big picture

34
Michael Reibel Boesen 1 , Didier Keymeulen 2 , Jan Madsen 1 , Thomas Lu 2 , Tien-Hsin Chao 2 1 : Technical University of Denmark 2 : NASA Jet Propulsion Laboratory November 3rd, 2010 Integration of the Self- Healing eDNA Architecture in an Embedded System and Evaluation of it Using a Fourier Transform Spectrometer Instrument Application 1

Upload: sanaa

Post on 23-Feb-2016

35 views

Category:

Documents


0 download

DESCRIPTION

Michael Reibel Boesen 1 , Didier Keymeulen 2 , Jan Madsen 1 , Thomas Lu 2 , Tien-Hsin Chao 2 1 : Technical University of Denmark 2 : NASA Jet Propulsion Laboratory November 3rd, 2010. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Big picture

Michael Reibel Boesen1, Didier Keymeulen2, Jan Madsen1, Thomas Lu2, Tien-Hsin Chao2

1: Technical University of Denmark2: NASA Jet Propulsion Laboratory

November 3rd, 2010

Integration of the Self-Healing eDNA Architecture in an

Embedded System and Evaluation of it Using a Fourier Transform

Spectrometer Instrument Application

1

Page 2: Big picture

Big picture

2

eDNA: Self-healing hardware arch.DTU InformaticsMichael, Jan Madsen, Pascal Schleuniger

Fast design and impl. using CompactRIO for space instrumentsGreg Flesch (JPL)Didier Keymeulen (JPL)

Tunable Laser Spectrometer (MSL)

RampFFT AVG

Analogoutput

PowerPC, 800MHz, VxWorks

Analog

input

ADCDAC

FPGA Virtex540MHz clockDAQ

CompactRIO

Liquid Crystal Waveguide-based Fourier Transform SpectrometerTien-Hsin Chao (JPL)Thomas Lu (JPL)Scott Davis (Vescent Photonics)George Farca (Vescent Photonics)

Page 3: Big picture

Motivation:Why Self-healing in Fourier Transform

Spectrometer

• Harsh environment increases probability of permanent & transient faults– Fault in control: Cause damage of instrument– Fault in data processing: Loss of vital science

data• Repairs impossible, high risk or very

expensive• Need for autonomous hardware self-

healing

3

Page 4: Big picture

Agenda

• eDNA: Self-healing hardware architecture• Case study application: Fourier Transform

Spectrometer• Hardware/software implementation &

CompactRIO• Self-healing of FTS: Control & data processing• Performance evaluation

4

Page 5: Big picture

NA

NA

NANA

NANA

NA

NA

NA

eDNA architecture overview

5

32

32

A

BμPRAM

Load S0,00Jump Z, SPLoad S0,01

Ribosomal DNA

Pkg in Pkg out

Communicationlayer

Control Layer

Computationalgranule

Computationlayer

eCell

eCell

eCell

eCell

eCell

eCell

eCell

eCell eCell

001010100100110

eDNAprog.

Page 6: Big picture

eDNA Compiler

6

while (b != 0) do if (b<a)then a = a – b else b = b – a endifendwhile

1

2

4

while

exp

if

Trans-lation

3

exp

Placement

eDNA program

Genome 1Genome 2Genome 3Genome 4

Encoding

EXPR(a=a-b)

Data

Data

Start 1

Func.

Comm

1. Placement2. Functionality3. Communication• All eCells have

copy=> Completely distributed

architecture

ID ADDR

01 (1,1)

02 (2,1)

03 (1,2)

04 (2,2)

4

2

1

Comm. type Comm. target

Map

Page 7: Big picture

eDNA Self-reconfiguration

7

NA

NA

NANA

NANA

NA

NA

NA

(1,3)

(1,2)

(1,1)

(2,2)

(2,1)

(3,2)

(3,1)

(2,3) (3,3)

P1234

P1234

P1234

P1234

P1234

P1234

P1234

P1234

Pkg in Pkg out

P1234

ID ADDR

01 (1,1)

02 (2,1)

03 (1,2)

04 (2,2)

Genome 1Genome 2Genome 3Genome 4

1. Addr relate to ID2. ID relate to Genome3. No genome => spare

Page 8: Big picture

eDNA Self-healing

1. Fault-detection: TMR-based algorithm: Cell C and spare detects fault at Cell F2. Spare localization: Cell C locates closest spare-cell K3. Self-reconfiguration: Broadcast table update

– Effects: Function & Communication restoration and Isolation of faulty cell1. Functionality restoration: “Moved” to (3,1):2. Communication restoration: Now going to (3,1) instead of (1,1)3. Isolation: No one communicates with (1,1)

8

(1,3)

(1,2)

(1,1)

(2,2)

(2,1)

(3,2)

(3,1)

(2,3) (3,3)

P1234

P1234

P1234

P1234

P1234

P1234

P1234

P1234

P1234

ID ADDR

01 (1,1)

02 (2,1)

03 (1,2)

04 (2,2)

ID ADDR

01 (3,1)

02 (2,1)

03 (1,2)

04 (2,2)

Pre-fault Self-healed

Genome 1Genome 2Genome 3Genome 4

(3,1)

Page 9: Big picture

Gene RAM

32 ALUop

32A

B

ALU

Z

IF/WHILE• <=• !=

EXPR•

+• -• *•

Shift

etc.

Pico-Blaze

eDNARAM

NA+SAF

To other eCells

Ribosome DNA RAM

Self-healing hardware eDNA: Prototype Hardware Architecture

state machine

Network Adapter + Store and forward

registers

swsw

NxM-bit data

8-bit address

8-bit identifier

N M

Page 10: Big picture

Case study:Liquid Crystal Waveguide-based Fourier Transform Spectrometer

10

FFT

Data Acquisition

Change OPD bychanging voltageon electrodes

Averaging

Prototype: SLD: 1450-1700nm, Resolution: 3-4nm

Ramp

Gas

• No moving parts

Page 11: Big picture

Fourier Transform Spectrometer HW/SW Integration on CompactRIO Platform

• HW: Real-time embedded controller architecture (CompactRIO) consisting of– PowerPC at 800MHz running VxWorks– Xilinx V5-LX110 FPGA– Analog input module– Analog output module

• High-level SW tool support: LabVIEW– FPGA synthesis: Graphical programming language– Integration of VHDL code– Integration of I/O

• Very fast path-to-flight• Design, test & prototype with hardware-in-the-loop (TRL 0-5)• Straight to deploy/flight: Using Honeywell hardware (TRL 6-9)

11

Page 12: Big picture

FTS HW/SW integrationMapping of components

12

eDNA

Page 13: Big picture

Self-healing hardware for FTSIntegration of eDNA onto CompactRIO (1)

13

eDNAVHDL code- Virtex 5

LabVIEW FPGA- Component Level IP Node

LabVIEWCLIP

XMLVHDLDescr.

TopLevelVHDLFile

Integrationin LabVIEWas regular I/O

Developer level

Page 14: Big picture

Self-healing hardware for FTSFTS data processing and control on eDNA

• SW Toolkit: Simulation, optimization and compilation env.

14

Write eDNA DownloadTranslate

Sim

FFT

AVG

Ramp

Page 15: Big picture

Self-healing hardware for FTSeDNA performance evaluation

• Focus– eDNA Execution time vs. LabVIEW FPGA

impl.– Self-healing time– Execution time before and after healing

• Note: No TMR fault detection yet

15

Page 16: Big picture

Self-healing hardware for FTSeDNA performance evaluation

• eDNA signals that an error occurred Data removed from dataset Advanced TMR-based protocol in-the-works

• Fairness of comparison?– eDNA: FPGA type platform on top of FPGA– FPGA-based prototype: What we have right

now16

Measurement LabVIEW eDNAExecution time AVG 2.42 us 219 us

Self healing time N/A 110 usWorst case recovery time N/A 1 sample lost

Area type Factor# Slices 6x

# Flip-Flops 4x

# LUTs 6x

Page 17: Big picture

Self-healing hardware for FTSeDNA performance evaluation

17

(1,3)

(1,2)

(1,1)

(2,2)

(2,1)

(3,2)

(2,3) (3,3)(1,3)

(1,2)

(1,1)

(2,2)

(2,1)

(3,2)

(3,1)

(2,3) (3,3)

Autonomous

(3,1)

Page 18: Big picture

Self-healing hardware for FTSeDNA performance evaluation

Depends on cell placement

18

(1,3)

(1,2)

(1,1)

(2,2)

(2,1)

(3,2)

(2,3) (3,3)(1,3)

(1,2)

(1,1)

(2,2)

(2,1)

(3,2)

(3,1)

(2,3) (3,3)

Autonomous

(3,1)

Page 19: Big picture

Ramp results

19

Measurement LabVIEW eDNAExecution time ramp 1 us 242 us

Self healing time N/A 110 usWorst case recovery time N/A 1 sample lost

Area type Factor# Slices 6x

# Flip-Flops 4x

# LUTs 6x

Page 20: Big picture

DCT/FFT results

• FFT implemented using FFT.VI in LabVIEW

• eDNA DCT

20

Measurement LabVIEW eDNAExecution time FFT/DCT 5.5ms 627.83ms to 42min

Self healing time N/A 123 usWorst case recovery time N/A 1 sample lost

Page 21: Big picture

Conclusion (1)

• eDNA self-healing architecture demonstrated in real world application

• Fast integration of eDNA architecture into embedded real-time system

• Data processing and control functionality of FTS compiled into eDNA code

21

Page 22: Big picture

Conclusion (2)

• Autonomous self-healing functionality comes at a high-cost

• Future improvements to eDNA– Reduce immense communication overhead

between cells in eDNA architecture– Replace 8-bit Xilinx PicoBlaze with ASIP– HW implementation of fault-detection

mechanism• Self-healing time: A fraction of execution

time22

Page 23: Big picture

Michael Reibel [email protected]

23

THANK YOU FOR YOUR TIME!

Q&A

Page 24: Big picture

References

• eDNA architecture:– Michael R. Boesen, Jan Madsen - eDNA: A Bio-Inspired Reconfigurable

Hardware Cell Architecture Supporting Self-organisation and Self-healing, NASA/ESA Adaptive Hardware Systems (AHS’09) 2009, San Francisco.

– Michael R. Boesen, Pascal Schleuniger, Jan Madsen - Feasibility Study of a Self-healing Hardware Platform, Applied Reconfigurable Computing Conference (ARC’10), Bangkok.

• LCW-FTS:– Chao, T., Lu, T., Davis, S. R., Rommel, S. D., Farca, G., Luey, B., Martin, A. and

Anderson, Michael: Compact Liquid Crystal Waveguide Based Fourier Transform Spectrometer for In-Situ and Remote Gas and Chemical Sensing, Society of Photographic Instrumentation Engineers (SPIE) 2008.

– Chao, T: Electro-Optic Imaging Fourier Transform Spectrometer, IEEE Aerospace Conference 2007.

• Tunable Laser Spectrometer for MSL– Flesch, G. and Keymeulen, D.: Adaptive Control of Tunable Laser Spectrometers

for Space Flight Applications, IEEE Aerospace 2010, Big Sky.– Flesch, G. and Keymeulen, D.: Adaptive Embedded System applied to Tunable

Laser Spectrometers for Space Flight Applications, NASA/ESA Adaptive Hardware Systems (AHS’10), Anaheim.

24

Page 25: Big picture

Backup slides

25

Page 26: Big picture

Fault detection slide

26

Primarygenes

eCell type

IF (B<A)

Secondarygenes

1

2

3 4

while

expexp

if

1

2

3 4

while

expexp

if

1

whileProtocol:1. 2nd start => do 2nd gene2. 1st start =>

1. Check that result from package == 2nd gene result2. If not, send test package to nearest spare cell

3. Spare cell is now tester and voter in TMR system4. Inconsistency = fault!

EXPR(a=a-b)

Data

Data

2nd start

Start

4

2

1

2

Page 27: Big picture

27

Page 28: Big picture

Path-to-flight

28

Design, prototype & testTRL : 0 - 5

Deploy on Honeywell RDETRL : 6 - 9

Design, Prototype & Testwith hardware in the loop [HIL] Deploy/flight

Page 29: Big picture

Z = A expr B

EXPR.

start

finish Z

A BBool

S1

start

S2

finish

Bool

S

start

finish

if BOOL then S1else S2end if

while BOOL do Send while

Parallel S1end ParallelParallel S2end Parallel

S1 S1

start

finishfinish

Self-healing hardware eDNA: Design Methodology (1/2)

Compilation Technique

while (b != 0) do if (b<a) then a = a – b else b = b – a endifendwhile

1while

4exp

3exp

2if

29

Page 30: Big picture

Analogoutput

FTS HW/SW integrationMapping of components

30

PowerPC, 800MHz, VxWorks

Analoginput

FFT

AVG

ADC DAC

FPGA Virtex540MHz clock

DAQRamp

Page 31: Big picture

Z = A expr B

EXPR.

start

finish Z

A BBool

S1

start

S2

finish

Bool

S

start

finish

if BOOL then S1else S2end if

while BOOL do Send while

Parallel S1end ParallelParallel S2end Parallel

S1 S1

start

finishfinish

Self-healing hardware eDNA: Design Methodology (1/2)

Compilation Technique

while (b != 0) do if (b<a) then a = a – b else b = b – a endifendwhile

1while

4exp

3exp

2if

31

PC eCell type Edge type Target

EXPR(B=B-A)

2if

4exp

PC eCell type Edge type Target

01 EXPR(A=A-B) Data 04

PC eCell type Edge type Target

01 EXPR(A=A-B) Data 04

02 EXPR(A=A-B) Data 02

1while

3exp

PC eCell type Edge type Target

01 EXPR(A=A-B) Data 04

02 EXPR(A=A-B) Data 02

03 EXPR(A=A-B) Data 01

00 EXPR(A=A-B) Start 01

Page 32: Big picture

Self-healing hardware eDNA: ASIC implementation

• Aimed at ASIC implementation featuring– Distributed TMR-based Fault Detection

protocol– Dedicated eCell processor design

• Why ASIC not FPGA?– Cell CPU - PicoBlaze main bottleneck[ARC’10]

• Need dedicated design for speed– Higher logical granulation needed– Communication penalty

32

Page 33: Big picture

Case-study application:Fourier Transform Spectrometer

• Purpose: Spectral detection of gases• Michelson Interferometer Design

33

FFTFFT

Gas

Page 34: Big picture

Application of Self-healing hardware: eDNALCW-FTS – Liquid Crystal Waveguide

Fourier Transform Spectrometer

• No moving parts

34

Gas