bimification -...

119
Faculty of Civil Engineering, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer BIMification eine neue Herausforderung an die Bauinformatik FBI, Dresden 6.9.2017 Prof. Raimar Scherer

Upload: doantu

Post on 22-Aug-2019

221 views

Category:

Documents


0 download

TRANSCRIPT

Faculty of Civil Engineering, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIMificationeine neue Herausforderung an die Bauinformatik

FBI, Dresden 6.9.2017

Prof. Raimar Scherer

2TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Some best practice BIM examples

Dubai Electricity & Water Authority HQ, VAE

3TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Some best practice BIM examples

Wuhan Wang Jia Dun Area and CBD, China

4TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Some best practice BIM examples

Dalian Software Park Harbour City, China

5TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Was ist BIM ?

6TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM Einsatz in der PraxisEinbindung des Transrapid in den HBF München

Hauptbahnhof München 2003 Obermeyer Planen + Beraten, München IFC 2x2 60 MB Software: ADT 2004 (Autodesk)

ArchiCAD 8 (Graphisoft)ArcGIS (ESRI)ALLPLAN (Nemetschek)

STAND 2003

Von OPB

7TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Wände Hbf, grau Bestand

Bsp: Ausschreibung Hbf München / 2003 Komplexes (Um-) Bauvorhaben

und Infrastrukturmaßnahmen Vollständiges Modell in IFC 2x2

(Obermeyer Planen + Beraten) Modellvolumen: ca. 60 MB Software: ADT 2004 (Autodesk)

ArchiCAD 8 (Graphisoft)ArcGIS (ESRI)

Hauptbahnhof München 2003 Obermeyer Planen + Beraten, München IFC 2x2 60 MB Software: ADT 2004 (Autodesk)

ArchiCAD 8 (Graphisoft)ArcGIS (ESRI)ALLPLAN (Nemetschek)

Einsatz von BIM in der Praxis

Von OPB

8TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Drahtmodell Hbf

Hauptbahnhof München 2003 Obermeyer Planen + Beraten, München IFC 2x2 60 MB Software: ADT 2004 (Autodesk)

ArchiCAD 8 (Graphisoft)ArcGIS (ESRI)ALLPLAN (Nemetschek)

Einsatz von BIM in der Praxis

Von OPB

9TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Übergang U4/U5

Hauptbahnhof München 2003 Obermeyer Planen + Beraten, München IFC 2x2 60 MB Software: ADT 2004 (Autodesk)

ArchiCAD 8 (Graphisoft)ArcGIS (ESRI)ALLPLAN (Nemetschek)

Einsatz von BIM in der Praxis

Von OPB

10TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

AufgangWest

Express-aufzüge

ÜbergangU1 / U2

AufgangOst

AufgangMitte

Das 3D-Modell ist für die Planung und Koordination

Die 2D-Pläne sind zur Bauausführung

Einsatz von BIM in der Praxis

Von OPB

Vom 3D-Modell können unterschiedliche Sichten abgeleitet werden

Integration mit Umgebungsmodell Integration mit 2D-Modell

11TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Was soll BIM sein?

12TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

nD GUI

Oberfläche

Bauteile

Räume

Austattung

BeziehungenzwischenElementen

KostenDokumenten-Kataloge

Organisationsdaten

BIM basiertes Arbeitenalle Informationen in einer Hand am Bauteil

13TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

nD GUI

BIM basiertes Arbeitenalle Informationen in einer Hand am Bauteil

alle Informationen in einer Hand über das Bauteil erreichbarOberfläche

Bauteile

Räume

Austattung

BeziehungenzwischenElementen

KostenDokumenten-Kataloge

Organisationsdaten

14TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM ist die ganzheitliche Arbeitsweise mit allen Informationen des gesamten Baulebenszyklus in strukturierter, digitaler Form.

Raimar Scherer, 2015

Was soll BIM sein

15TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM ist die ganzheitliche Arbeitsweise mit allen Daten des gesamten Baulebenszyklus in strukturierter, digitaler Form.

In dieser Aussage stecken zwei wesentliche Ansprüche.

Zum einen sollen alle Daten in digitaler Form und damit in digitalen Modellen vorhanden sein,

so dass die Modelle ausgetauscht, modifiziert und zusätzlich durch den Computer, d. h. durch Softwaresysteme geprüft, validiert und mit weiteren Informationen manuell und automatisch angereichert werden können.

Was soll BIM sein

16TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM ist die ganzheitliche Arbeitsweise mit allen Daten des gesamten Baulebenszyklus in strukturierter, digitaler Form.

In dieser Aussage stecken zwei wesentliche Ansprüche.

Zum anderen soll eine ganzheitliche Arbeitsweise möglich sein.

Dies bedeutet, dass die digitalen Daten, sprich digitale Modelle, miteinander in Verbindung stehen und die Modelle keine singulären Informationsinseln bilden. Die Modelle müssen einerseits interoperabel sein, d. h. ihre Daten müssen gegenseitig austauschbar und vergleichbar sein. Somit müssen gleiche oder gegenseitig überführbare Datenmodelle und Datenformate vorliegen. Die Modelle und damit die Daten müssen andererseits untereinander verlinkt sein, um eineindeutig zu wissen, welche Daten und welche Informationen eine holistische, ganzheitliche Informationseinheit bilden. Erst damit ist sowohl ein anspruchsvolles, effizientes und ganzheitliches Arbeiten mit den Daten und den dazugehörigen Informationen als auch deren Management möglich.

Was ist BIM

17TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM ist das virtuelle Bauwerksmodell

Das Bauwerksmodell ist die Informationsdrehscheibe im Projektlebenszyklus

18TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Basisinformation eines BIM Modells

1.

Geometriemodell

19TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

2.Topologiemodelle

•Räumliche(z.B. Wand – Raum –Geschoss – Bauwerk)

•Zeitliche(Vorgänger –Nachfolger)

•Finanzielle(Finanzierung – Kosten – Rechnung)

•Organisatorische(Bauherr – Architekt –Fachplaner – Behörden – Baufirma –Unterauftragnehmer –Zulieferer)

Basisinformation eines BIM Modells

1.Geometriemodell

20TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Basisinformation eines BIM Modells

2.Topologiemodelle

•Räumliche(z.B. Wand – Raum –Geschoss – Bauwerk)

•Zeitliche(Vorgänger –Nachfolger)

•Finanzielle(Finanzierung – Kosten – Rechnung)

•Organisatorische(Bauherr – Architekt –Fachplaner – Behörden – Baufirma –Unterauftragnehmer –Zulieferer)

3.Semantikmodell

Alle Bauteile müssen einen Namen haben

Allgemeingültige Datenstruktur

z.B. Klassenname nach IFC

1.Geometriemodell

21TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

4.Kataloge:

- Fertigteile- Einbauteile- Fassaden- Techn.

AusbauSemantik?

Basisinformation eines BIM Modells

2.Topologiemodelle

•Räumliche(z.B. Wand – Raum –Geschoss – Bauwerk)

•Zeitliche(Vorgänger –Nachfolger)

•Finanzielle(Finanzierung – Kosten – Rechnung)

•Organisatorische(Bauherr – Architekt –Fachplaner – Behörden – Baufirma –Unterauftragnehmer –Zulieferer)

3.Semantikmodell

Alle Bauteile müssen einen Namen haben

Allgemeingültige Datenstruktur

z.B. Klassenname nach IFC

1.Geometriemodell

22TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

1. Geometrie (Das ist die Eintrittskarte in BIM)2. Semantik (Bezeichnung, Grundbemusterung, Katalogelemente)3. Topologie (räumlich => Raumbuch)4. Verhalten (erweiterte Semantik, Bemusterung)5. Interoperabilität (Datenformate => Sprachproblem)6. Verlinkung im Modell (Topologien, Gruppierungen) 7. Verlinkung zwischen Modellen (Partnerschaftlich)8. Ontologie (mit Fachwissen schlussfolgern)9. System (Vollständigkeit prüfen => Qualitätskontrolle)10. Modelltransformation (Synchronisation)

Informationsaufbausystem für BIM

Stufe 1

Stufe 2

Stufe 4

Stufe 3

23TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Geometrie

24TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Building Information Modelling ist mit allen 3D CAD Systemen möglich.

Geometry Building Modelling ist mit allen 3D CAD Systemen möglich.

Alle anderen Komponenten des BIM modelling ist mit ein paar wenigen Systemen möglich.

Alle BIM Informationen sind (sollten) in einer Datenbank (BIM Server) gesichert werden

BIM Model

25TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Brückenplanung in BIM

IFC für Brücken gibt es nicht.Eine Brücke kann aber mit der IFC Proxy Klasse modelliert werden (= die semantiklose IFC Klasse)

Von LAP

26TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Brückenplanung in BIM

Das Modell sieht aus wie eine Brücke.Es weiß aber nicht, dass es eine Brücke ist.Damit ist es für den Computer nur irgendein geometrisches Objekt

Von LAP

27TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Gebäudeplanung in BIMIFC Gebäude gibt es => ein Sematikmodell kann erstellt werden.Der Computer weiß exakt was für ein Gebäude es ist und welche Elemente es besitzt.Der Computer kann für Sie tätig werden

Junge Semperoper, Dresden

Von LAP

28TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Initial stream linesStream lines lower level

Stream lines upper level

The computer can do an indoor CFD simulation for you – and much more

29TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer13.09.2017

iVEL- integrated Virtual Engineering LabAutomatische Analysen aus dem BIM Modell

IntegratedDesign Cycle

IntegratedAnalysis

Cycle

BIMManagement

System- Filter, Mapper,….

NumericalEngineering

AnalysisManager

- FEM,..

Modeller - CAD, Viewer

30TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer13.09.2017

(5) domain model repositories

(9) simulation management

(7) collaboration manager, (8) platform kernel (10) numerical analysis management

IntegratedDesign Cycle

IntegratedAnalysis

Cycle

(1) Modelling, (2) Management

(3) Inspection(4) Control

(6) BIM data management

BIMManagement

System- Filter, Mapper,….

NumericalEngineering

AnalysisManager

- FEM,..

iVEL- integrated Virtual Engineering LabAutomatische Analysen aus dem BIM Modell

31TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer13.09.2017

IntegratedDesign Cycle

IntegratedAnalysis

Cycle

BIMManagement

System- Filter, Mapper,….

NumericalEngineering

AnalysisManager

- FEM,..KPI Überprüfung

Modeller - CAD, Viewer

Gesteuert mit KPI

iVEL- integrated Virtual Engineering Labentwickelt zum BIM Design Lab

32TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Semantik

Die Sprache der virtuellen Welt

33TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Kein freies Modellieren mehr möglich. Die Eingabe aller Bauwerkselemente erfolgt über vorgegebene Begriffe.

Die Eingabe der Semantik erfolgt i.d.R. zusammen mit der Geometrieeingabe.

Nur wenige CAD Programme weltweit sprechen eine einheitliche Sprache (Semantik).

Die Baucomputersprache heißt IFCSie ist genormt in der ISO 16739+und wird ergänzt durch GAEB, das es nur in Deutschland gibt

Semantikmodell

34TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Klasse: Wand Klassentyp: MW 36,5 WD 12,0 (= Stammdaten einer Wand)

(CAD Hersteller spezifisch)

Semantikeingabe

35TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Klasse: Wand Klassentyp: MW 36,5 WD 12,0 (= Stammdaten einer Wand)

(CAD Hersteller spezifisch)

Semantikeingabe

Wand ist eine IFC KlasseMW 36,5 WD 12,0 ist die weitere Spezialisierung der Klasse Wand in Unterklassen.

Dies ist in IFC durch die Klasse Klassentyp realisiert. Klassentype ist eine allgemeine Klasse deren Benennung bei der Verwendung durch den Anwender festgelegt wird. Dieser Name ist damit nicht Bestandteil der Sprache IFC und damit für andere nicht bekannt, d.h. ohne Bedeutung.Eine Standardisierung solche Klassentypen könnte über Industrievereinigungen oder Herstellerkataloge erfolgen. Der Anwender würde dann aus vorgegebenen Listen, die Industriestandards bilden, auswählen.

36TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Nachträgliche Erstellung des Semantikmodells

Von LAP

1. Eingabe der Elemente als reine Geometrieelemente mit ifcProxy

37TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

2. Jedem Geometrieelement wird eine Klasse zugewiesen

Nachträgliche Erstellung des Semantikmodells

Von LAP

38TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

3. Automatischen Ergänzung mit weiteren Parametern (Verhalten)

Nachträgliche Erstellung des Semantikmodells

Von LAP

39TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Verhalten

40TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Festlegen des Verhaltens durch Eingabe weiterer Parameter

Bspw. Eingabe der Materialeigenschaften des thermischen oder tragenden Verhaltens oder die Kosteneigenschaften, wie Aufwandswerte und Einheitskosten

Verhalten

41TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

z.B. der Tragfähigkeit in Form von Bewehrungsinformationen

Eingabe von Verhaltensinformationen

(aus Autodesk Revit)

42TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Topologie

43TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Für die organisierte Verwaltung ist es wichtig, dass alle Bauteile Räumen zugeordnet werden.

Mehrere Räume bilden ein Stockwerk.

Mehrere Stockwerke bilden das Gebäude

Daneben gibt es noch weitere, wichtige organisatorische Zuordnungen, s. Verlinken

Topologie

44TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

(aus einem Markt CAD)

Topologie

Die umschließenden Wände und Decken bilden das Objekt Raum.Das Objekt Raum ist die Verlinkung zum Raumbuch.

45TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

(aus einem Markt CAD)

Topologie

Nachbarschafts-System von Räumen

46TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

(aus einem Markt CAD)

Topologie

Flucht-System von Räumen

47TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Verlinkung

48TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Mo Di Mi Do Fr Sa So

€Leistungsmodell

Terminmodell

Gebäudemodell

BIM sind mehrere Modelle - 5D

Alle nur denkbaren Informationen in ein Modell zu legen, führt zu einem nicht mehr beherrschbaren Informationswust.

Informationen sind in Fachmodelle zu bündeln sind von Fachpersonen zu pflegen sind einer eindeutigen

Verantwortung zu unterstellen.

Das virtuelle Gebäude wird i.d.R. als Informationsdrehscheibe benutzt

49TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Mo Di Mi Do Fr Sa So

€Leistungsmodell

Terminmodell

Gebäudemodell

Linkmodell

Multimodell

Mehrere Modelle verlinkt bilden ein Multimodell

Die Fachmodelle sind über ein oder mehrere separate Linkmodelle gezielt zu verlinken.

Es entstehen aufgabenbezogene Multimodelle.

Das eine allumfassende Multimodell kann daraus erzeugt werden, wird jedoch von niemandem gebraucht und kann von niemandem gepflegt werden.

50TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Mo Di Mi Do Fr Sa So

€Leistungsmodell

Terminmodell

Gebäudemodell

Linkmodell

Multimodell

Jedes Modelle kann ein eignes Datenformat besitzen

IFC

GAEB

ics

Das 5D Modell ist ein Multimodell.

Die 5DInformationen sind auf mehrere Fachmodelle mit verschiedenen Datenformaten verteilt.

51TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Fachmodelle bilden Multimodelle

Fachmodelle

Prozessmodell

Multimodelle

52TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Modellzustände

LODLevel of Detail

LoDLevel of Development

53TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Multimodel Container

Domain model 2

Domain model 1

Domain model 3

Multimodel Container

domain d, matter m, format f, level of detail l, phase p, status s, resp r

domain d, matter m, format f, level of detail l, phase p, status, resp r s

domain d, matter m, format f, level of detail l, phase p, status s, resp r

domain d, format f, phase p, status s, responsible r

Link

mod

el 2

A Multimodel Container containsDomain Models They remain unchanged

No link info added

A responsible person

Linkmodel are explicit and seperate

Contain several links

a link links n elements of m domain models

several Linkmodels are possible

Meta Data container task description

semantic vocabulary

list of responsible persons

Link

mod

ell

Link

mod

el 1

Multimodel Containers are perfect task planners

54TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

A Multimodel querry

Multimodels are going to become a buildingSMART and an ISO standard.

Provide the price of the column of story 16 errected on 21.06.2013

Not several querries are necessary but only oneand an automatic search in several models will happen

55TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Multimodell der Arbeitsvorbereitung

56TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Simulation Study: formwork pallets replacement

57TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Clash detection for concreting with cranes and pumps

With the Multimodel you get this all for nothing

58TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Composition of a cranefrom crane library of components

Who will provide this equipement catalog?

59TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM für Umbau und

Ertüchtigung

benötigt einen neuen

Arbeitsprozess zum

Aufbau eines BIM

60TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM for Retrofitting

41% of the total energy use in the EU is frombuilding use

The Energy Performance of Buildings Directive of the EU (EPBD 2010/2012) and its 2016 update specify the application of various requirements to existing buildings and building elements subject to retrofitting towards achievement of near zero energy housing at cost-optimal level

1. Retrofitting of the old building stock for improved energy performance

Main target: Buildings of the period 1960-1980s when a large number of low quality residential tower blocks have been built (poor designs, simple architectural layout, repetitive concrete exteriors, numerous technical deficiencies)

61TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM for Retrofitting

2. Retrofitting of road bridges from the 1960-1980s

Example Germany Number of bridges : 39,106 Total length: 2,089,020 m Total area: 30,033,018 m2

62TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM for Retrofitting

Source:BASt / BMVBS

2. Retrofitting of road bridges from the 1960-1980s

63TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM for Retrofitting

~40% require urgently retrofitting measureswith another nearly 40%to join soon

2. Retrofitting of road bridges from the 1960-1980s

64TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM for Retrofitting

Efficient retrofitting (or refurbishment) strategies require a solid information basis about the facility and its past and future use, including the expected usage behaviour in the planned new technological environment. Such an information basis can be provided by BIM

65TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM for Retrofitting

Efficient retrofitting (or refurbishment) strategies require a solid information basis about the facility and its past and future use, including the expected usage behaviour in the planned new technological environment. Such an information basis can be provided by BIM

66TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM for Retrofitting

Efficient retrofitting (or refurbishment) strategies require a solid information basis about the facility and its past and future use, including the expected usage behaviour in the planned new technological environment.

Unfortunately, for most existing facilities BIM documentation does not exist.

Therefore, it is necessary to first create the BIM model of the facility, correctly interpreting its actual state.

67TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The BIMification Process

68TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

BIM for Retrofitting

Definition BIMification is the process to obtain from an

existing real facility a 3D BIM, preferably based on the standard ISO 16739 data schema (IFC), while taking into account the actual state and performance parameters of the facility

Note BIMification is more than just

(re-)constructing the model from old 2D drawings or laser point clouds

69TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The BIMification Process

Three-stage design process of existing buildings is

Anamnesis – Diagnosis – Therapy (ADT)

adapting and redefining a contemporary approach for the rehabilitation of cultural heritage(see: van Balen & Vestringe, 2016: Structural Analysis of Historical Constructions: Anamnesis, Diagnosis, Therapy, Controls; Proc. 10th Int. Conference on Structural Analysis of Historical Constructions, Leuven, Belgium, 13-15 Sep. 2016)

Anamnesis Diagnosis Therapy

InspectionSemantic Model

Building System Behaviour Rehabilitation StrategiesRetrofitting AlternativesDecision Making

BIMification BIM

70TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

AnamnesisDiagnosis

Therapy

BIMification BIM

GeoNeighborhood

ElementBehavior

Gap

Variability

PotentialAlternatives

Decision FinalDetailing

NewMethods

A1A2

A3

D1

D2

T1T2

T3T4

A4

basic advanced extended

Enhanced Methods

Enhanced Methods

BIMification and BIM process for building renovation defining the ADT processes

71TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

AnamnesisDiagnosis

Therapy

BIMification BIM

GeoNeighborhood

ElementBehavior

Gap

Variability

PotentialAlternatives

Decision FinalDetailing

NewMethods

A1A2

A3

D1

D2

T1T2

T3T4

A4

basic advanced extended

Enhanced Methods

Enhanced Methods

Controll

BIMC

BIMification and BIM and CPS process for buildings defining the ADTC processes

• robust• nachhaltig• …• …

BIM EntwurfundBIM AusführungBIM FM

72TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The BIMification Process

The Result of implementing the suggested process will be

a BIM Retrofitting Lab

73TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Anamnesis

74TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Process

Anamnesis is dedicated to the survey and collection of facts about the constructed facility

It comprises 5 tasks:

Geometrical BIMification Geometrical model extracted by observation

Basi

c BI

Mifi

catio

n

Topological BIMification Topological model, providing the adjacencies of elements and spaces

Environment BIMification Model of relevant infrastructure and neighbourhood information

Element BIMification Structured geometrical model in correctly assembled as-built elements in IFC

Adva

nced

BIM

ifica

tion

Behaviour BIMification Semantically enriched building elements with information about their behaviourbased on a system identification method

75TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Building Energy Performance Retrofitting

Using Point Cloud Data from 3D Laser Scanning

Source: TrueCADDEducational Centre, London, UK

Laser Point Cloud

Geometricalmodel

76TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Building Energy Performance Retrofitting

Source: Sahin C. (2915): Planar segmentation of indoor terrestrial laser scanning point clouds viadistance function from a point to a plane,Optics and Lasers in Engineering 01/2015

Automated geometric reconstruction of office data set

(1) point cloudsegmentation

(2) topologyprimitives

(3) inducedcell complex

(4) wireframe model& overlaid point cloud (5) final 3D model

77TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Building Energy Performance Retrofitting

Currently there are several companies offering Point Cloud to BIM services; one of the veterans in the domain is e.g.

They offer: Point Cloud 3D Modelling from 3D Laser Scanning Surface Reconstruction from Point Cloud Data Creating Revit Geometry from Point Cloud Datacovering quite well geometrical, topological, environment and element BIMification

Point Cloud GeometricalModel

Hand madeElement

Model(Revit)

78TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Building Energy Performance Retrofitting

Gathering and analysis of performance and environmental as-is data(temperature, moisture, radiation, CO2 emissions …)

Source: CEMOSA, Spain Auditoría Limoneros, Malaga

Providing relevant system identification inputs throughnon-destructiveexamination

79TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Unknown information is provided viaknowledge templates (materials used,element composition, façade and roof construction, insulations, MEP system parameters etc.)

Greyhound model approach combininga simplified physical system with a datamining method

The Anamnesis Processin Building Energy Performance Retrofitting

Draft Building Model with appropriately identified building elements (Element BIMification)

80TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Building Energy Performance Retrofitting

BIM-CAD BIMAnnotator

KnowledgeTemplatesRetrieval

OntologyGenerator

SimulationModel

Mapping

Geometrical to Element BIMification

Semantic model enrichment & model transformation (BIM to SIM)

81TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Building Energy Performance Retrofitting

BIM-CAD

SimulationConfigurator

Visualisation

1000th ofSimulationEvaluation

Measured(as-is) data

VariantReduction

Result comparison

as-is ↔ to-be

BIMAnnotator

KnowledgeTemplatesRetrieval

OntologyGenerator

SimulationModel

Mapping

Simulation-based system identification (Behaviour BIMification)

Semantic model enrichment & model transformation (BIM to SIM)

Parameterisation

as-is data & variant parametersmostly correspond in location & type

Simulation cycle

Conver-gencecheck

82TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Bridge Retrofitting

Inspecting the bridge structure Studying existing drawings

Sources: LAP, GermanyBranch office Dresden& TU Dresden

83TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Bridge Retrofitting

Gathering & analysis of performance and environmental as-is dataExample: Rhine bridge "Köln – Mühlheim"

Source: LAP, GermanyHeadquarters Stuttgart

84TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Bridge Retrofitting

Gathering & analysis of performance and environmental as-is dataExample: Rhine bridge "Köln – Mühlheim“ Stress/strain sensors / Traffic load monitoring (Hand Identification)

System identification& Load identification

85TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Bridge Retrofitting

Gathering & analysis of performance and environmental as-is dataExample: Rhine bridge "Köln – Mühlheim“ Dedicated load tests for model calibration Vollsperrung der Brücke notwendig

86TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Bridge Retrofitting

Gathering & analysis of performance and environmental as-is dataExample: Rhine bridge "Köln – Mühlheim“ Dedicated load tests for model calibration Messung im Vergleich zur Berechnung (Simulation)

87TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Bridge Retrofitting

Simulation-based system identification

Starting with a fast 2D analysis methodproceed with a 3D FEM

Anticipated damages added to observed data via knowledge patterns based on available past experience

Dam

age

patt

erns

88TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Bridge Retrofitting

BIM-CAD BIMAnnotator

Knowl.-baseddamagepatterns

OntologyGenerator

SimulationModel

Mapping

Geometrical to Element BIMification

Semantic model enrichment & model transformation (BIM to SIM)

89TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Anamnesis Processin Bridge Retrofitting

BIM-CAD

SimulationConfigurator

Visualisation

Evaluation

Monitored(as-is) data

VariantReduction

Result comparison

as-is ↔ to-be

BIMAnnotator

Knowl.-baseddamagepatterns

OntologyGenerator

SimulationModel

Mapping

Simulation-based system identification (Behaviour BIMification)

Semantic model enrichment & model transformation (BIM to SIM)

Parameterisation

as-is data & variant parametersdiffer in location and type!

Simulation cycle

Conver-gencecheck

1000th ofSimulation

90TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Diagnosis

91TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Diagnosis Process

Diagnosis is dedicated to the analysis and interpretation of the collected facts to obtain the necessary understanding of the current performance and plan adequate retrofitting measures

It comprises 2 tasks:

Gap BIMification Identifying elements and subsystems with critical or bad performance

Exte

nded

BIM

ifica

tion

Variability BIMification Identifying of elements and subsystems of high/low response to possiblechanges, accomplished by means of dedicated sensitivity analyses

92TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Diagnosis Processin Building Energy Performance Retrofitting

Gap BIMification should reveal weaknesses in the construction of the building and its technical systemsThis includes:− Possible moisture problems due to material deterioration− High energy consumption− Excessive temperatures− Insufficient window/door insulation− etc.

Source: CEMOSA, Spain Auditoría Limoneros, Malaga

Accomplished e.g. with the help ofperformance analysis software usingpassive thermal simulation anda specialized GUI to guide the userin the gap detection process

93TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Diagnosis Processin Building Energy Performance Retrofitting

Detecting operative temperature problems on zone level

94TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Diagnosis Processin Building Energy Performance Retrofitting

Source: EU Project ISESYoung Opera HouseDresden, Germany

Detecting heat conductiongains on zone level

95TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Diagnosis Processin Building Energy Performance Retrofitting

Source: T. Grillo, itemlive.com, 26 July 2016 (left)A. Perschk & Schünemann C., TU Dresden,Internal Report, 2015 (right)

Detecting gaps by means ofthermographic analysis usinga thermal camera

96TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Diagnosis Processin Building Energy Performance Retrofitting

Variability BIMification should find the sensitivity of building elementsand technical equipment to changes in order to determine as early as possible promising retrofitting targets or reject inefficient measures

Accomplished by applying "What-if" scenarios using a sensitivity analysis approach and bothenergy and LCC simulations

Enabled by (1) Variation matrix, providing for automated variant specification(2) Cloud computing, providing for parallel processing of hundreds

of generated variants(3) Automated evaluation of the effects of each parameter variation

on the basis of defined Key Performance Indicators (KPIs)

97TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Diagnosis Processin Building Energy Performance Retrofitting

The Variation Matrix captures all parameter variations that need to be examined on the basis of the Gap Analysis result

Creation of sensitivity analysis variants (pre-processing), their processing on a compute cloud environment and their evaluation followed by variant grouping and reduction (post-processing) take place in fully automated manner

Target List

Variables

Assignment Groups

Combinations

The Variation Matrix is defined in XML

It can be used both for sensitivity analysis within the BIMification process and for Variant Analysis in the later Retrofitting Design process

98TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Diagnosis Processin Building Energy Performance Retrofitting

Variant reduction is done iteratively based on the significance of eachparameter to the energy efficiency metric expressed via the KPIs

Measured 68 parameters in total Only 15 parameters remaining

significant to be further examined with regard to the building energy rating (BER), i.e. contribution > 2%

99TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Diagnosis Processin Building Energy Performance Retrofitting

Further reduction (and combination) of parameters for laterexamination as design variants is done via filters defined usingparallel coordinate plot visualisation

Source: EU Project ISESDecision Support ToolGranlund Oy, Finland

100TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Diagnosis Processin Bridge Retrofitting

Basically, the Diagnosis Process in Bridge Retrofitting follows the same steps as shown for building energy performance retrofitting above

However:− Potential weak points are determined through continuous monitoring

and/or querying a knowledge base of bridge structure types and relateddamage patterns and occurrence probability

− Sensitivity analysis is carried out in similar manner as for system identi-fication but taking into account damage development over time

Some possible damage areasbox girder bridge

101TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Diagnosis Processin Bridge Retrofitting

Unlike building energy performance retrofitting the diagnosis process forbridge retrofitting requires continuous comparison of monitored vs. computed crack propagation because the computed best fit may change over a time span

SimulationConfigurator

Visualisation

Evaluation

Monitored(as-is) data

VariantReduction

Result comparison

as-is ↔ to-be

Simulation cycle

Conver-gencecheck

1000th ofSimulation

102TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Diagnosis Processin Bridge Retrofitting

Unlike building energy performance retrofitting the diagnosis process forbridge retrofitting requires continuous comparison of monitored vs. computed crack propagation because the computed best fit may change over a time span

SimulationConfigurator

Visualisation

SimulationEvaluation

Monitored(as-is) data

VariantReduction

Result comparison

as-is ↔ to-be

Simulation cycle

Conver-gencecheck

Anticipateddamage at

t + ∆tPlausibility

Check

New Best FitSelect

t + ∆t

t + ∆t

103TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Therapy

104TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Therapy Process

Once created, BIM can be used in theTherapy Process in much the sameway as in the design of new facilities

The difference is that, because the model has not been created directly in CAD, use of knowledge templates for exploration of design variants may be more necessary,especially in the early design phase

105TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Therapy Process

Creating design variants using templates

Source: EU Project eeEmbedded

106TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Therapy Process

Creating design variants using templates

λR=0,09 W/mK

Exploringwall options

Source: EU Project eeEmbedded

107TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Therapy Process

Creating design variants using templates

Source: EU Project eeEmbedded

108TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

The Therapy Process

Creating design variants using templates

Source: EU Project eeEmbedded

109TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Functional ICT Concept

110TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Principal Concept4 Application Cycles

Design & Verification Cycle

Knowledge Cycle(KnowledgeServices)

Analysis & Simulation Cycle(Compute Services)

System Identification Cycle

(BIMification)

111TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

System & ModelManagementCycleBIM Services

Principal Concept1 supporting Kernel Cycle = BIM Services

Design & Verification Cycle

Knowledge Cycle(KnowledgeServices)

Analysis & Simulation Cycle(Compute Services)

System Identification Cycle

(BIMification)

112TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer13.09.2017

High Level Functional ICT Architectureof Kernel BIM Lab

domain model repositories

simulation management

collaboration & process manager

Combiner

Filter

Versioning

Manipulator

BIMLibraries

Multi-ModelsSystem Ontology

BIMSystem-Models

Sensor data

repository

Simulation M. Generator +

Mapper

Simulation Controller

Cloud/GridAccess

ResultsRepository +

MM-Wrapper

BIM Services

113TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

High Level Functional ICT Architecture

Domain model repositoriesBIM, ESIM, BEM etc.

Simulation managementservices

NumericalComputation

Tools:- Thermal - Moisture- Fluid dyn.- Structural- LCA- LCC

BIM Navigationand Steering

BIM Services

BIM - I/O

BIM Kernel Platform

Model Management

Cycle

NumericalComponent

BIM-CAD Modelling

NumericalCycle

Design Cycle

Collaboration & process management services

CAD-based Virtual Design Lab

114TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

High Level Functional ICT Architecture

Domain model repositoriesBIM, ESIM, BEM etc.

Simulation managementservices

NumericalComputation(CLOUD)

Tools:- Thermal - Moisture- Fluid dyn.- Structural- LCA- LCC

BIM Navigationand Steering

KnowledgeInferenceComputation

Knowledge bases

Templates- Detailing- Ext. data- Strategies

BIM Services

BIM - I/O

BIM Kernel Platform

KnowledgeComponent

Model Management

Cycle

NumericalComponent

BIM-CAD Modelling

NumericalCycle

Design Cycle

KnowledgeCycle

Collaboration & process management services

Knowledge-based Virtual Design Lab

115TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

High Level Functional ICT Architecture BIM Lab

Domain model repositoriesBIM, ESIM, BEM etc.

Simulation managementservices

NumericalComputation(CLOUD)

Tools:- Thermal - Moisture- Fluid dyn.- Structural- LCA- LCC

BIM Navigation,Inspectionand Steering

KnowledgeInferenceComputation

Knowledge bases

Templates- Detailing- Ext. data- Strategies- Old Constr.

BIM Services

BIM - I/O

BIM Kernel Platform

KnowledgeComponent

Model Management

Cycle

Anamnesis DiagnosisBIMification

NumericalComponent

TherapyBIM-CAD Modelling

BIMificationCycle

NumericalCycle

Design Cycle

KnowledgeCycle

Collaboration & process management services

BIMification Lab

116TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Virtual Lab Platform for ee-Design

Source: eeEmbedded project

117TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Support behind

118TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Forschung- und Entwicklungszeit und -ResourcenMultimodel, BIM-Lab, Systemidentifikation

GeoTechControll (56 PM, 2010-12)mehere Datenmodell mit einer SteuerungsOntologiesimulationsbasierte Systemidentifikation im Grundbauerstere Ansätze zum virtuellen Labor

mefisto (288 PM, 2009-12)Multimodel in AVA und Baubetriebweitere Ansätze zum virtuellen Labor

HESMOS, ISES, eeEmbedded (380 PM, 2013-16)Multimodel im enregie-effiecenten Bauwerksentwurf (0,3 M Euro)iVEL intelligen Virtual Energy Lab

SARA, BridgeCloud, SE-Lab (170 PM, 2010-16)Multimodel im Windengineering und BrückenentwurfiVEL intelligent Virtual Engineering Lab

iSiGG, wiSiB, CyberBridge, GeoProduction (214 PM, 2016-19)Feuer,Entfluchtung von Gebäuden, Monitoring,Systemidentifikation Brücken,GeobauwerkeMultimodell ISO Normgruppe und BIM-Lab

119TU Dresden, Institute of Construction Informatics, Prof. Dr.-Ing. Raimar J. Scherer

Forschung- und Entwicklungszeit und -ResourcenMultimodel, BIM-Lab, Systemidentifikation

GeoTechControll (56 PM, 2010-12)mehere Datenmodell mit einer SteuerungsOntologiesimulationsbasierte Systemidentifikation im Grundbauerstere Ansätze zum virtuellen Labor

mefisto (288 PM, 2009-12)Multimodel in AVA und Baubetriebweitere Ansätze zum virtuellen Labor

HESMOS, ISES, eeEmbedded (380 PM, 2013-16)Multimodel im enregie-effiecenten Bauwerksentwurf (0,3 M Euro)iVEL intelligen Virtual Energy Lab

SARA, BridgeCloud, SE-Lab (170 PM, 2010-16)Multimodel im Windengineering und BrückenentwurfiVEL intelligent Virtual Engineering Lab

iSiGG, wiSiB, CyberBridge, GeoProduction (214 PM, 2016-19)Feuer,Entfluchtung von Gebäuden, Monitoring,Systemidentifikation Brücken,GeobauwerkeMultimodell ISO Normgruppe und BIM-Lab