f e re n ti a l e qua t i ons . S IAM J . S ci . S t a t . C omp . 2 , 107 - -120 ( t 981 ) .

[4] Ga i ne s , R . : D i f f e re nc e e qua t i ons a s soc i a t e d w i t h bou nda ry v a l ue p rob l e m s fo r s e c ond o rde r

n o n l i n e a r o r d i n a r y d i f f e re n t ia l e q u a t io n s . S I A M J . N u m . A n a l . 11 4 1 1 - 4 3 4 ( 1 9 7 4 ) .

[5] Ge l ' f a nd , I . M . : S om e p rob l e ms i n t he t he o ry o f qua s i l i ne a r e qua t i ons . A me r . M a t h . S oc . T ra ns l . 29

2 9 5 - 3 8 1 ( 1 9 6 3 ) .

[6] Lo re nz , J . : Ap p l i c a t i ons o f Hi l b e r t ' s p ro j e c ti ve me t r i c i n t he s t udy o f non l i ne a r e ige nva l ue p rob l e ms .

P a r t I I ( t o a ppe a r ) .

[7] P e i t ge n , H . -O. , S a upe , D . , S c hm i t t , K . : No n l i ne a r e ll i p ti c bou nda ry va l ue p rob l e m s ve r sus t he i r

f i n i te d i f f e renc e a pp rox i ma t i ons : num e r i c a l l y i r r e l e va n t so lu t i ons . J . r e i ne a nge w. M a t he m a t i k 322

7 4 - 1 1 7 ( 1 9 8 1 ) .

Dr . W . - J . B e yn

Dr . J . Lo re nz

F a ku t t f i t f f i r Ma t he ma t i k

U n i v e r s i t/ i t K o n s t a n z

P os t fa c h 55 60

D - 7 7 5 0 K o n s t a n z 1

F e d e r a l R e p u b l i c o f G e r m a n y

4*