big data ในภาครัฐ - library2.parliament.go.th · big data))' 2' 2559) (big data)"...

Click here to load reader

Post on 07-Jul-2019

253 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • Academic Focus

    5uaifia 2559

    uwi1 aniwJ~esi Raiuwuiu ~ 6 n ~ l i 6 1 (Big Data)" ni.i~~n$u%ud "dnmih (Big Data)" dsdutlrjoin ~ d n n i h (Big Data)" nisdssqna+diu "6nn761 (Bis Data)" h n i ~ ? ? duuiu?'uia~du~ciu 1ldnm761 (Big Data)"

    "dnnih (Big Data)" Iu?iuia oiiddsarwm

    - aw~'ow5ni - 5dnqv - ?a48 - Zu

    .y

    t ~ss~ iu6 iun~ )~u iu uOnmi6i (Big Data)" %udszb~flt~u

    "Big Data" ~ I R % d9

    nsruanissdduuuda;l6iur~mIuiaSluil~~~u r ~ u n i . i s d d u u w ' i u ~ ~ i ~ q ~ ~ 1 ~ n o a ~ ~ 1 z ~ ~ n ~ a u $ d 6 i u r~lsqiieuazkmuuoalan daordaua~munsd~iooqn'ns$a n 1 n ~ ~ s u a z n i m ~ o n ~ u o d i a ~ ~ i n ~ d ~ a l d l 6 6auuaIUYu r ~ d u u u ~ a a d a r v i i ~ ~ i nnoa~nsda~oauiuuna~u~iou

    V d d lunis5uiinPianisrda"uuuda~lflm~sawq~ s&nseiia q ~I~I~~$ILMPI~U~R~ (IT) U?~SI$A~IBL~OW~~&J~I~ n'irQwiuooaoan'nslGsiimmaiuasman qndsa samda u a a ~ ~ ~ l n o L i i - l i i d s a i i w f i n i w imurawiaboyanis 1irijuciulue~R'nsd~o~s~u

  • d d l oinr?; World Economic Forum 20 1 1 mYndia6~aawai "doga6~Vwfwd~~d~rs'7w79

    rrrr~~~~6iordu6r5u~n"wd~sr"~~~ ~ ~ a ~ o i n i i b y n d r ~ u a $ o ~ n " u n i s R i ~ S u ~ s i i o i i ~ q i id iu im~~uuin tu adidwir~m ~ i n n a i u i i i a ~ r i i r ~ a a i ~ ~ ~ i ~ n i s ~ ~ ~ w n ~ u ~ a G a i s a u ~ ~ m ~ u n i s i i r ~ u ~ i u n i s ~ m i a ~ a a i s sr~~id~nnins~n'idium"aun"u s a ~ ~ i d u i ~ w ~ q n R " i b b a a s a ~ ~ i d u ~ ~ ~ ~ ~ i ~ a u n " u b a iaudiuim ~ ~ a ~ i ~ a y n d ~ ~ m ~ u ~ r u u ~ ~ ~ m l u r ~ d a ~ a " u n'1tiiu9a~rjudsu1mn7srda~1I~?ii4bZu5d3u1~ 5 ~ I U Mj$a ~ Q I U ~ U L ~ " 133 riiuudnn 5l~ua'~nda 247 riu6iuaCuyna"u uaadsauim?auaa 80 ~$uar~durua 1un.a. 2010 dssu i~n is i iCana iu~d~e i i u~dnsdm' i~ q imuuyvu'dssuiru 193,000 bana iu io~u i i uaalu n . ~ . 2012 yn q ~odiuboyaoariu6u 5 $utiiuflnalun"Lu n.t=i.

    d d d 2013 yn q 10 uifihyaea~$u$u 5 ~u6iuAnalu6 unayn 1 ~alu~5niswtm$oyauu3u~masbuliilw aiuisoussqajluuciuZim%i6a 7 Gu6iuuwu ~ ~ o ~ a ~ ~ c i u ~ i ~ ~ ~ ~ i i d u u i ~ u ~ n " u ~ ~ n ~ i ~ ~ " ~ ~ i r a b a a i b s a c i i i ~ 7 ~ v i i (disau nuaiqm6, 2557) ~i7~Caya~i imtua(i1diab$a~ 5am~$a ~na$a~n~uyn~~v id ou tynd

    d d 4 ~ b n ~ ~ d ~ ~ i ~ ~ 1 ~ ~ i ~ ~ 9 ~ i t = i i ~ b e ] ~ ~ ~ ' b n " n " ~ ~ ~ i ~ ~ ~ ~ $ ~ ~ (An Ocean of Data) i c i i l G ~ f l m ~ i f i w v i

    .y

    "~nmi61 (Big Data)" t u u i n i s ~ f i ~ a 1 f i ~ " u u a a 1 . i i ~ s a 0 u ~ ~ o i n r w ~ 1 u ~ a ~ ~ 6 n m i ~ i (Big Data)'' i;ob$unaiudi~~~~d~au~ynadn'nsM"dnin~~b~aa~siio1udsamfl~wu~ir~u6ad~ibuunis ~ d n d u Bm~laiuniuis~lunisu~~~un"umaimai~7uu~~a~maili l lan ~ ~ o d ~ w a 8 c a o i u a n i s ~ ~ 4 ~ ~ u y n i i u v a ~ dsarvlfllu8dnulnn uaa~laiu~$ua~aatllsa~inslwuluauinm ~ ~ n d s r u ~ 1 i R i ~ S u n i s 6 a ~ ~ ~ ~ n m i 6 1 (Eli3 Data)" ~ o a ~ ~ b ~ u ~ n n i a u n a f i n u ~ i w ~ ~ d n i s $ m u i ~ s a b w f l

    (1tnmi6i (Big Data)" ~,$u 1 l u 10 da~dduuua~riu~wnOuOaG~uau~n~sl (IT) $lanuaa dsabwdwu6a~b?uuibraab$iIo bwnfiu~a~~uouinm M"dwum 10 dad l6rrr-i bwnlula8 cloud1, Big ~a ta* , 4 ~ ~ , saas4, ICT security5, Mobile Banking6, ~ - ~ o m r n e r c e ~ , A I ~ , Smart ~ e v i c e s ~ bbaa IoT!'

    i6 l o rwdulnG~~ua~hnaiu~i iu~wnlula~~i$yna~hnslu~ma~sv$ 21 oa6adGnaiulaTi(0 Suuf uaaCiuiimuia~n'ns da~~~~.j;mntp uaao~n'nshrnnj

    1 Cloud G o Cloud Computing 60 u5nirdnrounqu&ni~~~$~i5ad~::uaawa r!hul~flu$oya 2 f i g Data iionfiunihya daiuito~iui~~ruuua::l+~s::O~~u"1n" 3 4G l o szuu 4G RosruudoaiilLiu~aiu~4aqa~nd 4 ~a~~u.rruudaiui~~~~uaaCo~aIn"~~auin qaq~$a 100

    Mbps 4 SaaS G o "Software as a Service" d o n i ~ ~ d u u u n i ~ ~ i ~ ' ~ ~ i ] ~ m ' ~ a i lmuliiUjn75GjllIM7Quniwiuia ~ ~ U L ~ O < L $ W 5 ICT Security 40 ~ a i u ~ u ~ a d a a ~ ~ ~ ~ u u a i ~ a u ~ ~ ~ 6 Mobile Banking 40 ~~un l3r i~ lu i~duuun l51~"~~n l3~ ia 7 uoa Online Banking buoonuuuuilMr~aiuln" dlu

    ~u~woi~$n~usii~ao

  • fiaiuruiv udnmi8il (Big Data)" ~ ~ d n n i i i (Biq Data)'' ~ ~ ~ u ~ r ~ p i ~ u i u n a i u i i ~ ~ n y a d 5 u i ~ u ~ i w i a ~ s i i ~ u upi&r5udidla"

    o~uiun'nvmaaet~o~adn~~u~dr~uud'~1ain~aiu uaaiiduioinuvldtii~ 7 boinsauunnusa~mnid Ia"diulundrinisiic 7 inln4Cns qdnsN'dnauquiiauszuunnu~armoi r i u~aa i i i c q d a h t h y a u a z ~ ~ i i u h y a m a n n r a a i n i i ~ i n ~ ~ o ~ q~nsN'~~adouduaziln~~nu~flunisinn'odoaisii~n"uynd ymaai $ n y a e i n u ~ d ~ ~ o ~ a k n d i a b i i m ~ u l u ~ n q i u i i h l a n #dludn'idiuuazlu8imdsz$ia"u uniYaniiq rpiu nis$n5u~ii(u(iiaassw3u61 y n n ~ ~ d ~ n " 5 8 ~ ~ n u ~ u n ~ u ~ j ; i ~ a s s w ~ u n " i d ~ ~ a u ~ 8 u

    v d v 2 f i ~ t ~ u i o i n n i s a u n u s ~ ~ u m i w ~ n n i a o ~ u ~ u i u i i j l i i ~ n i s a ~ i ~ ~ a : ~ n ~ i i u ~ n y a n i s ~ n u i u ~ u ~ i r~nhru ' ts iums una~n~adr i ik~nr ju~na~ luszuunouGa~mniun~Gi~assw~un" i r~~~~~u humz

    " d4 d~a~anii~it~ssw3u6i~az~iu6id~nuinuiuw"b$szuunouGa~mo~unissJ"u~"nCmr8u ynnkvlunis dr$nnaiu d~niwciiu dai~~wu1~rwu~rwiejiudnK~nunnuIapdc(n~~ 7 lulanusctiur~oi~iim bya lX ~ n a i i ~ CuirMn u a z o ' n ~ i i u a a ~ n ~ a ~ u i i i ~ b n j o ~ l n ~ n ~ o ~ w ~ ~ l u b a n i;l&yadaha uazQ~iiuii~duuu

    4 C u MainMaiu u~9unnaia baud niwciiu niwbnadnu~~a m"9tu ~wnl~a~aisaubwmM"d%~iim~bai prndn'uai u a r s a u u ~ n ~ n i i u Z ~ i n ~ ~ ~ u i ( p l i u n i s ~ ~ i u u ~ ~ ~ a ~ u n ~ . i i o y a ~ ~ i i n $ u ~ d n t i i i i n a ~ u a ~ u ~ s s ~ ~ u n ~ s ~ d ~ $nyaui;lndi?uii~nsiz~76 a ' d ~ w ~ 1 u ~ a 8 ~ o ~ ~ a i a i s n m " ~ ~ n y a b ~ a ' i ~ ~ d n ~ i 1 d ~ b n s i z 9 ~ ~ ~ n ~ i ~ ~ 1 u n i u 6auandirbai

    N

    Onnih (Biq Data) Za~~uW"muinisdiounnu~oinna"~~oya~~aznisw"i~sEo~ruuai~aain (Business lntelliqence: BI) icns6nisqsiiouuim1~~iidn"bp;inaiuau~o b~nilainiinaiub~ua$odn"unis d u w a n ' ~ l s u a : a h ~ n a ~ u ~ X ~ s ~ ~ ~ u ~ ~ ~ n ~ ~ ~ ~ i ~ . u " u l G ~ f i ~ ~ i i ~ l ~ ~ ~ ~ ~ ~ ~ ~ ~ t n n i i i (Biq Data)" ~ i n h y a

    cd P1 N d ~ u i m u ~ i m i a d o a A n i s l 6 ~ u o i n d o ~ w i ~ i i ~ 7 a iu isnu ' iu i i~ns ia~w~suna ' i uOnuouzIaflnn' d d

    (Big Analytic)" a ~ d ~ n i s d i m n Q n o i n ~ i a m i i i ~ q ~ d u a i i i B ~ ~ i d s z 1 v i ~Quiu u i i i ~ i i u n i s i ~ n s i s ~ ~ n ~ a ~ i u i ~ u ~ i m i a ~ ~ n a i u ~ ~ u n a i u ~ ~ n ~ ~ n i s ~ i ~ ~ ~ ~ ~ s z ~ u ~ u ~ ~ (rlizau nuaiyi, 2557) iaf$finrr.iriiuii t n n i i i (Biq Data)" ~ ind in isd ru y n m ~ f l u ~ i a u d i u n i ~ ~ , s o z w " i ~ ~ ~ ~ a u ~ i u n i n ~ ~

    dP1 d ZnisCmiiu dsauaawa uasi~nnrGinyawn n ~ ~ ~ 6 ~ ~ ~ ~ ~ n ~ ~ ~ b d ~ i 1 ~ ~ n 1 ~ w " ~ ~ i d i 9 d ~ ~ n i 9 1 ~ m 3 d r iunaiu6iocnisu~cdsz~i~u~~azn~u~di~uiu I~ni i~ i idsz3~"sniwuin~~~u

    ni.r~8mduao~ "dna i i i (Bis Data)" ms~i in tuuoq~~6nni i i (Biq Data)'' $nyauuinl~qj ik ~$unis~iin$uoinnisla"8imdniun~

    dszainslanluynw~1ass~d 21 M?a'~vlnIula~nisdnai~~na~n Cya i i c 7 o~gn~Auriun'nIiynoh o i n ~ ~ i u n ~ ~ ~ n i s ~ d s u n s u w " b ~ u ~ n i s ~ n u d a u ~ ~ ~ o z r $ ~ n i s ~ ~ ; i u ~ n i s d bdu Facebook , Free Ernail.

    e P1w uaadulan'$nundnoulari 14uh '~6nn i i i (Biz Data)'' oduanvmr8o 3 i (3Vs) Rn

    1) Volume ~oya~rmlsilniiuqs~oiid~ui~~~uuin$uoi~9iobtndLbazozu"dndb$u~i~dmslu Indsarinis~dncii~siiood

    2) Velocity $nyniinis~dduuu~acoriissanb$a ~ ~ n ~ o i n d o c w i t l u n i s i n i o d o a i s d 2

    ~a inmiuu in$u bdu Cnyanisanuiu Cyanisf iu $nyaoinqdnsdJuraoin'i~ 1 nislfiwrfiwfi liln'1lG$oyan"riin8urdduub~da~lXori1dsam~$a

  • crz Y 3) Variety $oqaijnaiu~nin~aiuuin$u baqnd~iiuau"asriunisii~iiu~sii~unc"uaqaSlii

    IPIIPR~IP L ~ U $aqnnis~&a~u61 ba~aBun"in;~n~d ~ h i u ~~nrUYayadIii~nsaaf1~ L ~ U ~aqnd ~nn"iuan.r~aiurinduuu Facebook unr Twitter ~fluiu

    dsduau'oin ~ ~ b n n i i i (Bis Data)" - nirr i i~~~d~dvau?uni~q~i l~ i~nss81~id q d i ~ ~ u d s r l u a u ' a a ~ ~ ~ ~ n n i i i (Big Data)' 'luninqsiio nisn"inisasvlu#ur4udsalua6

    w

    ~muns~d~~rrnaumsorr i iGaqa~~nmi&i (Big Data)" r~~ i$ua i i~ns i r i~~adsr lua~dd~~n isw" iqs i i o ~3nrn~tuandiafinuald kc

    w

    - qmm~nssu6idBn ~ 1 ~ 1 ~ 0 ~ 1 " ~ ~ ~ l h (Big Data)" uirdai~nsir~naiuiadnis"uadBnn"i ~ ~ a w " i l M ' ~ i u ~ a ~ n " ~ a a ~ n 6 i s a u m " i u (customer 360) ~ i o n i s ~ t i a n 4 u ~ n d i (Customer Segmentation) iiui~muwunismnin aSi~unu~d~mauaua~iawqinssunisqdFn~1 ui lnnd diu~dduuadmaam~aai l ~ ~ ~ ~ n Q n 6 i r $ i u i C u c j i ~ l ~ a a ~ u i n ~ q m luaniwnisutic~ud~c uariida.rnia i u q l v l i 7 ~$iui~4unia~8anuin$u

    - qplai~nssulnsnuuinu lfinisirn.riaM'rn?a.liiul~s8ww'~n~aud i~nsiaM'nislGiuaa~ 8 6 1 n i s h R s i r ~ u u a ~ h n i s ~ i u ~ i u " u a d ~ n ~ i (Customer Churn) u a ~ i r a i h q a ~ d ~ o u ~ m b ~ u n i s IiiuinisZinuinuiu Z i n ~ ~ ~ ~ ~ i u i ~ o i i ~ q a u i ~ ~ n s i r i dacnaiuhn;ldaamu 'LM"rfludsrk.~au'n"u

    d ~n6iilunraaaisisorrlm"Zinm"au

    - qmai~nssunisiju i~nsirM'nis;inln;nju msnimnisN'naiu&a~nisva~a,nn"i nisuticnt$ d ~ n i i unsm~i~nsi~M'naiurau~"ua~~n61

    - ~ i u i n u i ~ l i a m < u a a ~ ~ n f i u I a ~ L ~ U n i s w u i n s ~ ~ l i n i ~ nisninnisd~aqaZi ~ j a n i s i~ns i r i $ayno in~4u~ga i i i d q nisl$~iuw&ciu

    - ~iun'iunisnnin a i o ~ i u i r ~ a i ~ n s i r ~ b a y a o i n ~ ~ ? a ~ i u k n u a a u l a u ' (Social Media) n i s i r n s ~ ~ i G a q n d ~ m ~ ~ ~ w n " i w ~ a u u s u ~ " u a ~ w ~ a u ~ i u (Sentiment Analysis) nis6uiu~i~nfl~a.i 7 uulanaaula6

    - dium"iusJ"ub~d ~?anis'~/ad~dua b~unisibnsir~nsrbbanaiuiiuu talk of the town %u~bdaa dcr l

    n-juuinisacuaau~dualuan"~ $aqn naiufln~iu lu l~~i iuni i~f fu ~5uEiaul~tj ~~aCmlds~nsu113a~iu d n i ~ ~ ~ ~ ~ u a ~ l ~ l f l m " m ~ ~ n " ~ ~ a ~ ~ a ~ l ~ ~ s ~ ~ ~ ~ a ~ m luuiardu d a w a i ~ n i j u ~ ~ i w u i u d v i i ~ n " u I ~

    n i s i i ~ ~ d n m i i i (Biz Data)" uil~dsrluau'niahugsh ~ ~ u n i s i i ~ ~ a 1 d i r n s i r ~ b d a ' v 1 1 n ? i ~ k d n i s ~ u ~ i ~ ~ i ~ ? a n i s u ~ n i s ~ u ~ d ~ ~ u u ~ ~ i 7 ~M'msa~unaiubiadnisvad$~ 8dvia1dd

    1) ah~yaiini.sqsiio 2) nis i i$aya~~d~$uuidaua~ua~unis~m~u~o~?ai iu ia~ i~$a~m"~d~uuwianis~~. l i~ .u"u 3) n isu ' i~a~a~~d i$uu1d7uds~~ i rus~urna iunrdsr~~u~udsru io r i i l~d iuuaan i~w" i

    ksdni4w.i q lfia'~Rus5unisd jddiuoid M~adauk~wiw~a~adn"u~~widoab?m$u~u~nsdnis a M i

    4) n1s~1$aqa~~di#u~ida~1unisi~nsi~~~daii~daiauwunismaimai~~~wunir~~~a3unis Y OYVlii~Sdiu nisaia~wu~~~.jnvaanisw"i~iuluauinm ~ 3 a a i o o ~ d i l M Y ~ f l m q s f l o l ~ i q Bu i n? una

    5) n ~ s ~ ~ ~ a q a ~ ~ d i $ u u i w " i l , ~ ~ i i m a ~ i u n i s d n i s ~ ~ . l i ~ ~ u s a ~ ~ i ~ a a ~ n s ~ s i i i l d w " i g s i i o ~ f f u a n " u

  • Y Y 9 daoad.rwa~iaiu5lnn~~aaw"i lwcju.ilnPrniuisn~~az~CiloCoya 8u61 ;luaznisu'smsuaauiaaaaR'ns ' dad w - & qsiio w"i~~~uibniinla~Eian~~wmwqm ~bazviupio~vqnist-i ~ 8 u k (yiio gaunns, 2559)

    nisdszqn~~"%B~iu 6'8npl141 (Big Data)" ?unin% milQdsduaciqin udnmiii (Big Data)" tunin~siiod~8u~sdua~'~mums~lunis~di~oyaui

    wiciirThnCi ~~azGmuiwfimniu4n"b9;ims~n"unaiu(3ia~nis~~azwqinssu(u3lnn uaz~Rnw$m5mw"bwd (Enabling New Products)

    luninY2

  • "dnmiii (Big Data))' uila*?rnsiaviCoyanis~AuniGn"ium'i~ 7 ~ i i i ~ a i u ~ n 6 o d ~ ~ u d n dsaaiau~:: d 4 2 ln"?unisuin~snnuuluynn"iu ~ d u aiuisoui i i l~wiosim nii l~'uinismsisruquoii~~a~~ nis

    442 ~du~nisnis isqd~nnM"i~w"dsaaiau~~~niw~?m~muu ~ d u ~ 6 u n a i u d a n n ~ u ~ n u n i s ? r n ~ i a ~ d 4 2

    rrualu"usiayinssu n i s i i q u n i w ~ m u u o i n n i s ? ~ n s i ~ ~ $ o y a ~ i s i s ~ q u aasrAmnaiuiauiioriu 2'

    ninrnnauuinau~innisJiCo~aldIQ oaii$otalwu' 1 uin~ueindsaaiau (Crowdsourcing) wio #o+a~inqdmd Internet of Things ~ ~ u n i s a i i ~ ~ n i n s r ~ m a ~ r i u a a i ~ ~ i u C a ~ a u i n d u (suaiR 4u UUW', 2559)

    u ~ u u i u i ~ u i a d u a f i ~dnricr.1 (Biz Data)" $uiarm~on dsrgni o'unanai uiunY~uum3n"wa'nCunin?~~nai%1b~u~5n miu?iiUYiPfUr

    Jsa~wnlwug w.n. 2558-2563 l n u i i ~ ~ d s s e s d ~ ~ o d d ~ ~ u m a i u " h n c 6 4 6 4 ua r i h~u " un;ldssnn iinisd7u~da"uuninY~~nisr$u7~uia5~~a a'.r~~uw~jlugwsniamiwa"nuo~ uwu5 i6~w" rnns~~ i i~ l u a r k ~ u rraar4udaudi~~lunisunsaCu~~uu5nisnin~~~maiu~6u~5~ n'ilGiinaiuo'x.?Ju&na~ wa"nKunin?~~nirr$uQ~uia5~Ca dijnis~sruinis.iawa'i~wdau~iu ~ ~ ~ I ~ ~ I ~ ~ U P ~ U L L U U ~ O Q ~ ~ = I ~ u ~ n i i l n u ~ ~ s a a i ~ u ~ ~ u ~ u U ' n a i ~ u a r ~ u ~ ~ d e u ~ ~ ~ i i m n i s ~ ~ d u u u ~ a ~ I m " o i i ~ ~ r W " o ' i ~

    Aiu'nciu7~uiaS~n"nwsoOnSi (odR'nisuwiau)w?e Electronic Government Agency (Public Organization) (EGA) ~ ~ u o d ~ n i s u ~ i a u u o ~ d s a r ~ n ~ ~ u n i u ~ $ n i s ~ i ~ ~ u a u o d nsrnsa;nnnlu~au'aisau~~mb~aanisdoais dsaninuwudi " d n m i ~ i i (Big Data)" b u a i d aoldmuns.iurcl?ouh Lmiuuhfdsauu w.fl.2560 riln Big Data as a Service bhvlriaudiu ninY$KLB uaaniuI6uluuiuu"nimY~l~ueaiiuims~iuCoya~m~~uan"u Iumi(Gu5nisdsaaim

    n i s ~ ~ u i ~ M ' ~ i i m n i s ~ ~ # o ~ a u ~ i f l i a w i o Big Data undninh oaiilddnisysruinisn"iu InsmiicCoqa nis

  • - ~dbUU%o4 Government Big Data as a Service %ophU l u w.n. 2560 ~ i a u ~ i u s i a n i s ~ a ; l l n u o a ~ B i ~ n i s l $ ~ n n l u l a u " "8nniAi (Big Data)"

    ~ ? a n i s ~ ~ $ a ~ u w i n i a " ~ a d n i n s ' g Inudiu'ncius'guiao'~6nwsou'nd s a b f l u ~ d a u d i u ~ di~iiunisuas~ilnlGu3nisn"uw,n9~daulu~dbbuuva~ Government Big Data as a Service aid8oiflm u nssul~.!w"idiuuu Government Cloud Computing v i a G-Cloud i d ~ d a u d i u [email protected]~luvora8

    i l o g k iiiGndiu?iuinG~n"nnsaiinii 1 6 i ~ ~ ~ a n a o i i ~ ~ 1 u n ~ s u ~ ~ ~ u i a ~ u ~ u n i s ~ ~ ~ ~ u i sauu 3 aduuu d s a n o u h u System Architecture d i ~ ? u n i s d s r u a a w a ~ ~ ~ Batch, Interactive una Real Time hu#d 3 bbuuwid EGA orlmYJiui"LBbdUm'a~~uudi~?unisw"mui sruu Government Big Data as a Service ~ i a l ~ u i n i s h u Big Data Analytics di~?u18u

    a W d sianislnuiald voraulnunisGwui6u~uuuu una r i i ~un~duudns~a i i ~w"u~ ium ' i ~ 7 &M%J Government Big Data as a Service bb6a

    dirinciu?iuiaidnnsaina' oa i in i s inRssuu#d~~ ln ~ q n ~ s a a ~ u C n b s i i n u a i ~ ~ a a W I ~ m ' k a i saun"a~nnisbn?adiu ~ ? a r ~ m ba'inii; {dsauu b$aii%v?sauu Government Big Data as a Service v a d ~ n u ~ n i s u ~ ~ i s ~ n n ~ s ~ n u ~ d a u ~ i u b ~ u a b $ a a m n a i u ~ t u i n unanis adyud~ua"au ~ n ~ ~ ~ i s ; l n i s ~ ~ ~ a ~ a ~ b a a n i s ~ ~ ~ s i a s ~ ' # ~ ~ u n a ~ ~ u ~ ~ w a m ~ a u v'iauimsiiutu 6 1 ~ P i l d 7 dbM5aun"u

    b i i s s a u u l ~ ~ n i s ~ n k u & ~ n 4 0 ~ i a u ~ i u s i a n i s h l ~ d A a ~ n i s I $ ~ i u s a u u Big Data Analytics ~ias:uunisjbnsia~.iiayau~imia ~ i u i s o a a u ~ a ~ ~ $ i ~ i ~ $ u i n i s ~ 6 ~nudaulvnis di~iiu~iuer~4u~durSuan"unislGu3nisszuu G-CLoud l u i l a l f i ~ ~ ~ I ~ ~ L ~ ~ I ~ ~ R ' c ~ ~ ~ I ~ ~ I J ~ i i l ~ ~ ~ n i s 5 r n s i r s R ' o i n $ a ~ a v a ~ m u ~ a ~ ~ ? a n i s 5 ~ f i s i : M r ~ a ~ a v a ~ ~ ~ a u ~ i u m u ~ a ~ w a u n " u

    d d u ~ d a u ' ~ i u ~ u ~ ~ v i u i l $ u ~ n i s d t o a ~ i ~ ~ ~ ~ n n i s ~ s o r i n i s B a ~ a u n a i i l ~ ' n i s C n ~ u l ~ a ~ u u & 9iu$ar?adur iu~iu inu (find banyuwn, 2558)

    nsiG~ed1~1udss~w d w u hrindiuiguia8m"nwsaiinai (EGA) b~uhn' ibiunis " d n n i i i (Big Data)" nin$uvidusn

    lnuGnnGaynnisesiosnsu~i~'~~aa~b~uPiu~~uu uaan"iGun"n$amna~~a~nisaii~6u~~uunisCnni~ u"a~aumifl~a (Big Data) s a ~ j i ~ dirinin~iuY~uiaB~~nnsaGna' (aaAnisu~iau) EGA f h t p d

    4 9 d ~wnlulaua~annsadnai~~aanauGa~mai~bsA~aii NEC~EC bbarnsuwiwaad iia18umfdusnaas W E d d v~au;liuni~Yg~~udJiu3nis "dnn ih (Big Data)" ui la nan~du$a~ndlinisGun"nInuu~wd M a

    B ~ l ~ a d i i n i s ~ r i i u l n u ~ d n s o i ~ ~ a a T ~ a w ' i u ~ n i s i i u (Internet of Things) ui?~nsiaGdiussuu dsruaawavuiml;~~~ ~ ~ a ~ i l d l ~ M " ~ ~ n d s ~ ~ u a ~ ~ ~ ~ ~ l u n i s d Y ~ d ~ ~ d s ~ ~ ~ ~ i ~ n i s d i ~ i i u . r i u ~ i u u3~s~aanin$ddsaviau ~ a a ~ ~ a a i i ~ ~ a i u l ~ i ~ d ~ u u l u n i s ~ ~ i ~ ~ u " ~ a ~ d s a ~ w n

    nis~jldzj?iuialivia n in~oa~bi~n is~sor in is$s+aninY~ ~daai dn=itahdmso'nsab~uu (~m$a%R ~~ISU~IS~O%$I ~nanisbilnbwu$a;n I R U J I G ~ ) ? R ~ S E ) ~ ~ $ ~ ~ W U ~ ~ I ~ I ~ N % U~%?IP?JUU$~%~

    as u d l v l i d d M " ~ ~ u ~ a a u i a n ~ ~ l ~ ~ ~ u ~ ~ ~ m o w n ~ w a s a ~ ~ u n i ~ ~ ~ u l m v a ~ ~ s ~ o n i u l u d s a ~ ~ n Inuninigoaiinis d ~ u ~ n s d a i i d t i i u n i s u ~ ~ i s d i u b i s s s d ~ u ~ n n i s ~ u ~ n ~ a u v s d ~ a ~ a i i a a i s a ~ i ~ o ~ ~ ~ d (Data Driven)

  • t u P brna~a~nisd~magusrisbo;aaisaubwfl (Chief Data Officer) M?O CDO IUUIR%O~P;ML~B?I~~%UU aiu$oya nis&b?!u nisl$aiu U ~ U ~ I ~ L W U U W ~ ~ ~ J uonoin~uoaijnis~~m~n~~uif l iami. i ia;a (Data U

    scientist) 0) a'a~~u~rduasi~ai~i l~d~iim~u~~osoa~unisu5ris4mnisio;alkaiuiso1~dsalus~d~oin "Onmi61 (Big Data)" l6oioriiasamdauna~dsa~w~niwuin$u lnuuors6ninY$bhanaiuiau~on"u aan'nsr iua~msunanin~on~udr~uaiaa ahauua~miaun'u~~ou'i ld~nisaiauwunn~vld una ~ ~ 6 P l l " " U l t 7 1 k b ~ ~ b ~ ~ ~ d 6 ~ 5 ~ ~ 6 ~ d l 9 $ ~ 1 b ~ ~ b b a ~ & 9 ~ ~

    nis~sminis~iubo; noanaiu b6uniw~r~dnin~~oa~knaiuafi6~b~aa~ubwuindu uaa rrioudoarii~~a~~d~u~na"ounisu5~isaiuludsarw~r~oaiiana1uld~~la unauuiuf%uniw~~a ~wuidssbwPlPia'bfiuouinm a'a~ab~~i~in~~oa$fianssudaba~unisvsorinis~o8?ab~ou'I Inm"iu

    BirinaiuQuiat~6nnsairna' (EGA) e~rii io~ad16Yunis~sauaawar~a"a I~IT#II~~IU(IUTRU w ' i Jnsanisiaap~9mnimY~ (Government Open Data) uoa EGA lnu~n;adriildl$qald~8u~a;a Eiauqmn unaIr i6dsn5]ru iudr~ua~oa a't$oyaaatnsuwi.r~aaan"arum #wiouuarrknis dsauaa~a ~ i n i j ~ ~ a u ~ i u ~ u 6 o ~ n i s r i i i o ; a ~ f l ~ 6aiOjl6Yua~~imoinnsuwiaraaariau rrnaaiuiso r i i l f l ~ ~ ~ a l u a r i ~ i u ~ i u ~ < u ~ i i d u tumnY~ld$traiudsaaa~kriilfl+dsaluvuTu~~awi~sB

    ~~i?odisosll'nsn~ni~ua::~~n~~u~~i?o~~w~dpa"i "8nnnlidil (Biz Data)" uil# - n4uwis~aas uiuaiiruni auvsd olulnsuniaraaa ndiaii oinnisdnsuniarnaaijnis

  • ~ n ~ ~ s ~ u u d u n a i ~ a ~ ~ i ~ i ~ ~ ~ i u ~ u ~ n ~ ~ ~ n ~ ~ u ~ u i i ~ r n ~ i ~ ~ " r i i m + s y a b r n u n 4.75 ~ ~ s a ~ u i ~ i a ~ u uruadninsausouuddniais~aM"d~um~un~d~ww #dsodnduarsniai6is~am"au (ilqgu'udsnaudt aiaisolr#dwum 127,735 {u) s a u u f i o a ~ i a $ a y a < u d ~ u i ~ 607 rwmalui (1 r~m:~uirYiin"u 11,024

    d s: rwsaluPi) PiaTu ~ ~ ~ d u d i u a u u ~ i ~ i a aafiurra"a nisorah~sruuRmmiu1~aa5~~si~99'$aya~si~suuim 1 - u

    lnq ~~ma~ijnis~i~k~~aSi~w"u~iulunisu5~is~a~Cm~ifuu'ayaw"au~~dlu~~1~m sndri isupisi i~ cd Y d i u r w a i ~ d m (connected vehicle) os i id iuauu in$u dsa~uaun~msn"i~M"nis~u~uu~s~ouu ddY a, d daamn'u

  • dmn. i i ia~nisb~u Data-Driven Organization Itindiaauvsd (dmn. bgm$a~nsdnis Smart Analytics with Big Data, 2559)

    - I r ~ w u i v i n n ~ ~ e w

    "$nnnlih (Biz Data)" ~uiguiniiadr:~vltl oinwadis2ouas cornscore ludo~nis la"~niat i iu8~~1uei iu$~~mart Phone l udsam~~

    r r~?p .u i n i uaan$u EU5 oin 5 dsa~nduqlsdlm"ur muuiin c]&rfla i m i d abdu uart?dnqlr ~ud2dbRoun'uuiuu i;d!ainu n.R. 2011 wuji dsa~~~ln~?iaru5nir~aan$u EU5 ii$a"diubniodiu &nu diu Smart Phone biludsaQiynTuRnr8u Touaa 38.8 uaa 23.1 miua'in'u bbaawuii l u dsr~n~lt?dnqw ~ 6 o ~ d i u u ~ i u u a ~ l i n l ~ l C d 1 ~ bn?odiu8dnuoin Facebook i idiu~uuinniinislC~iu oin Twitter ~mu$~di~d?u~~g"b~diu~n~o~iu8dr"luoinba"u~'~1m' soilada~ib~unida"di~~ln Mobile Browser bbaaoin Mobile App niua"i6u

    - avligo~u?ni N

    rAouGquiuu n.fi. 2011 i i n i s d s ~ ~ u ~ ~ o a i i ~ ~ ~ i u ~ a u j i o l u n i ~ M ' i i ~ ~ n " i u "OnniAi (Big Data)" b ~ u a n " u n i s u i ~ i s ~ n i s ~ u 5 s s u a i ~ s a ~ a ' i d Mr. Hirofumi Hirano ~uum"?iinisnsansad nisAnwi ?YPUUSJ~U nis%41 ? M U I R I B P ~ $ U ~ ~ L M R ~ U ~ ~ ~ (MEXT) dsabn~d+.~ uarDr.Subra Suresh ?~u~aaa?~l~ t~ 'n~ iu~ i~~n"unaiu~da"uurrda~dm"aunis~~ i~k~ MMi~u'irininui~~ami.u"oqall (Chief Data Scientist) ~docai~duuiutiiu lddnnifii (Big Data)" uotdsarvln bdu

    - nis~aiuah~nis?nwinaiudaomfiubbaa~o~n"unisyom ~8nnibi i (Biz Data)" osaiuisor.u"iuid~ulunis~ilsaoaouyo?m Inuoad~r ' i iu~ .a iy~C~wnlu la~ l~dnnifii (Bin Data). do 3~nsiadaduuuunaflonssu$~mdni ~~oilatn"un'ugnn181ln"ou'i~w"unisd s~u5;lsa?jwq~nssud4i

    w d s a~a"ufimuaiciunisirnsiaM'.u"oqanisyo?m~ua~m uonoind "dnnifii (Big Data)" ujgnla~wo2r~sirJ uaallmouP;oKugnniuodi~w"uia9i ~ d u P I u ~ ~ g a i n i s n s a n s ~ ~ n a i u ~ u n ~ ~ b ~ ~ u i 9 Q G a w ? P ~ l a "

    w d w r w l h l a s ~gdnmiii (Big Data)" ~un i~~ns ia fuaamsaoaou~un i~bu ioondsa~~~

    - nisw'suinis~~u~ni~~aani~mauauodbruu~uwa"u bnnlula8 ~ d n n i f i i (Big Data)" d~udara?ulGv4au;liuQ~uiaaiuisn~i~~u~n"adi~r~udsa~~5niwou'i~"11igaaim uaaiin~iunrinsh u i n ~ u ~ u s a ~ u a ~ ~ u a a . j ; o ~ d u "6nm161 (Big Data)" d~ulunisms~oaausauunisuud~wd~uQau msirnsiaM'uuu~uw~u(riau~G~

  • ~~~hul6Cuviuviaai sauk w"muinabnis~iiubo~a~~aznszuaunislunisu5~~~q ~~u6iu (w i im i EuFii, 2556)

    - &nqw ?~uin&nqdm'naiudin"~n"u (~dnni61 (Big Data)" lusiuz ''I lu 8 aoqanIuInZr~duu

    Innn wiou4nss~uyuuin~unYunisw"muids~~~~oin~ayaF1"iuauu~i~ia~~siid~6o~~u~nuniw b%Yudsz~~~~ ~dul4ioindsduatjw

  • 2

    3b e

    5

    4D

    @

    e 9

    S

    4e

    ,a

    ten

    dl

    Per

    5"

    Sk

    2

    St

    PD

    P 2

    3 3

    9 2

    2

    dl

    2' %D

    n

    9

    0"

    y M

    3

    e

    F 5

    iiT

    2' V

    dl

    "

    L.

    2a

    ze